"A COMPETENT ANTI DIABETIC ACTIVITY OF SUSHRUTOKTA VIMSHATI YOGA IN THE REGULATION OF DIABETES MELLITUS-AN ANALYTICAL EVALUATION"

Dr. Sowjanya. J, Assistant Professor, Department of Kayachikitsa, S.D.M Institute of Ayurveda and Hospital, Bengaluru, Karnataka

ABSTRACT

Diabetes Mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both. The degree of hyperglycemia may change over time, depending on the extent of the underlying disease process. It reflects the severity of the underlying metabolic process and its treatment more than the nature of the process itself. Achieving adequate glycemic control becomes a prime most factor in diabetes mellitus. The long stand intake of oral hypoglycemic therapy or insulin therapy has ample of adverse effects which significantly hampers physical as well as psychological health of an individual. *Ayurvedic* pharmacology emphasizes on adequate glycemic control as well as maintains individual's overall wellbeing by its holistic approach. *Ayurvedic Samhitha* primarily explains three types of *Prameha* which is further subdivided into twenty types, where it emphasizes on early, acute and chronic stages of diabetes mellitus. Thus an effort is made to analytically evaluate the anti-diabetic activity of *Sushrutokta Vimshati Yoga* in regulation of Diabetes mellitus.

Keywords: Diabetes mellitus, Anti diabetic activity, Sushrutokta Vimshati Yoga,.

INTRODUCTION

Diabetes mellitus is a metabolic disorder of multiple etiology, characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects of insulin secretion, insulin action or both. The long term effects of diabetes includes damage, dysfunction, and failure of various organs. The long term effects include progressive development of retinopathy with potential blindness, nephropathy that may lead to renal failure, neuropathy with risk of foot ulcers, amputation, Charcot joints, and features of autonomic dysfunction, including sexual dysfunction. Subjects with diabetes are at risk of cardiovascular, peripheral vascular, and cerebrovascular diseases.

Also, **Diabetes** is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both. The degree of hyperglycemia may change over time, depending on the extent of the underlying disease process. It reflects the severity of the underlying metabolic process and its treatment more than the nature of the process itself.

Prevalence of Diabetes mellitus globally is 422 million according to WHO and more than 62 million, which are more than 7.1% of adult population in India according to International Diabetes foundation. Achieving adequate glycemic control becomes a prime most factor in diabetes mellitus.

Classification

- 1. TYPE 1 DIABETES- Absolute Insulin Deficiency. IDDM
- 2. TYPE 2 DIABETES- Defects of insulin secretion or insulin action NIDDM
- 3. GESTATIONAL DIABETES-
- 4. OTHER TYPES: a. Genetic defects of beta cell
 - b. Genetic defects in insulin action
 - c. Diseases of the Pancreas
 - d. Excess amounts of counter regulatory hormones
 - e. Infections

f. Rare autoimmune disorders

g. Genetic syndrome associated with diabetes

5. PRE-DIABETES

Clinical features of Diabetes mellitus are variable and depend upon the type of diabetes and the stages of the natural history of diabetes at which it is seen. Many are ASYMPTOMATIC and remain silent for many years. Some may present with POLYURIA, POLYDIPSIA and POLYPHAGIA with WEAKNESS and WEIGHT LOSS. Also few may have long term complications like NEUROPATHY, RETINOPATHY and NEPHROPATHY at diagnosis.

Management includes Life style modifications, Oral Anti Diabetic drugs and Insulin Therapy.

The long stand intake of oral hypoglycemic therapy or insulin therapy has ample of adverse effects. *Ayurvedic* pharmacology emphasizes on adequate glycemic control as well as maintains individual's overall wellbeing by its holistic approach. Diabetes mellitus can be emphasized under *Prameha* due to the similarities possessed. *Ayurvedic Samhitha* primarily explains Premonitory symptoms, Signs and symptoms, Pathogenesis, Etiological, Therapeutic Clinicopathological Classification of *Prameha* which emphasizes on early, acute and chronic stages of diabetes mellitus, Complications, Management modalities, Diet plan and also its prevention.

AIMS AND OBJECTIVES

• To analytically evaluate the anti-diabetic activity of *Sushrutokta Vimshati Yoga* in regulation of Diabetes mellitus.

