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Abstract. In this research work aims to develop the finite Fourier series with

two variables using the generalized difference operator with two shift values. The

key benefit of this research is to decompose the signals(functions) with two

variables. To obtain this aim we define and develop the Finite Fourier Series

Decomposition(FFSD), also obtain the orthonormal property for the

trigonometry functions. Additionally, we illustrate the results unsing MATLAB

to decompose the signals(functions) into finite series.
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1. Introduction

The evolution of the Fourier series and the origins of the discipline of

harmonic analysis can be found in early 19th-century France. A study addressing

a solution to a particular form of the heat equation was published by Jean
1
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Baptiste Joseph Fourier in 1804. He used a trigonometric term-rich infinite series

expansion to arrive at this solution. Although some trigonometric expansions had

been worked out by previous mathematicians, Fourier established their usage as

legitimate. Harmonic analysis might be considered to have been initiated by

Fourier, as he derived a general solution to the heat equation, which was an open

and challenging topic at the time ”[1, 12].

A potent tool for tackling a variety of number theory issues is the finite

Fourier series. It has something to do with some kinds of trigonometric and

exponential sums. Thus, it can be extended to a finite Fourier series of the

following form:

g(ξµ) =
n−1∑
k=0

g(k)ξµk(µ = 0, 1, · · · , n− 1). The orthogonality relation
n−1∑
k=0

ξak

xi−bk =

n (a ≡ b(mod n)),

0 (a 6≡ b(mod n)),
permits the computation of the finite Fourier

coefficients. g(x) explicitly using the equation g(x) =
1

n

n−1∑
µ=0

f(ξµ)ξ−µx [2]. If we are

given k distinct complex numbers z0, z1, · · · , zk−1, then

P (λ) = λ0 + λ1x + · · · + λk−1x
k−1 satisfying the equations

P (ων) = zν(ν = 0, 1, · · · , k − 1) [13].

A finite Fourier series: η(t) = A0 +
N/2∑
q=1

Aq cos(qσ1t) +
N/2−1∑
q=1

Bq sin(qσ1t),

where the following are used: σ1 = fundamental radian frequency, η = sea surface

elevation, t = time (s), A0 = second mean, N = total number of sample points, Aq

and Bq = Fourier coefficients, q = harmonic component index (in the frequency

domain) [10]. The sum of N sine waves defined over the time interval, 0 ≤ t ≤ T :

y =
N∑
n=1

an cos(ωnt + φn), 0 ≤ tn ≤ T , an ≥ 0, 0 ≤ φn < 2π, is also a finite Fourier

series[7], where t is time and an is amplitude. The authors of [11] present an

effective method for formulating the analysis of axi-symmetric solids under

non-symmetric loading, which utilizes a discrete Fourier series expansion. The

Fourier series method and discrete Fourier series representation issues, including
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Gibb’s phenomena and element nonconformance, have been covered. The use of

the generalized difference operator to obtain the finite Fourier series of a single

variable was covered in [9].

An expansion of a periodic function g(x) in terms of an infinite sum of sines

and cosines is called a Fourier series. The orthonormal correlations between the

sine and cosine functions are used in Fourier series. The Fourier series of the

function u(t), if such a function forms a full orthogonal system over [−π, π], is

given by

g(x) =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx)

where

a0 =
1

π

π∫
−π
g(x)dx, an =

1

π

π∫
−π
g(x) cosnxdx and bn =

1

π

π∫
−π
g(x) sinnxdx

The generalized difference equation has two different sorts of solutions: closed

form and summation form. Any difference equation can have a summation solution

found if a closed form solution cannot be found for any function.

In this study, we use the inverse generalized difference operator
−1
∆

α1,α2

to define a

discrete orthonormal family of functions, and then we create and analyze a new type

of Finite Fourier Series Decomposition (FFSD) of two variable functions (signals).

