Graceful labeling on cycle related graphs

C. Dorathy Department of Mathematics St. Joseph's College, Trichy. dorathy1995tvr@gmail.com N. Nagamani Department of Mathematics SRM-Easwari Engineering College, Chennai. nagamani.n@eec.srmrmp.edu.in

1 Introduction

For an excellent survey on graph labeling we refer to Gallian[4]. All the graphs considered here are finite and undirected. The terms not defined here are used in the sense of Harary [3].

1.1 Graceful labeling on graphs

Definition 1.1. A graph G of order p and size q which admits graceful labeling is called a graceful graph.

Motivated by the works of graceful labeling of graphs, a labeling called **pronic graceful labeling is discussed** in this work.

2 Graceful labeling using pronic numbers

Definition 2.1. Pronic Number:

A number of the form n(n + 1) is called a pronic number. All pronic numbers are even by its definition, and the only prime pronic number is 2. Also 2 is the only pronic number in the Fibonacci sequence.

Figure 1: Mobius Kantor Graph-Pronic Graceful

Note 2.2. A pronic number is squarefree if and only if n and n + 1 are also squarefree. 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 are few among them.

Definition 2.3. *Pronic Graceful Labeling:*

. A pronic graceful labeling of a graph G with $p \ge 2$ is a bijection $f: V(G) \rightarrow \{0,2,6,12,...,p(p+1)\}$ such that the resulting edge labels obtained by |f(u) - f(v)| on every edge uv are pairwise disjoint. A graphG is called pronic graceful if it admits pronic graceful labeling.

Example 2.4. An example for a graph which admits pronic graceful labeling is given in 1

In this chapter, the pronic graceful labeling on graphs with some graph operations have been discussed.

2.1 Main theorems

Theorem 2.5. *Cycle graph* C_n , $n \ge 3$ *is a pronic graceful graph*

Theorem 2.6. Star graph $K_{1,n}$, $n \ge 3$ is a pronic graceful graph.

Theorem 2.7. Path graph P_n , $n \ge 3$ is a pronic graceful graph.

Theorem 2.8. Complete graph K_n , $n \ge 4$ does not admits pronic graceful labeling.

2.2 Wheel related graphs

Theorem 2.9. The wheel graph $K_1 + C_n$, $n \ge 4$ admits pronic graceful labeling.

Figure 2: Gear Graph

Theorem 2.10. *Gear graph* G_n *admits pronic graceful labeling* **Proof :** Let v_n be the apex vertex and { $v_0, v_1, v_2..., v_{n-1}$ } be the rim vertices of G_n , $n \ge 3$ and { $v_iv_{i+1}, i = 0, 1, ..., n - 2, v_{n-1}v_0, v_nv_b, i = 0, 2, 4, ..., n - 2$ be the edges of G_n . Define a bijection $f : V(G) \rightarrow \{p_0, p_1, ..., p_{n-1}\}$ by

$$f(v_i) = p_i, i = 0, 1, 2, \dots, n-1$$
 $f(v_n) = p_n.$

For the vertices labeled above, an induced labeling $f^*: E(G) \rightarrow \{2, 4, 6, ..., p_{n-1}\}$ is defined by

$$f^{*}(v_{i}v_{i+1}) = 2(i+1), i = 0, 1, 2, ..., n-2;$$

$$f^{*}(v_{n}v_{i}) = n(n+1) - i(i+1), i = 0, 2, 4, ..., n-2;$$

$$f^{*}(v_{0}v_{n-1}) = (n-1)n.$$

Let A_1 and A_2 denote the set of edge labels of $\{v_i v_{i+1} (0 \le i \le n-2), v_{n-1} v_0\}$, $\{v_i v_{i+1}, i = 0, 1, 2, ..., n-2\}$. Then:

$$A_1 = \{2,4,6,..,2(n-1),n(n-1)\};$$

$$A_2 = \{n(n+1),n(n+1) - 6,n(n+1) - 20,..4n - 2\}.$$

Hence $A_1 \cap A_2 = \varphi$ which results that the gear graph admits pronic graceful labeling