MATERIALS AND METHODS

Analytical review on Anti Diabetic activity of Vimshati Yoga:

Kaphaja Meha

Prameha	Yoga	Botanical Name	Anti-Diabetic activity
01. UDAKA MEHA	PARIJAATA- PARIBHADRA	Nyctanthes arbostristis , Erythrina indica	Root- Methanol- Hypoglycemic activity Alcoholic and aqueous extracts of stem bark- Phytosterols – Reduces FBS and improves insulin resistance ,Hypoglycemic activity
02. IKSHU MEHA 03.SURA MEHA	VAIJAYANTI NIMBA	Premna integrefolia Azadirachta indica	Bark - Flavonoids, glycosides, Carotenoids- Reduces FBS, Promotes glucose metabolism, inhibits hepatic Gluconeogenesis, regenerates the damaged beta cells Leaf extract- Improves expression of insulin signaling molecules and GLUT4 protein to enhance oxidation in skeletal
04. SIKATA MEHA	CHITRAKA	Plumbago zeylanica	muscleDecreases the activity of glucose 6phosphataseand Fructose 1,6biphosphatase, enhancesGLUT 4 mRNAand protein expression-GLUT 4translocation and contributesto glucosehomeostasis
05. SHANAI MEHA	KHADIRA	Acacia catechu	Leaves-Hydroethanolicacid-antihyperglycemicactivitybystimulatinginsulinreleaseandinhibitionof

			secretion
06. LAVANA MEHA	ΡΑΤΑ	Cyclea peltata, Cissampelos pariera	Phenols, Flavonoids, alkaloids, tannins, terpenoids and sterols- Stimulate lipogenesis and glucose transport in adipocytes hence lowering blood sugar.
	AGURU	Aquilaria agallocha	Enhances glucose uptake by adipocytes, reduces FBS
	HARIDRA	Curcuma longa	Curcuminoids, glycosides, terpenoids, flavonoides- Inhibits human pancreatic Amylase, reduces starch hydrolysis
07. PISHTA MEHA	DARUHARIDRA HARIDRA (mentioned earlier)	Berberis aristata	Significantly decreases the blood glucose, total cholesterol and triglycerides.
08.SAANDRA MEHA	SAPTAPARNA	Alstonia scholaris	Bark- Reduces blood glucose levels, glycosylated hemoglobin and lipid peroxidation
09. SHUKRA MEHA	DOORVA	Cynodon dactylon	Reduces FBS, weight metabolism, restores stress induces sexual dysfunction
	SHAIVALA	Ceratophyllum demersum	Reduces serum glucose levels
	PLAVA	Cyperus scariosus	Quercitin, Gallic acid, 4-hydroxyl cinnamic acid- Anti diabetic activity by alpha glucosidase inhibition.
	HATHA-	Pistia stratiotes	Reduces blood glucose levels

	JALAKUMBHIKA		
	KARANJA	Pongamia	Enhances glucose utilization by peripheral
		pinnata	tissues
	KASERUKA	Scirpus grossus	Saponin-Anti oxidant and anti glycation -
			By inhibiting late glycation and formation
			of advanced glycation end products
			(AGEs) on proteins.
			Improves sperm count
	KAKUBHA	Terminalia	Decreases activity of Glucose 6
		arjuna	phosphatase, Fructose 1,6 di phosphatase,
			aldolase Increases phosphoglucoisomerase
			. hexokinase.
	CHANDANA	Santalum album	Helps in overcoming insulin resistance, has
			potential anti hyper lipidemic activity
10. PHENA	TRIPHALA-	Terminalia	Reduces FBS, PPBS, Restores functioning
MEHA		chebula	ability of beta cell of pancreas, Regulates
	ΠΑΚΠΑΚΙ		insulin metabolism, anti-inflammatory,
	VIBHITAKI	Terminalia	helps in diabetic retinopathy, nephropathy
		bellirica	and neuropathy
	AMALAKI	Emblica	
		officinalis	
		omemans	
	ARAGWADHA	Cassia fistula	Increase insulin release, Prevents
			complication of microvasculature
	MRUDWIKA	Vitis vinifera	Radical scavenging- Plays role in Ischemia,
			Inflammation and DM
			Recovers the beta cells of pancreas