The Fourier Series is formed by this FFSD as α1, α2 goes to zero. The primary

conclusions are confirmed, and MATLAB is used to create the diagrams, which are

then provided.

2. Preliminaries

The ξth roots of unity is (χξ = 1 but χi 6= 1; 0 < i < ξ)

χp = ei(2π/ξ)p, p = 1, 2, 3, ..., ξ − 1, (1)

where the geometric series written as follows when p and ξ are co-prime.

ξ−1∑
j=0

χjp = ∆−1χjp

∣∣∣ξ
j=0

=
χξp − 1

χp − 1
=

1 if ξ = 1

0 if ξ > 1.
(2)
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The complex discrete-time sequence fi(t) is defined from (1) and (2) as

fp(t) = (χp)
j = f i(2π/ξ)pj; p, j = 0, 1, 2, ..., ξ − 1. (3)

For the positive integers p, i and ξ, the fp(t) defined in (3) satisfies the identity

ξ−1∑
j=0

fp(t) = ∆−1fp(t)
∣∣∣ξ
j=0

= ∆−1f i(2πp/ξ)j
∣∣∣ξ
j=0

=

ξ if p = iξ

0 if p 6= iξ.
(4)

Using the factorization into two orthogonal exponential functions, {en(k)} satisfying

this mathematical characteristic

∆−1fp(t)f
∗
q (t)

∣∣∣ξ
j=0

= ∆−1f i(
2π(p−q)j

ξ
)
∣∣∣ξ
j=0

=

ξ if p− q = iξ

0 if p− q 6= iξ,
(5)

where (∗) denotes the complex conjugate and p, q, andi are integers. By substituting

∆
α1,α2

for ∆ and fp(ξ1, ξ2) for fp(t), we may create a generalized discrete orthonormal

system of two variables and a finite Fourier series using the equation (5).

3. Basic Results

In order to determine the Fourier coefficients using the generalized difference

equation, we present certain fundamental definitions and results in this section. Real

valued functions of two variables are denoted by f(ξ1, ξ2) and g(ξ1, ξ2) in this case.

Definition 3.1. Let f(ξ1, ξ2) be the two-variable function, and let the shift values

be (α1, α2) ∈ R2. Then, the partial difference operator described in two dimensions

is

∆
α1,α2

f(ξ1, ξ2) =
f(ξ1 + α1, ξ2 + α2)− f(ξ1, ξ2)

α1α2

, (6)

Lemma 3.2. If ∆
α1,α2

g(ξ1, ξ2) = f(ξ1, ξ2) and α1, α2 > 0 where p is any positive

integer, then we have

g(ξ1, ξ2)− g(ξ1 − pα1, ξ2 − pα2) = α1α2

p∑
j=1

f(ξ1 − jα1, ξ2 − jα2) (7)
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Proof. Since ∆
α1,α2

g(ξ1, ξ2) = f(ξ1, ξ2), from the Definition 3.1, we have

g(ξ1 + α1, ξ2 + α2)− g(ξ1, ξ2)

α1α2

= f(ξ1, ξ2) (8)

Replacing ξ1 by ξ1 − α1 and ξ2 by ξ2 − α2, we get

g(ξ1, xi2) = α1α2f(ξ1 − α1, ξ2 − α2) + g(ξ1 − α1, ξ2 − α2) (9)

Again replacing ξ1 by ξ1 − α1 and ξ2 by ξ2 − α2 in (9), we get

g(ξ1−α1, ξ2−α2) = α1α2f(ξ1−2α1, ξ2−2α2)+g(ξ1−2α1, ξ2−2α2) and (9) becomes

g(ξ1, ξ2) = α1α2[f(ξ1 − α1, ξ2 − α2) + f(ξ1 − 2α1, ξ2 − 2α2)] + g(ξ1 − 2α1, ξ2 − 2α2)

Continuing in this manner for p steps, we obtain (7). �

Lemma 3.3. [8] Let f(ξ1, ξ2) and g(ξ1, ξ2) are the two functions, then we have

−1
∆

α1,α2

(f(ξ1, ξ2)g(ξ1, ξ2)) = f(ξ1, ξ2)
−1
∆

α1,α2

g(ξ1, ξ2)−
−1
∆

α1,α2

(
−1
∆

α1,α2

g(ξ1+α1, ξ2+α2) ∆
α1,α2

f(ξ1, ξ2)).