Theorem 2.11. Helm Graph HG_n, admits pronic graceful labeling

Proof : Let v_n be the apex vertex and { $v_0, v_1, v_2, ..., v_{n-1}$ } be the rim vertices of HG_n , $n \ge 3$. Let { $v_iv_{i+1}, i = n, n + 1, ..., 2n - 2, v_nv_{2n-1}, v_{2n}v_i, i = n, n + 1, ..., 2n - 1$ be the edges of HG_n . Define a bijection $f : V(G) \rightarrow \{p_0, p_1, ..., p_{2n}\}$ by

$$f(v_i) = p_i, i = 0, 1, 2, ..., n - 1$$
 $f(v_{2n}) = p_{2n}.$

For the vertices labeled above, an induced labeling $f^*: E(G) \rightarrow \{2, 4, 6, ..., p_{n-1}\}$ is defined by

$$\begin{array}{l} f^{*}(v_{i}v_{i+1}) = 2(i+1), i = n-1, n, n+1, n+2, ..., 2n-2; \\ f^{*}(v_{2n}v_{i}) = 3n^{2} - (n+1)i - 1, i = 0, 1, 2, ..., n-1; \\ f^{*}(v_{i}v_{i+(n+1)}) = p_{n+1} + 2i(n+1), i = 0, 1, 2, ..., n-2; \\ f^{*}(v_{n}v_{2n-1}) = 3n^{2} - 3n. \end{array}$$

Figure 4: Helm Graph

Let A_1 and A_2 denote the set of edge labels of $\{v_i v_{i+1} (0 \le i \le n-2), v_{n-1} v_0\}$, $\{v_i v_{i+1}, i = 0, 1, 2, ..., n-2\}$. Then:

$$A_1 = \{2, 4, 6, \dots, 2(n-1), n(n-1)\};$$

 $A_2 = \{n(n+1), n(n+1) - 6, n(n+1) - 20, \dots 4n - 2\}.$ Hence $A_1 \cap A_2 = \varphi$ which results that the helm graph admits pronic graceful labeling.

2.3 Ladder Graph and Mobius Ladder Graph

Definition 2.12. *Ladder Graph L*_{*n*,1}

The ladder graph, denoted by $L_{n,1}$ is a planar undirected graph which is defined as the cartesian product of two path graphs, one of which has only one edge: $Ln, 1 = P_n \times P_2$ with 2n vertices and 3n-2 edges.

Theorem 2.13. Ladder graph *L*_{n,1} is pronic graceful.

Proof : Let $L_{n,1}$ be the ladder graph with vertex set $V(L_{n,1}) = \{u_i, v_i, 0 \le i \le n-1\}$ and edge set $E(L_{n,1}) = \{u_i u_{i+1}, v_i v_{i+1}, 0 \le i \le n-2\} \cup \{u_i v_i, 0 \le i \le n-1\}.$ Define a bijection $f : V(G) \to \{p_0, p_1, ..., p_{2n-1}\}$ by

 $f(u_i) = p_i, i = 0, 1, 2, ..., n - 1; f(v_i) = p_{i+n}, i = 0, 1, 2, ..., n - 1.$

For the vertices labeled above, an induced labeling $f^*: E(G) \rightarrow \{2, 4, 6, ..., p_{n-1}\}$ is defined by

$$f^*(u_i u_{i+1}) = 2(i+1), i = 0, 1, 2, ..., n-2;$$

$$f^*(v_i v_{i+1}) = 2(n+i+1), i = 0, 1, 2, ..., n-2;$$

$$f^*(u_i v_i) = n^2 + n(1+2i), i = 0, 1, 2, ..., n-1.$$

Let A_1, A_2 and A_3 denote the set of edge labels of $\{u_i u_{i+1} (0 \le i \le n-2)\}$, $\{v_i v_{i+1}, i = 0, 1, ..., n-2\}$ and

 $\{u_i v_i, i = 0, 1, \dots, n-1\}$. Then:

$$A_1 = \{2,4,6,\dots,2(n-1)\};$$

$$A_2 = \{2(n+1),2(n+2),\dots,2(2n-1)\}; A_3 = \{n^2 + n,n^2 + 3n,\dots,n(3n-1)\}.$$

Hence $A_1 \cap A_2 = \varphi$ which results that the ladder graph admits pronic graceful labeling.

