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Abstract:  

Samuelson (1970), have studied a law of conservation of the capital-output ratio. 

After that, Isvoranu, and Udriste (2006), locate fluid flow versus Geometric Dynamics and 

achieved from flows and metrics to dynamics and winds. Also, Gay-Balmaz, Holm and Ratiu 

(2009) stumble on Geometric dynamics of optimization.  In this paper, the author calculated 

decomposable single-time and multi-time dynamics on Riemann-Kaehlerian manifolds and 

disintegrate the second order partial differential equations (PDEs) like created by multi-time 

flows and pairs of multi-time dynamics.    

Keywords: Decomposable dynamics, Dynamical systems, Single-time geometric dynamics, 

Multi-time geometric dynamics and partial differential equations.   
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1. Introduction:  

The single-time dynamics we identify with an ordinary differential equation related to 

Newton second law. A multi-time dynamics is explained by a second order elliptic partial 

differential equation. This is significant to highlight the subsistence of decomposable 

movements and the necessary and sufficient conditions in which the decomposition obtains 

position. Any ordinary differential equation is malformed addicted to a one-flow or any 

partial differential equation is malformed addicted to an m-flow in any satisfactorily huge 

dimension. The geometry of space converts the one-flow addicted to a geodesic motion in a 

gyroscopic field of forces. The geometry of two spaces (source, target) changes the m-flow 

(or integral manifolds of an m-distribution) into harmonic maps deformed by gyroscopic field 

of forces [Udriste (2005); Udriste and Bejenaru (2012)].///// 

The Equations of mechanics may appear different in form: 𝑥  𝑡 = 𝑋 𝑥 𝑡  , as they 

often involve higher time derivatives, but an equation that is second or higher order in time 

can always be rewritten as a set of first order equations. The ordinary differential equations of 

the form 𝐹 𝑥 𝑡 , 𝑥   𝑡 , 𝑥  𝑡 , 𝑥 (𝑡) = 0 which contain third order derivatives in them are 

sometimes called jerk equations. It has been shown that a jerk equation is in a mathematically 

well-defined sense the minimal setting for solutions showing chaotic behaviour. A jerk 

mailto:usnegi7@gmail.com
mailto:preetichauhan1011@gmail.com


equation is equivalent to a system of three first-order ordinary non-linear differential 

equations 

𝑥  𝑡 = 𝑦 𝑡 , 𝑦  𝑡 = 𝑧 𝑡 , 𝑧  𝑡 = ∅ 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡  . 

This motivates a least squares Lagrangian of interest in jerk systems, namely 

2L1 =  𝑥  𝑡 − 𝑦(𝑡) 2 +  𝑦  𝑡 − 𝑧(𝑡) 2 +  𝑧  𝑡 − ∅(𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) 2 

on the jet space of coordinates  𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧  , and its associated geometric dynamics 

(Euler-Lagrange equations) 

 𝑧 − ∅ ∅𝑥 + 𝑥 − 𝑦 = 0,  𝑧 − ∅ ∅𝑦 + 𝑦 − 𝑧 = 0, 

 𝑧 − ∅ ∅𝑧 + 𝐷𝑡(𝑧 − ∅)) = 0. 

More generally, being given n Lagrangians: 

 𝐿𝑖 𝑡, 𝑥 𝑡 , 𝑥  𝑡  ,    𝑖 = 1, 𝑛,      𝑥 𝑡 =  𝑥1 𝑡 ,… . , 𝑥𝑛 𝑡  , 𝑡 ∈ 𝐼 ⊂ 𝑅,  

the associated least squares lagrangian with respect to the Riemannian metric 𝑔𝑖𝑗 (𝑥) is 

ℒ =
1

2
𝑔𝑖𝑗  𝑥 𝑡  𝐿

𝑖 𝑡, 𝑥 𝑡 , 𝑥  𝑡  𝐿𝑗  𝑡, 𝑥 𝑡 , 𝑥  𝑡  . 

The extremals are solutions of the Euler-Lagrange ordinary differential equations system. 

1

2

𝜕𝑔𝑖𝑙
𝜕𝑥𝑘

𝐿𝑖𝐿𝑗 + 𝑔𝑖𝑗 𝐿
𝑖
𝜕𝐿𝑗

𝜕𝑥𝑘
− 𝐷𝑡  𝑔𝑖𝑗 𝐿

𝑖
𝜕𝐿𝑗

𝜕𝑥𝑘
 = 0. 