(10)

Lemma 3.4. Let smr and Smr are the Stirling numbers of first and second kinds,

(ξ1 + ξ2)
(0,0)
α1,α2 = 1, (ξ1 + ξ2)

(1,1)
α1,α2 = ξ1 + ξ2 and the polynomial factorial as

(ξ1 + ξ2)
(m,m)
α1,α2 = (ξ1 + ξ2)(ξ1 + ξ2 − (α1 + α2)) · · · (ξ1 + ξ2 − (m− 1)(α1 + α2)). Then

(ξ1+ξ2)
(m,m)
α1,α2

=
m∑
r=1

smr (α1 + α2)
m−r(ξ1 + ξ2)

r, (ξ1+ξ2)
m =

m∑
r=1

Smr (α1+α2)
m−r(ξ1+ξ2)

(r,r)
α1,α2

,

(11)

−1
∆

α1,α2

(ξ1+ξ2)
(m,m)
α1,α2

=
(ξ1 + ξ2)

(m+1,m+1)
α1,α2

(α1 + α2)(m+ 1)
,
−1
∆

α1,α2

(ξ1+ξ2)
m =

m∑
r=1

Smr (α1 + α2)
m−r(ξ1 + ξ2)

(r,r)
α1,α2

(r + 1)(α1 + α2)
.

(12)

Lemma 3.5. Let p be real, α1, α2 > 0, ξ1 ∈ (α1,∞), ξ2 ∈ (α2,∞) and pα1, pα2 6=

m2π.Then, we have

−1
∆

α1,α2

cos p(ξ1 + ξ2) = α1α2
cos p(ξ1 − α1 + ξ2 − α2)− cos p(ξ1 + ξ2)

2(1− cos p(α1 + α2))
(13)

−1
∆

α1,α2

sin p(ξ1 + ξ2) = α1α2
sin p(ξ1 − α1 + ξ2 − α2)− sin p(ξ1 + ξ2)

2(1− sin p(α1 + α2))
(14)
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Proof. From Definition 3.1,

∆
α1,α2

cos p(ξ1 + ξ2) =
cos p(ξ1 + α1 + ξ2 + α2)− cos p(ξ1 + ξ2)

α1α2

R.P ( ∆
α1,α2

eip(ξ1+ξ2)) = R.P(eip(ξ1+ξ2))Re(eip(α1+α2) − 1)

Applying
−1
∆

α1,α2

both sides, we obtain

R.P

(
−1
∆

α1,α2

eip(ξ1+ξ2)
)

= R.P

(
eip(ξ1+ξ2)

eip(α1+α2) − 1

)
After equating the real components of the complex conjugate, we obtain (13).

Similarly, by equating the imaginary part, we obtain the evidence of (14). �

4. Computation of Finite Fourier Series Decomposition

In this section, we use the orthonormal condition of trigonometric functions

and the generalized difference equation to compute the Fourier series and extract

the Fourier coefficients.

Theorem 4.1. Let f(ξ1, ξ2) be bounded function on [a, a + 2π] and α1 + α2 =
2π

N
.