Pittaja Meha

01.NILA	SHALASARADI	Shorea robusta	Ethanol, flavanoids, tannins- Anti diabetic
MEHA	KASHAYA		and Anti hyperlipidemic- Decreases plasma
			insulin
	SALASAKA		
	AJAKARNA	Vateria indica	Enhances peripheral glucose uptake
	KHADIRA(explaine		
	d earlier)		
	, 		
	KADARA	Acacia suma	Normalizes FBS and liver enzymes.
	KRAMUKA	Areca catechu	Restores biochemical parameters, regulates
			weight, reduces FBS
			Increase glucose uptake, reduces blood
	KALASKANDHA	Acacia	sugar levels
		farnesiana	0
	BHOORJA	Betula utilis	Flavonoids, phenolics, phenylbutanoids,
			lignans- Anti diabetic, Anti-inflammatory,
			Antioxidant, Gastro protective,
			Hepatoprotective, Anti-microbial
	MESHASHRINGI	Gymnema	Leaves- GS4- Regeneration / Repairement
		sylvestre	of beta cells, raises insulin levels in the
			serum
	TINISHA	Ougenia	Potentiating the insulin effect of plasma by
	KUCHANDANA	oojeinensis	increasing either the pancreatic secretion
		Pterocarnus	of insulin or by its release from the bound
	CHANDANA	santalinus	form
	(explained earlier)	Summing	

SHIMSHIPA	Dalbergia sissoo	Radical scavenging effect, antioxidant effect-protection of pancreas , repairs beta cells
SHIRISHA	Albizzia lebbeck	Dichloromethane-Decrease in FBS, Glycated haemoglobin, enhances plasma insulin level, Antioxidant, Hepato protective, Renal and cardio protective
ASANA	Pterocarpus marsuppium	Heart wood- chloroform, hexane ad butanol- Insulin metabolism
DHAVA ARJUNA(explained earlier)	Anogeissus latifolia	Anti-diabetic ,anti-hyperlipidemia and antioxidant effects in type 2 DM – Reduces Blood glucose levels
TALASHAAKA NAKTAMALA(exp lained earlier)	Borassus flabellifer	Alcoholic (ALEBF) extract-Inhibits increase in blood glucose level, improves glucose tolerance and reduces insulin levels.
POOTIKA- CHIRABILWA	Holoptelea campestris	Reduces FBS and PPBS
ASHWAKARNA AGURU, KALIYAKA (explained earlier)	Dipterocarpus turbinatus	Ethanol- Mild effects on Anti diabetic activity- Reducing blood glucose levels.
ASHWATHA	Ficus religiosa	Increase serum insulin, regulates liver glycogen and weight metabolism

02. HARIDRA	RAJAVRUKSHA- ARAGWADHA		
MEHA	(explained earlier)		
03. AMLA	NYAGRODHADI	Ficus	Betacytotropic efffect- enhances
MEHA	KASHAYA	bengalensis	cytoplasmic granulationin the beta cell,
	NYAGRODHA		reduces blood glucose levels
	UDUMBARA	Ficus racemosa	Acts on insulin mechanism
	ASHWATHA(expla		
	ined earlier)		
	med earner)		
	PLAKSHA	Ficus virens	Regulation of blood glucose levels and
			insulin metabolism
	MADHUKA	Glycyrrhiza	Liquorices-Inhibition of alpha glucosidase,
		glabra	alpha amylase-Reduction in disaccharide
			hydrolysis-Glycemic index control
	KAPITANA-	Thespesia	Bark, leaf, fruit, seed- Enhances cellular
	PARISHA	populnea	antioxidant defenses- Increases peripheral
	KAKUBHA (evoluin		glucose uptake, Increases pancreatic
	ad aarliar)		secretion of insulin
	eu earner)		
	AMRA	Mangifera	Kernel- Decreases FBS, Regulates Hepatic
		indica	glycogen, glycosylated hemoglobin, hepatic
			and pancreatic malonaldehyde
	KOSHAMDA	Schleichere	Daduaas blood gluaasa lavals
	KUSHAWINA		Reduces blood glucose levels
	CHUKAKAPATRA	Angelica glauca	Reduces FBS , Ameliorates abnormal
			tasting serum insulin (FINS)

JAMBUDWAYA	Syzygium cumini	Antiglycation potential
PRIYALA	Buchanania	Glycosides, sterol- Reduces FBS, increase
	latifolia	the serum level of glucose, Antioxidant,
		Anti hyperlypidemic
MADHOOKA	Madhuca indica	Bark-Stimulation of glucose utilization by
		peripheral tissues.
ROHINI	Picrorhiza	Reduces blood glucose, glycosylated
	kurroa	haemoglobin, increases total haemoglobin,
		plasma insulin. Significantly corrects
		superoxide radicals, lipid peroxidation.
VANJULA	Salix caprea	Methanol- Reduction in Blood glucose
		levels (PPBS and FBS)
KADAMBA	Anthocephalus	Decreases blood sugar levels and rectifies
	indicus	fatigue and irritation
BADARA	Ziziphus jujube	Attenuates glucose induced neurotoxicity
		in diabetic neuropathy by decreasing high
		glucose induced cell toxicity, prevents
		Caspase 3 activation and excited ROS
		stimulation
TINDUKA	Diospyros	Flavonoids and methanol- Alleviates
	peregrine	augmented oxidative state associated with
		DM, reduces FBS
SALLAKI	Boswellia	Anti-diabetic activity by insulin
	serrate	metabolism regulation and prevents
		diabetes complications