Definition 2.14. Mobius Ladder Graph M_n

A Mobius ladder graph M_n is a simple cubic graph on 2n vertices and 3n edges. A Mobius ladder graph M_n is a graph obtained from the ladder P_nP_2 by joining the opposite end points of the two copies of P_n .

Theorem 2.15. *Mobius Ladder Graph M_n is pronic graceful.*

Proof: Let M_n be the Mobius Ladder graph with vertex set $V(M_n) = \{u_{ib}v_{ib}0 \le i \le n-1\}$ and edge set $E(M_n) = \{u_{iu}u_{i+1}, v_{iv}v_{i+1}, 0 \le i \le n-2\} \cup \{u_{0}v_{n-1}, v_{0}u_{n-1}\}.$

Define a bijection $f: V(G) \rightarrow \{p_0, p_1, \dots, p_{2n-1}\}$ by

$$f(u_i) = p_i, i = 0, 1, 2, ..., n - 1; f(v_i) = p_{i+n}, i = 0, 1, 2, ..., n - 1.$$

For the vertices labeled above, an induced labeling $f^*: E(G) \rightarrow \{2, 4, 6, ..., p_{n-1}\}$ is defined by

 $f^{*}(u_{i}u_{i+1}) = 2(i+1), i = 0, 1, 2, ..., n-2; \qquad f^{*}(u_{0}v_{n-1}) = 2n(2n-1);$ $f^{*}(v_{i}v_{i+1}) = 2(n+i+1), i = 0, 1, 2, ..., n-2;$ $f^{*}(v_{0}u_{n-1}) = 2n; f^{*}(u_{i}v_{i}) = n^{2} + n(1+2i), i = 0, 1, 2..., n-1.$

Let A_1 , A_2 , A_3 and A_4 denote the set of edge labels of $\{u_i u_{i+1} (0 \le i \le n-2)\}$, $\{v_i v_{i+1}, i = 0, 1, \dots, n-2\}$, $\{u_i v_i, i = 0, 1, \dots, n-1\}$ and $\{u_0 v_{n-1}, v_0 u_{n-1}\}$ Then:

$$A_{1} = \{2,4,6,...,2(n-1)\};$$

$$A_{2} = \{2(n+1),2(n+2),...,2(2n-1)\};$$

$$A_{3} = \{n^{2} + n,n^{2} + 3n,...,n(3n-1)\}; A_{4} = \{2n(2n-1),2n\}.$$

Hence $A_i \cap A_j = \varphi$ for all $i \neq j$ which results that the mobious ladder graph admits pronic graceful labeling. \Box

2.4 Shell related graphs

From the excellent survey of Gallion, one can find many families of cycle related graphs on which important is the Shell graph family.

Shell Graph

Theorem 2.16. A Shell Graph C(n, n - 3), for $n \ge 3$ is a pronic graceful graph.

Proof : Let { $v_0, v_1, v_2, ..., v_{n-1}$ } be the vertices of C(n, n-3).

Define a bijection $f: V(G) \rightarrow \{p_0, p_1, \dots, p_{n-1}\}$ by

$$f(v_i) = p_i, i = 0, 1, 2, \dots, n-1.$$

For the vertices labeled above, an induced labeling $f^*: E(G) \rightarrow \{2,4,6...,p_{n-1}\}$ is defined by

$$f^*(v_i v_{i+1}) = 2(i+1), i = 0, 1, 2, ..., n-3; f^*(v_n v_i) = n(n+1) - i(i+1), i = 0, 1, 2, ..., n-2.$$