If the Langrangian Li is associated to ordinary differential equations Li 𝑡, 𝑥 𝑡 , 𝑥 𝑡   = 0, 

then the extremals contain the solutions of that equation and the dynamics is decomposable 

[Mihlin (1983); Stefanescu and Udriste (1993); Furi (1995); Treanta and Udriste (2013)]. 

Let 𝑢 𝑥, 𝑡  be the density of the diffusing material at location 𝑥 𝜖 𝑅𝑛  and time 𝑡 𝜖 𝑅. 

Let 𝑔𝑖𝑗  𝑢 𝑥, 𝑡 , 𝑥 , 𝑖, 𝑗 = 1, 𝑛,      be the collective diffusion coefficient (matrix) for density u at 

location x. The diffusion partial differential equations is:  

𝜕𝑢

𝜕𝑡
 𝑥, 𝑡 =

𝜕

𝜕𝑥 𝑖
 𝑔𝑖𝑗 (𝑢 𝑥, 𝑡 , 𝑥 

𝜕𝑢

𝜕𝑥 𝑗
(𝑥, 𝑡). 

If the diffusion coefficient depends on the density, then the diffusion equation is nonlinear, 

otherwise it is linear. More generally, when 𝑔𝑖𝑗 (𝑢 𝑥, 𝑡 , 𝑥  is a symmetric positive definite 

matrix (Riemannian metric), the equation describes anisotropic diffusion [Arnold (1969); 

Chorin and Marsden (2000); Udriste and Teleman (2004)].  

The diffusion partial differential equations is equivalent to the first-order non-linear 

partial differential equations 

𝜕𝑢

𝜕𝑥 𝑗
= 𝑣𝑗 ,    

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥 𝑖
 𝑔𝑖𝑗 𝑣𝑗 ,  

Where the parameter of evolution (𝑥, 𝑡) is (𝑛 + 1) dimensional. A Riemannian metric 

𝑕𝑖𝑗 (𝑢 𝑥, 𝑡 , 𝑥) produces a least squares Lagrangian  



2𝐿2 = 𝑕𝑖𝑗  
𝜕𝑢

𝜕𝑥 𝑖
− 𝑣𝑖  

𝜕𝑢

𝜕𝑥 𝑗
− 𝑣𝑗 +  

𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥 𝑖
(𝑔𝑖𝑗𝑣𝑖) 

2

, 

On the jet space of coordinates  𝑥, 𝑡, 𝑢, 𝑣, 𝑢𝑥 , 𝑢𝑡 , 𝑣𝑥 , 𝑣𝑡 . It appears the associated geometric 

dynamics (Euler-Lagrange equations)  

1

2

𝜕𝑕𝑖𝑗

𝜕𝑢
 
𝜕𝑢

𝜕𝑥 𝑖
− 𝑣𝑖  

𝜕𝑢

𝜕𝑥 𝑗
− 𝑣𝑗  +  

𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥 𝑖
(𝑔𝑖𝑗 𝑣𝑗 )  −

𝜕

𝜕𝑥 𝑖
 
𝜕𝑔𝑖𝑗

𝜕𝑢
𝑣𝑗     

− 𝐷𝑥 𝑖  𝑕
𝑖𝑗  

𝜕𝑢

𝜕𝑥 𝑗
− 𝑣𝑗   − 𝐷𝑡  

𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥 𝑖
(𝑔𝑖𝑗 𝑣𝑗 ) = 0, 

Or 𝑔𝑙𝑚𝐷𝑥𝑚  
𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥 𝑖
(𝑔𝑖𝑗𝑣𝑗 ) = 0. 

Again, Let T be an orientable manifold with the coordinates 𝑡 =  𝑡1, … . , 𝑡𝑚   and M 

be a manifold with the coordinate  𝑥 =  𝑥1, … . , 𝑥𝑛 . Using m vector field 𝑋𝛼(𝑡, 𝑥) of class 

𝑐∞ on 𝑇 × 𝑀, we introduce the distribution described by pfaff equations 

𝑑𝑥 𝑖 𝑡 − 𝑋𝛼
𝑖  𝑡, 𝑥 𝑑𝑡𝛼 = 0, 𝑖 = 1, 𝑛     ,   𝛼 = 1,𝑚.       