	RODHRA	Symplocos	Inhibits alpha amylase, alpha glucosidase,
	SAVARARODHRA	racemosa	suppresses adipogenic activity
	BHALLATAKA	Semicarpus	Increases level of antioxidant enzymes,
		anacardium	decreases levels of lipid peroxidation,
			Insulin metabolism
	PALASHA	Butea	Reduces blood glucose levels
		monosperma	
	NANDIVRUKSHA	Ficus arnottiana	Acetone- Reduces FBS and PPBS-Anti
			diabetic activity
04.KSHARA	TRIPHALA		
МЕНА	(explained earlier)		
05.	MANJISHTA	Rubia cordifolia	Hypoglycemia- Reduces blood glucose
MANJISHT	CHANDANA(expla		levels, normalizes serum lipid , corrects
A MEHA	ined earlier)		hypo chromic microcytic anemia and loss
			of body weight
06.SHONIT	GUDUCHI	Tinospora	Reduces hyperalgesia in case of Diabetic
A MEHA		cordifolia	neuropathy
	TINDUKA	Cissus	Stem- Anti diabetic property by
	ASTHISAMHARA	quandrangularis	stimulation of surviving beta cell to release
	KA		more insulin.
	17(1		
	KASHMARYA	Gmelina arborea	Regenerates Beta cell of pancreas,
			regulates serum lipids
	KHARJURA	Phoenix	Regulates beta cell of pancreas

	sylvestre	

Vataja Meha

01.SARPI	KUSHTA	Saussurea	Regulates liver glycogen, blood glucose
MEHA		lappa	and plasma insulin. Acts on thyroid
			gland, adrenal gland, pancreas and liver
	KUTAJA	Holarrhena	Regulates carbohydrate metabolic
	PATA(explained earlier)	antidysenterica	enzymes such as glucose 6 phosphatase, anti hyperlypidemic
	HINGU	Ferula narthex	Preserves pancreatic beta cells
	KATUROHINI,		integrity, Increases insulin secretion,
	GUDUCHI,		prevent diabetic complications
	CHITRAKA		
	(explained earlier)		
02.VASA	AGNIMANTHA.		
МЕНА	SHIMSHAPA		
	(explained earlier)		
	ΚΔΠΔΡΔ		
03.KSHOUDRA	KRAMUKA(explained		
MEHA	earlier)		
	,		
04. HASTI	KAPITTHA	Feronia	Leaves and fruit- methyl chavicol-
MEHA	TINDUKA,	elephantum	Decreases hepatic glucose production-
	SHIRISHA,		Hypoglycemic activity
	PALASHA,		
	PATA(explained		

earlier)		
MOORVA	Marsdenia tenacissima	Reduces blood sugar levels, Antioxidative property
DUSPARSHA	Fagonia cretica	Flavonoids, methanol, dipeptidyl peptidase 4- Insulin metabolism, anti hyperglycemic effect
HASTI ASTHI KSHARA		Collageous proteins- Hypoglycemic activity
ASHWA ASTHI KSHARA		Palmitic acid, Oleic acid and Lenoleic acid- Improves insulin sensitivity or glucose metabolism
SHOOKARA ASTHI KSHARA		Collagen, Proteins, insulin like growth factor-I in Pig's bone- Anti hyperglycemic activity by enhancing insulin metabolism.
KHARA ASTHI KSHARA		Collageous proteins- Hypoglycemic activity
USHTRA ASTHI KSHARA		Gelatin in Camel bone-Acute and rapid hypoglycemic effect

Interpretation on applicability of above mentioned *Sushrutokta Vimshati Kashaya* in various stages of Diabetes Mellitus

1. **PRE DIABETES: Haridra Kashaya:** As it improves over all function of beta cells of pancreas and significantly lowers the development of Type 2 D.M. It also acts by improving the post prandial working memory in pre diabetes.