The edge labels are thus $\{2,4,8,...,2(n-2),p_{n-1},p_{n-1}-2,p_{n-1}-6,...,p_{n-1}-p_{n-2}\}$ and hence shell graph C(n,n-3), for $n \ge 3$ admits provide graceful labeling. \Box

Figure 6: Shell Butterfly Graph

2.5 Shell Butterfly Graph

J.J. Jesintha, K.E. Hilda[17] defined a Shell -butterfly graph as a double shell in which each shell has any order with exactly two pendant edges at the apex and proved that all shell- butterfly graphs with shells of order *l* and *m*(shell order excludes the apex) are graceful. Note that *G* has n = 2m + 3 vertices and q = 4m edges. Here in the following theorem, we consider the shell butterfly graph of same order.

Theorem 2.17. A shell butterfly graph G is a pronic graceful graph.

Proof : Let *G* be a shell-butterfly graph with *n* vertices and *q* edges and have the shell orders as m(odd or even) and *l* where l = 2t + 1. Note that shell orders exclude the apex. Let the shell that is present to the left of the apex be called as the left wing of the *G*. Let the shell that is present to the right of the apex is called the right wing of *G*.

Denote the apex of G be v_{2m+2} and the vertices of right wing of the graph from top to bottom as $v_0, v_1, ..., v_{m-1}$. Similarly the left wing vertices by $\{v_m, v_{m+1}, ..., v_{2m-1}\}$. Let $\{v_{2m}, v_{2m+1}\}$ be the two pendant vertices of G.

Define a bijection $f: V(G) \rightarrow \{p_0, p_1, ..., p_{n-1}\}$ by $f(v_i) = p_i, i = 0, 1, 2, ..., 2n + 2$.

For the vertices labeled above, an induced labeling $f^*: E(G) \rightarrow \{2, 4, 6, ..., p_{n-1}\}$ is defined by

 $f^*(v_iv_{i+1}) = 2(i+1), i = 0, 1, 2, ..., m - 1, m, m + 1, ..., 2m - 2;$

 $f^*(v_{2m+2}v_i) = (2m+2)(2m+3) - i(i+1), i = 0, 1, 2, ..., m - 1, m, m + 1, ..., 2m + 2.$

The edge labels are thus $\{2,4,8,...,2(m-1),2(m+1),2(m+2),...,2(2m-1)\}$. The labels of the edges $v_{2m+2}v_i$ are of the form (2m+2)(2m+3)-i(i+1), i = 0, 1, 2,...,m-1, m, m+1, ..., 2m-1 and begins with p_{2m+2} and the difference of each label is of the form 2i, i = 1, 2, ..., m-1, m+1, m+2, ..., 2m+1. and hence shell butterfly graph admits pronic graceful labeling. \Box

2.5.1 PGL on corona product and joint sum of graphs

Definition 2.18. Corona Product of C_n and mK₁

The corona product of C_n and mK_1 , denoted by $C_n \circ mK_1$ is the graph with the vertex set

Figure 7: Corona graph $C_5 \circ 2K_1$

 $V(C_n \circ mK_1) = \{x_i, y_i^j : 1 \le i \le n, 1 \le j \le m\}$ and the edge set

 $E(C_n \circ mK_1) = \{x_{i,x_{i+1}} : 1 \le i \le n-1\} \cup \{x_{i,y_i}^j : 1 \le i \le n, 1 \le j \le m\} \cup \{x_{n,x_1}\}.$

Theorem 2.19. Corona product $C_n \circ mK_1$ is a pronic graceful graph.