Then we have FFSD as

f(ξ1, ξ2) =
a0,0
2

+
P−1∑
n=1

(ap,pcos p(ξ1+ξ2)+bp,psin p(ξ1+ξ2))+
aP,P

2
cos P (ξ1+ξ2), (15)

where the coefficients are obtained by

a0,0 =
α1 + α2

2π

−1
∆

α1,α2

f(ξ1, ξ2)
∣∣a+2π

a

ap,p =
α1 + α2

2π

−1
∆

α1,α2

f(ξ1, ξ2) cos p(ξ1 + ξ2)
∣∣a+2π

a

bp,p =
α1 + α2

2π

−1
∆

α1,α2

f(ξ1, ξ2) sin p(ξ1 + ξ2)
∣∣a+2π

a

Proof. To prove orthogonality condition, we can take

(α1 + α2)
−1
∆

α1,α2

cos p(ξ1 + ξ2)√
2π

cos q(ξ1 + ξ2)√
2π

∣∣∣2π
0

=
(α1 + α2)

2π

−1
∆

α1,α2

(
cos(pξ1 + qξ2) + cos(qξ1 − qξ2)

∣∣∣2π
0

)
= 0.

and
−1
∆

α1,α2

cos2 p(ξ1 + ξ2)
∣∣∣2π
0

∣∣∣2π
0

=
−1
∆

α1,α2

(
1 + cos 2p(ξ1 + ξ2)

2

) ∣∣∣2π
0

=
−1
∆

α1,α2

(
1

2

) ∣∣∣2π
0

∣∣∣2π
0

+
1

2

−1
∆

α1,α2

cos2 p(ξ1 + ξ2)
∣∣∣2π
0

∣∣∣2π
0
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=
2π

α1 + α2

,

which is the required FFSD coefficients as ap,p and bp,p. �

5. Main Results and Decomposition of Functions

This section provides the FFSD for polynomial, polynomial factorial, and

trigonometric functions. By utilizing the extended difference operator, we can also

break down real valued functions of two variables into the sum of sine and cosine.

Theorem 5.1. Let ξ1, ξ2 ∈ (−∞,∞) and α1, α2 > 0. If p(α1 + α2) 6= 2mπ, then
−1
∆

α1,α2

(ξ1 + ξ2)
(n,n)
α1,α2 cos p(ξ1 + ξ2)

=
n∑
j=0

j+1∑
k=0

(
j + 1

k

)
(n)

(j)
1 (ξ1 + ξ2)

(n−j,n−j)
α1,α2 cos p((ξ1 + ξ2)− (k − 1)(α1 + α2))

(−1)(k−1)(α1 + α2)−j(2(cos p(α1 + α2)− 1))(j+1)
(16)

−1
∆

α1,α2

(ξ1 + ξ2)
(n,n)
α1,α2 sin p(ξ1 + ξ2)

=
n∑
j=0

j+1∑
k=0

(
j + 1

k

)
(n)

(j)
1 (ξ1 + ξ2)

(n−j,n−j)
α1,α2 sin p((ξ1 + ξ2)− (k − 1)(α1 + α2))

(−1)(k−1)(α1 + α2)−j(2(sin p(α1 + α2)− 1))(j+1)
(17)

Proof. Taking f(ξ1, ξ2) = (ξ1 + ξ2)
(1,1)
α1,α2 and g(ξ1, ξ2) = cos p(ξ1 + ξ2) in (10) and

using (13) we get
−1
∆

α1,α2

(ξ1 + ξ2)
(1,1)
α1,α2 cos p(ξ1 + ξ2) = (ξ1 + ξ2)

(1,1)
α1,α2

cos p(ξ1 + ξ2)− cos p(ξ1 + α1 + ξ2 + α2)

2(1− cos p(α1 + α2))

−
−1
∆

α1,α2

(
−1
∆

α1,α2

cos p(ξ1 + 2α1 + ξ2 + 2α2) ∆
α1,α2

(ξ1 + ξ2)
(1,1)
α1,α2

)
Applying (13) in the above equation, we get
−1
∆

α1,α2

(ξ1 + ξ2)
(1,1)
α1,α2 cos p(ξ1 + ξ2) = (ξ1 + ξ2)

(1,1)
α1,α2

cos p(ξ1 + ξ2)− cos p(ξ1 + α1 + ξ2 + α2)

2(1− cos p(α1 + α2))