2. DIABETES MELLITUS

- a. TYPE 1 D.M with signs and symptoms of Polyuria, Polyphagia, Polydipsia, Weakness, Weight loss and restlessness: Mrudwika Kashaya: As it regulates beta cells of Pancreas and enhances strength and weight.
- b. **TYPE 2 D.M** with signs and symptoms of Polyuria, Polyphagia, Polydipsia and dyslipidemia: Kramuka Kashaya: As it restores all biochemical parameters, reduces FBS, reduces weight.
- **3.** Infections of D.M: Nimba Kashaya: Improves expression of insulin signaling molecules and GLUT protein to enhance oxidation in skeletal muscle and also acts against infections.
- Diabetic Neuropathy, Nephropathy and Retinopathy: Triphala Kashaya: Reduces FBS, PPBS, Restores functioning ability of beta cells of pancreas, Regulates Insulin metabolism and Anti-inflammatory.
- Sexual Dysfunction in D.M due to Stress: Doorva Kashaya: Reduces FBS, Restores stress induced sexual dysfunction.
- Macro vascular complications of DM (Atherosclerotic changes): Badara Kashaya: Prevents Capase 3 activation and excited ROS stimulation, reduces oxidative stress and endothelial dysfunction.

DISCUSSION

Diabetes mellitus is increasing as years progresses due to various life style hazardous. Prevalence of globally is 422 million according to WHO and more than 62 million, which are more than 7.1% of adult population in India according to International Diabetes foundation. Achieving adequate glycemic control becomes a prime most factor in diabetes mellitus. Oral anti Diabetic drugs possess ample of side effects on almost all major systems of the body. Ayurvedic pharmacology emphasizes on adequate glycemic control as well as maintains individual's overall wellbeing by its holistic approach. Acharya Sushruta's contribution towards this increasing pandemic is tremendous. The up hand of Kashaya yogas in Diabetes Mellitus emphasized is interpreted as follows: 1. "Prameha hetuh Kraphakrut cha Sarvam. -Cha.Chi.6/4" (Kapha is the prime most affected Dosha in all kinds of Prameha and also all the causative factors point towards hampering Kapha Dosha) 2. Major Doshas affected in any kind of Prameha is Meda and Mamsa which has Ashraya Ashrayee Bhava with main culprit Kapha Dosha-Cha. Chi 6/5. 3. Aspect of Shareeraja Kleda- Cha.Chi 6/5. 4. Sarvesham Pramehanam Sarvajatvam "तत्र वातपित्तमेदोभिरन्वितः श्लेष्मा श्लेष्मप्रमेहाञ्जनयति, वातकफशोणितमेदोभिरन्वितं पित्तं पित्तप्रमेहानु, कफपित्तवसामज्जमेदोभिरन्वितो वायूर्वातप्रमेहान ॥९॥ -सु.नि.६/९". Thus Kashava yogas significantly plays a vital role in all types of diabetes Mellitus.

CONCLUSION

- The Diabetes mellitus has been emphasized under Prameha considering the Satmyata it
 possess. The Sushrutokta Vimshati yoga for Vimshati Prameha in a holistic way can be
 incorporated from the Pre Diabetic stage up to the prevention and management of
 complications of Diabetes mellitus.
- The *Yoga* mentioned by *Acharya Sushruta* achieve the goal of prevention, management, preventing and managing the complications of diabetes mellitus in a tremendous way due to their potential anti diabetic activity over the Oral anti diabetic drugs which possess ample of adverse effects. Thus, *Sushrutokta Vimshati yogas* regulates the Diabetes mellitus by its competent anti diabetic activity.

REFERENCES

Chakrapanidatta Virachita Charaka Samhita, Sutra Sthana 21/04, 13, Chikitsa Sthana 06/04,
 05

2. Vaidya Jadavji Trikamji Acharya and the rest, Maharshina Sushrutena Virachita Sushrutha Samhita, Sri Dalhanacharyavirachitaya Nibanda sangraha vyakhyaya, Nidana Sthana 06/05,06,09, 38/08,48, Chikitsa Sthana 11/03, 09.

3 J.L.N. Shastry, Prof K.C.Chunekar, Illustrated Dravyaguna vijnana Study of essential plants in Ayurveda volume-2, Reprint:2012

4. A.P.I. Textbook of Medicine by Y P Munjal, Jaypee publications, 9th edition, Volume 1, Section 09.

5. https://www.ncbi.nlm.nih.gov

6. https://easyayurveda.com

7. Interspecies differences in bone composition, density, and quality: Potential implications for in vivo Bone research- Jeroen Aerssens

8. Experiment on the feasibility of using modified gelatin nano particles as insulin pulmonary administration system for diabetes therapy- Ying Zheng Zhao