Using some metric tensor 𝑕𝛼𝛽  𝑡 , 𝑔𝑖𝑗  𝑡 , and the components 
𝜕𝑥 𝑖

𝜕𝑡𝛼
 𝑡 − 𝑋𝛼

𝑖  𝑡, 𝑥  of the 

pullbacks, we build the least squares Lagrangian (non-decomposable dynamics). 

𝐿 =
1

2
𝑔𝑖𝑗 𝑕

𝛼𝛽  
𝜕𝑥 𝑖

𝜕𝑡𝛼
 𝑡 − 𝑋𝛼

𝑖  𝑡, 𝑥   
𝜕𝑥 𝑗

𝜕𝑡𝛽
 𝑡 − 𝑋𝛽

𝑗  𝑡, 𝑥   𝑑𝑒𝑡 𝑕𝛼𝛽  > 0 

Suppose the integral manifolds of the distribution have the dimension 1 ≤ 𝑝 < 𝑚. Then we 

can introduce another least squares lagrangian constructed from ODEs/PDEs that describes 

the integral manifolds and the action is an integral with the volume element on the p 

parameters which define the integral manifold (decomposable dynamics) [Schubert and 

Counselman et al. (1977) ; Udriste and Udriste (2006)],  

More generally being given n m Lagrangians 

 𝐿𝛼
𝑖  𝑡, 𝑥 𝑡 , 𝑥𝛾 𝑡  , 𝑖 = 1, 𝑛     ,   𝛼 = 1,𝑚.       𝑥 𝑡 = 

                                       𝑥 𝑖 𝑡 ,… . 𝑥𝑛 𝑡  , 𝑡 =  𝑡1, … . , 𝑡𝑚  ∈ 𝐼 ⊂ 𝑇, 

then the associated least squares Lagrangian density with respect to the Riemannian metrics 

𝑔𝑖𝑗  𝑥 𝑕
𝛼𝛽  𝑡 , 𝑕𝛼𝛽  𝑡  is 

ℒ = 
1

2
𝑔𝑖𝑗  𝑥 𝑡  𝑕

𝛼𝛽  𝑡 𝐿𝛼
𝑖  𝑡, 𝑥 𝑡 , 𝑥𝛾 𝑡  𝐿𝛽

𝑗
 𝑡, 𝑥 𝑡 , 𝑥𝛾 𝑡  . 

If  𝑇 ⊂ 𝑅𝑚 , the extremals are solutions of the Euler-Lagrange PDE system 

1

2

𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

𝑕𝛼𝛽𝐿𝛼
𝑖 𝐿𝛽

𝑗
+ 𝑔𝑖𝑗 𝑕

𝛼𝛽 𝐿𝑖
𝜕𝐿𝛽

𝑗

𝜕𝑥𝑘
− 𝐷𝛾  𝑔𝑖𝑗 𝑕

𝛼𝛽𝐿𝛼
𝑖
𝜕𝐿𝑗

𝜕𝑥𝛾
𝑘
 = 0. 



If the Lagrangian  𝐿𝛼
𝑖  is associated to the PDE 𝐿𝛼

𝑖 (𝑡, 𝑥 𝑡 , 𝑥𝛾 𝑡 ) = 0, then the extremals 

contain the solutions of that equation and the dynamics is decomposable. The ingredients 

needed to solve these problems are the Riemannian metrics, techniques of least squares 

Lagrangians and the idea of dynamics transversal decomposition [Lovelock and Rund 

(1975)]. 

2. SINGLE-TIME GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN 

MANIFOLDS: 

Let M be a differentiable manifold and 𝐼 ⊂ 𝑅  be a nontrivial interval. A (time 

dependent) non-autonomous first order differential equation on a manifold M  is given by 

assigning, on an open subset V of 𝑅 × 𝑀, a non-autonomous 𝐶∞  vector field 𝑋: 𝑉 → 𝑅𝑛 , 

which is tangent to M for all 𝑡 ∈ 𝑅. That is, for any all 𝑡 ∈ 𝑅, the map 𝑋𝑡 : 𝑉𝑡 → 𝑅𝑛 , given by 

𝑋𝑡 𝑥 = 𝑋 𝑡, 𝑥 ,  is a tangent vector field on the (possibly empty) open subset . 𝑉𝑡 =