−(α1 + α2) (cos p(ξ1 + ξ2)− 2 cos p(ξ1 + ξ2 + (α1 + α2) + cos p(ξ1 + ξ2 + 2(α1 + α2))

(2(1− cos p(α1 + α2)))2

(18)
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Taking f(ξ1, ξ2) = (ξ1 + ξ2)
(2,2)
α1,α2 and g(ξ1, ξ2) = cos p(ξ1 + ξ2) in (10), using (13)

and (18), we get
−1
∆

α1,α2

(ξ1 + ξ2)
(2,2)
α1,α2 cos p(ξ1 + ξ2) = (ξ1 + ξ2)

(2,2)
α1,α2

cos p(ξ1 + ξ2 − (α1 + α2))− cos p(ξ1 + ξ2)

2(1− cos p(α1 + α2))

− 2(α1 + α2)(ξ1 + ξ2)
(1,1)
α1,α2

(2(1− cos p(α1 + α2)))2
(cos p(ξ1 + ξ2 − (α1 + α2))− 2 cos p(ξ1 + ξ2)

+ cos p(ξ1 + ξ2 + (α1 + α2)) +
2(α1 + α2)

2

(2(1− cos p(α1 + α2)))3
(cos p(ξ1 + ξ2 − (α1 + α2))

− 3 cos p(ξ1 + ξ2) + 3 cos p(ξ1 + ξ2 + (α1 + α2))− cos p(ξ1 + ξ2 + 2(α1 + α2)), (19)

and hence RHS of (19) can be expressed as
2∑
j=0

j+1∑
k=0

(
j+1
k

)(2)
(j)
1 (α1 + α2)

j(ξ1 + ξ2)
(2−j,2−j)
α1,α2 cos p((ξ1 + ξ2)− (k − 1)(α1 + α2))

(−1)(k−1)(2(cos p(α1 + α2)− 1))(j+1)

Performing the aforementioned procedure up to n steps yields (16).

Now,(17) follows by replacing cos p(ξ1 + ξ2) by sin p(ξ1 + ξ2) in (16). �

Corollary 5.2. When I = [0, 2π], α1 + α2 =
2π

P
, ξ1, ξ2 ∈ {k(α1 + α2)}2P−10 , the

finite Fourier coefficients ap,p and bp,p for the polynomial factorial (ξ1 + ξ2)
(n,n)
α1,α2 are

given by,

a0,0 =
α1 + α2

2π

−1
∆

α1,α2

(ξ1 + ξ2)
(n,n)
α1,α2

∣∣∣2π
0

=
(4π)

(n+1,n+1)
α1,α2 (α1 + α2)

2π3(α1 + α2)
(20)

ap,p =
α1 + α2

2π

−1
∆

α1,α2

(ξ1 + ξ2)
(n,n)
α1,α2 cos p(ξ1 + ξ2)

∣∣∣2π
0

=
n−1∑
j=0

j+1∑
k=0

(
j + 1

k

)
(n)j1(α1 + α2)

j(4π)
(n−j,n−j)
α1,α2 cos p(k − 1)(α1 + α2)

P (−1)(k−1)(2(cos p(α1 + α2)− 1))j+1
(21)

bp,p =
α1 + α2

2π

−1
∆

α1,α2

(ξ1 + ξ2)
(n,n)
α1,α2 sin p(ξ1 + ξ2)

∣∣∣2π
0

=
n−1∑
j=0

j+1∑
k=0

(
j + 1

k

)
(n)j1(α1 + α2)

j(4π)
(n−j,n−j)
α1,α2 sin p(k − 1)(α1 + α2)

P (−1)(k−1)(2(sin p(α1 + α2)− 1))j+1
(22)

Proof. To prove the statement, multiply
α1 + α2

2π
by the limit 0 to 2π in (16)and

(17) �
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Theorem 5.3. Let ξ1, ξ2 ∈ (−∞,∞), α1 + α2 > 0 . If p(α1 + α2) 6= n2π, then
−1
∆