Proof: Let $\{u_0, u_1, u_2, ..., u_{n-1}\}$ be the vertices of the cycle C_n and $\{u_0^{(j)}, u_1^{(j)}, ..., u_{n-1}^{(j)}, j = 1, 2, ..., m\}$ be the corresponding pendant vertices attached to the $u_0, u_1, u_2, ..., u_{n-1}$. Define a bijection $f: V(G) \rightarrow \{0, 2, 6...(nm + n)(nm + n - 1)\}$ by

$$f(u_i) = p_{i,i} i = 0, 1, ..., n - 1;$$

$$f(u_i^j) = p_{n_i + i}, i = 0, 1, 2, ..., n - 1, j = 1, 2, ..., m.$$

And the induced edge labeling $f^* : E(G) \to N$ is defined by

$$f^{*}(u_{i}u_{i+1}) = 2(i+1), i = 0, 1, 2, ..., n-2; f^{*}(u_{0}u_{n-1}) = n(n-1);$$

$$f^{*}(u_{i}u_{i}^{(j)}) = n[2ij + j(nj+1)], i = 0, 1, 2, ..., n-1, j = 1, 2, ..., m.$$

Let A_1, A_2, A_3 denote the set of edge labels of $\{u_i u_{i+1}, i = 0, 1, ..., n-2\}$, $\{u_{n-1}u_0\}$ and $\{u_i u_i^{(j)}, i = 0, 1, 2, ..., n-1, j = 1, 2, ..., m\}$ respectively.

Clearly the labels of the edges for the above sets are of the form as follows:

 A_1 contains the edges of the form 2k, k = 1, 2, ..., (n - 1) and each label differs by 2 and hence they are distinct. A_2 contains the edge of the form n(n - 1) and is differed from the above labeling by p_{n-1} . Consider the labels of A_3

For j = 1, the set contains edges of the form $\{p_n, p_n + 10i, ..., n(2i + (n + 1))\}$ For j = 2, the set contains edges of the form $\{p_{2n}, p_{2n} + 20i, ..., n(4i + 2(2n + 1))\}$

For j = m, the set contains edges of the form $\{p_{mn}, p_{mn} + 10mi, ..., n[2im + j(mn + 1)]\}$

It is observed that the labels in the above sets are distinct, that is $A_1 \cap A_2 \cap A_3 = \varphi j$ and hence $C_n \circ mK_1$ is a pronic graceful graph. \Box

2.6 Barycentric Subdivision of a graph

Definition 2.20. Creating a barycentric subdivision is a recursive process. In this section we consider the concept of barycentric subdivision of cycles introduced by Vaidya et al. An edge e = uv of a graph G is said to be subdivided when it is deleted and replaced by path of length 2. Let $C_n = u_1...u_n$ be a cycle on n vertices. Subdivide each edge u_iu_{i+1} of C_n and let the new vertex be $u_i, 1 \le i \le n$. Join u_i with $u_{i+1}, 1 \le i \le n$. All suffixes are taken modulo n. The resulting graph is denoted as $(C_n)^2$. This graph is called the barycentric subdivision of C_n and it is denoted by

 $C_n(C_n)$ as it look like C_n inscribed in C_n . The barycentric subdivision subdivides each edge of the graph.

Figure 8: $C_5(C_5)$

Theorem 2.21. Barycentric subdivision of cycle $C_n(C_n)$ is a pronic graceful graph.

Proof : Let { $v_0, v_1, ..., v_{n-1}$ } be the vertices of n- cycle and { $w_0, w_1, w_2, ..., w_{n-1}$ } such that w_i connected to v_i and v_{i+1} for $0 \le i \le n-2$ and w_{n-1} is connected to v_{n-1} and v_1 .

Define a bijection $f: V(G) \rightarrow \{p_0, p_1, p_2, \dots, p_{2n-1}\}$ by

$$f(v_i) = p_{i}, i = 0, 1, 2, ..., n - 1; f(w_i) = p_{n+i}, i = 0, 1, 2, ..., n - 1.$$

Clearly f is a bijection. For the above vertices labeled above, the edge labeling $f^*: E(G) \to N$ is defined by

 $\begin{aligned} f^*(v_i v_{i+1}) &= 2(i+1), i = 0, 1, 2..., n-2; \\ f^*(v_0 v_{n-1}) &= n(n-1); \\ f^*(v_i w_i) &= p_n + 2ni, i = \\ 0, 1, 2, ..., n-1. \end{aligned} \qquad f^*(v_0 w_{n-1}) &= 2n(2n-1); \\ \end{aligned}$