 𝑥 𝜖 𝑀 |  𝑡, 𝑥  𝜖 𝑉  𝑜𝑓 𝑀.   In other words, 𝑋 𝑡, 𝑥   𝜖 𝑇𝑥𝑀 for each  𝑡, 𝑥   𝜖 𝑉  and the first 

order differential equation associated to X is defined by [Furi (1995)]: 

𝑥 = 𝑋 𝑡, 𝑥 ,  𝑡, 𝑥  𝜖 𝑉.                                                                                                     (2.1) 

A solution of the differential Equation (2.1) is a 𝐶1 map 𝑥: 𝐼 → 𝑀, such that, for all 𝑡 ∈

 𝐼,  𝑡, 𝑥 𝑡   ∈  𝑉 and 𝑥  𝑡 = 𝑋 𝑡, 𝑥 𝑡    identically on I. In the case of Cauchy problem, a 

solution of the ODE (2.1), which satisfies the initial condition  𝑥 𝑡0 = 𝑥0.  Then the solution 

of this Cauchy problem exists and it is unique. 

Let 𝐹:𝑅 × 𝑇𝑀 → 𝑅𝑛    be a 𝐶∞  map. An equality of the type: 

𝑥 = 𝐹 𝑡, 𝑥, 𝑥  ,  𝑡, 𝑥, 𝑥   ∈  𝑅 × 𝑇𝑀.                                                                                (2.2) 

is called a (time dependent) second order differential equation on M, provided that the 

associated vector field [Furi (1995)]: 

𝐺:𝑅 × 𝑇𝑀 → 𝑅𝑛 × 𝑅𝑛 , 𝐺 𝑡, 𝑥, 𝑦 = (𝑦, 𝐹 𝑡, 𝑥, 𝑦 ) 

is tangent to TM, i.e., (𝑦, 𝐹 𝑡, 𝑥, 𝑦 )  ∈ 𝑇(𝑥,𝑦)𝑇𝑀  for all  𝑡, 𝑥, 𝑦 ∈ 𝑅 × 𝑇𝑀.  A solution of the 

differential Equation (2.2) is a 𝐶2 curve 𝑥: 𝐼 → 𝑅𝑛 , in such a way that 𝑥 𝑡 ∈ 𝑀  and 

𝑥  𝑡 = 𝐹 𝑡, 𝑥 𝑡 , 𝑥  𝑡  ,  identically on I. In the case of The Cauchy problem, a solution of 

the ODE (2.2) which satisfies the initial conditions   𝑥 𝑡0 = 𝑥0,   𝑥  𝑡0 = 𝑣. Then the 

solution of this Cauchy problem exists and it is unique. If we use the components, the 

relations (2.1) and (2.2) are called respectively first order and second order ODE systems. 

Now,  We start with the triple (M, g, X), where M  is a manifold of dimension 

𝑛, 𝑔 𝑥 =  𝑔𝑖𝑗  𝑥  , 𝑖, 𝑗 = 1,… . , 𝑛, is a Riemannian metric and 𝑋 𝑡, 𝑥 = (𝑋𝑖 𝑡, 𝑥 ) a time 

dependent 𝐶∞ vector field, on the manifold M. Suppose the Levy-Civita connection ∇ of 

 𝑀, 𝑔  has the components 𝐺𝑗𝑘
𝑖 , 𝑖, 𝑗, 𝑘 = 1,… . , 𝑛. 

Definition  2.1. We use the notations: 

𝐹𝑗 =  𝐹𝑗
𝑖 , 𝐹𝑗

𝑖 = ∇𝑗𝑋
𝑖 − 𝑔𝑖𝑕𝑔𝑘𝑗 ∇𝑕𝑋

𝑘 ,   𝑓 =
1

2
𝑔 𝑋,𝑋 .  



A function 𝐹: 𝑅 × 𝑇𝑀 → 𝑅𝑛  is said to be generated by the pair  𝑋, 𝑔  if it is of the form:  

𝐹 = −𝐺𝑗𝑘𝑥 
𝑗𝑥 𝑘 + 𝐹𝑗𝑥 

𝑗 + ∇f +
𝜕

𝜕𝑡
𝑋. 