α1,α2

(ξ1 + ξ2)
q cos p(ξ1 + ξ2)

=

q∑
n=1

n∑
j=0

j+1∑
k=0

(
j + 1

k

)
Spn(n)

(j)
1 (ξ1 + ξ2)

(n−j),(n−j)
α1,α2 cos p((ξ1 + ξ2)− (k − 1)(α1 + α2))

(−1)k−1(α1 + α2)n−j−q
(
2(cos p(α1 + α2)− 1)

)j+1

(23)
−1
∆

α1,α2

(ξ1 + ξ2)
q sin p(ξ1 + ξ2)

=

q∑
n=1

n∑
j=0

j+1∑
k=0

(
j + 1

k

)
Sqn(n)

(j)
1 (ξ1 + ξ2)

(n−j),(n−j)
α1,α2 sin p((ξ1 + ξ2)− (k − 1)(α1 + α2))

(−1)k−1(α1 + α2)n−j−q
(
2(sin p(α1 + α2)− 1)

)j+1 .

(24)

Proof. The proof follows by second term of (11) and applying (16). �

Corollary 5.4. When I = [0, 2π], α1 + α2 =
π

P
, the finite Fourier coefficients ap,p

and bp,p for p = 0, 1, 2, · · · , P for polynomial (ξ1 + ξ2)
q are given by

ap,p =
α1 + α2

2π
∆−1α1,α2

(ξ1 + ξ2)
q cos p(ξ1 + ξ2)

∣∣∣2π
0

=

q−1∑
n=1

n∑
j=0

j+1∑
k=0

(
j + 1

k

)
Sqn(n)

(j)
1 (4π)

(n−j),(n−j)
α1,α2 cos p(k − 1)(α1 + α2

(−1)k−1P (α1 + α2)n−j−q
(
2(cos p(α1 + α2)− 1)

)j+1
(25)

bp,p =
α1 + α2

2π
∆−1α1,α2

(ξ1 + ξ2)
q sin p(ξ1 + ξ2)

∣∣∣2π
0

=

q−1∑
n=1

n∑
j=0

j+1∑
k=0

(
j + 1

k

)
Sqn(n)

(j)
1 (4π)

(n−j)
` sin p(k − 1)(α1 + α2)

(−1)k−1P (α1 + α2)n−j−q
(
2(cos p(α1 + α2)− 1)

)j+1
. (26)

Proof. Applying the limits 0 to 2π in (23) and (24) and multiplying the result by

(α1 + α2)/2π completes the proof. �

Assuming the two-dimensional harmonic signal f(ξ1, ξ2) = cos p(ξ1 + ξ2) to be a

periodic signal in two-dimensional space, similar to a picture, in the specific

situation of FFSD, we obtain a0,0 = 0, ap,p = 1, bp,p = 0, for all p by (15), which is

the Fourier series equivalent of the cosine function.

Assuming that f(ξ1, ξ2) = ξ1 + ξ2 is a signal (polynomial) at this point, we can
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derive a0,0 =
38π

5
, ap,p =

−2π

5
, and bp,p =

−2π sin(2π/10)

5(1− cos p(2π/10))
from (15).‘In this

case, α1 + α2 =
2π

P
. Hence, using MATLAB, the result of the input signal’s

decomposition can be produced as follows:

The aforementioned diagrams are produced for the specific value of N = 3.
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Depending on the number of N , the function can be broken down into as many

identical components as desired. We can also break down different functions, such

as polynomials, polynomial factorials, exponentials, and so forth.

6. Conclusion

Here, we have provided the FFSD expression (decomposition) for the functions

using the inverse of the generalized difference operator’s summation solution form

and orthonormal constraints. The nature of Fourier series is demonstrated and

illustrated with a numerical example. The Fourier series decomposition of the

input functionswhich are treated as signalsis produced using MATLAB.
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