Let A_1, A_2, A_3 and A_4 denote the set of edge labels of $\{v_i v_{i+1}, i = 0, 1, ..., n-2\}, \{v_i w_i, i = 0, 1, 2, ..., n-1\}, \{v_i w_{i-1}, i = 0, 1, 2, ..., n-1\}$ and $\{v_0 v_{n-1}, v_0 w_{n-1} \text{ respectively. Then:} \}$

$$\begin{split} A_1 &= \{2,4,6,...,2(n-1)\}; \\ A_2 &= \{n(n+1),n(n+3),n(n+5)...,n(3n-1)\}; \\ A_3 &= \{(n-1)(n+3),(n-1)(n+5),(n-1)(n+5),...,(n-1)(3n-2)\}; \ A_4 &= \{2n(2n-1),2n\}. \end{split}$$

Hence $A_1 \cap A_2 = \varphi$ which results that the barycentric subdivision of cycle $C_n(C_n)$ admits pronic graceful labeling.

References

- J. Ayel and O. Favaron, Helms are graceful, Progress in Graph Theory, Academic Press, Toronto, Ontario (1984) 89-92.
- [2] E. M. Badr, M. I. Moussa and K. Kathiresan, Crown Graphs and Subdivision of Ladders are Odd Graceful, International Journal of Computer Mathematics, Vol. 88, No. 17, November 2011, 35703576.
- [3] J. Bondy and U. Murty, Graph Theory with Applications, North-Holland, New York (1979).
- [4] Gallian J.A., A dynamic survey of graph labeling, Electron. J. Combin., Dynamic survey, (2005), 1148.
- [5] J. Jeba Jesintha, K. Ezhilarasi Hilda, SHELL-BUTTERFLY GRAPHS ARE GRACEFUL, International Journal of Pure and Applied Mathematics, Volume 101 No. 6 2015, 949-956.
- [6] Kathiresan. Km and Amutha. S, Fibonacci Graceful Graphs, Ars Combinatoria, 2010.
- [7] T. Mary Vithya and K. Murugan, Cube Graceful Labeling of Graphs, International Journal of Pure and Applied Mathematics, Volume 119 No. 15 2018, 1125-1135.
- [8] D. Muthuramakrishnan and S. Sutha, Pell graceful labeling of graphs, Malaya Journal of Matematik, Vol. 7, No. 3, 508-512, 2019.

- [9] Sophia Porchelvi. R, Akila Devi. S, Pronic Graceful Labeling of Cycle related Graphs, Aegaeum Journal, Volume 8, Issue 8, 2020, 999-1002.
- [10] Sophia Porchelvi. R, Akila Devi. S,Pronic Heron Mean labeling on special cases of generalized Peterson graphP(n,k)and disconnected graphs, Malaya Journal of Matematik, Vol. 9, No. 1, 262266, 2021.
- [11] Sophia Porchelvi. R, Akila Devi. S,Pronic Graceful Labeling on Special Cases of Generalized Peterson Graphs, Wesleyan Journal of Research, Vol13No 58, Jan 2021.
- [12] Vaidya. S. K, Vihol. P. L, Fibanacci and Super Fibonacci Graceful Labeling of some graphs, Studies in Mathematical Sciences, Vol. 2, 2011, pp. 24-35.
- [13] S. K. Vaidya and Lekha Bijikumar, Some New Graceful Graphs, International Journal of Mathematics and Soft Computing, Vol.1, No.1, 2011,37-45.
- [14] S. K. Vaidya et al, Some Cordial Graphs in the Context of Barycentric Subdivision, Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 30, 1479 - 1492.
- [15] S.W. Golomb, How to number a graph, in Graph Theory and Computing, R.C. Read, ed., Academic Press, New York (1972) 23-37.
- [16] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967) 349-355.
- [17] J. Jeba Jesintha, K. Ezhilarasi Hilda, SHELL-BUTTERFLY GRAPHS ARE GRACEFUL, International Journal of Pure and Applied Mathematics, Volume 101 No. 6 2015, 949-956.