If F is generated by X and g, then the ODE (2.2) represents a single-time geometric dynamics 

or a geodesic motion in a gyroscopic field of forces. By analogy with the reduction of the 

force system in mechanics, resultant and momentum, the decomposition of the set of 

solutions returns to the flow and the movement in the gyroscopic field of forces [Udriste 

(2000); Udriste (2004); Udriste (2005); Isvoranu, and Udriste (2006) and Udriste and 

Bejenaru (2012)]. 

Theorem 2.1.  If  𝐹: 𝑅 × 𝑇𝑀 → 𝑅𝑛   is generated by the pair (𝑋, 𝑔), then the set of maximal 

solutions of ODE (2.2) is decomposable into a subset corresponding to the initial values 

𝑥 𝑡0 = 𝑥0,   𝑥  𝑡0) = 𝑋( 𝑡0, 𝑥(𝑡0) , 

solutions which are reducible to solutions of the ODE (2.1), and a subset of solutions 

corresponding to the initial values 

𝑥 𝑡0 = 𝑥0, 𝑥  𝑡0 = 𝑊 ≠ 𝜆𝑋 𝑡0 , 𝑥 𝑡0  , 𝜆 > 0, 

transversal to the solutions of the ODE (2.1). The converse is also true. 

Proof.  We have from existence and uniqueness theorem, each solution 𝑥 = 𝑥(𝑡)  of any 

second order continuance of first order ODE system has the property: 

 𝑥  𝑡0 = 𝑋 𝑡0, 𝑥 𝑡0    ⇒   𝑥  𝑡 = 𝑋 𝑡, 𝑥 𝑡  , ∀ 𝑡 ∈ 𝐼. 

A flow X and a Riemannian metric g determine a least squares Lagrangian: 

𝐿 𝑡, 𝑥, 𝑥  =
1

2
𝑔 𝑥 − 𝑋 𝑡, 𝑥 , 𝑥 − 𝑋 𝑡, 𝑥  . 

The Euler-Lagrange ODEs represent a geometric continuance of the flow. The Euler-

Lagrange ODEs constitute just a decomposable dynamic geodesic motion in gyroscopic 

fields of forces equivalent to set of flow trajectories with set of transversal trajectories 

imposed by the geometry of the space. 

Theorem 2.2. Suppose that X is an autonomous vector field. If the function   𝐹: 𝑇𝑀 → 𝑅𝑛  is 

generated by X and g, then the set of maximal solutions of ODE (2.2) divides into three parts 

i.e. Curves [𝑥(𝑡), 𝐻 𝑥 𝑡  ] = 𝑐𝑜𝑛𝑠𝑡 = 0; > 0; < 0.  

Proof.  We have from Hamiltonian: 

𝐻 𝑡, 𝑥, 𝑥  =
1

2
𝑔 𝑥 − 𝑋 𝑡, 𝑥 , 𝑥 − 𝑋 𝑡, 𝑥  =

1

2
 𝑔(𝑥 , 𝑥) − 𝑔 𝑋, 𝑋  = 𝐻 𝑥, 𝑥  , 

and the connected Hamilton ODEs. The curves 𝑥(𝑡)  with 𝐻 𝑥 𝑡  = 𝑐𝑜𝑛𝑠𝑡 = 0 are 

solutions of ODE (2.1). The solutions with  𝐻 𝑥 𝑡  = 𝑐𝑜𝑛𝑠𝑡 ≠ 0, are transversal to 

solutions of ODE (2.1).  



If any normal ODE generates in the phase space a flow, which together with the phase 

space geometry gives a geometric dynamic. This statement is true for any ODE, but then 

appears a flow with constraint. 

Let us consider the operators   𝑀, 𝑋, 𝑔, 𝛤 , where M   is a Riemannian manifold, X is 

a flow on M, g is a fundamental tensor field and  𝛤  is a symmetric connection (derivation). 

The operators (X, g, 𝛤) generates an extended geometric dynamic on M determined by ODEs. 

𝑥 𝑖 𝑡 =  𝛿𝑘
𝑖 𝛿𝑗

𝑙 − 𝑔𝑘𝑗 𝑔
𝑙𝑖 𝑋,   𝑙

𝑘 𝑥 𝑗 (𝑡) +
𝜕𝑋 𝑖

𝜕𝑡
𝑔𝑘𝑗 𝑔

𝑙𝑖𝑋,   𝑙
𝑘 𝑋𝑗 . 

On the Riemannian manifold   0,∞ , 𝑔 𝑥 = 1 , let us take the flow 𝑥 = 1. We 

attach the least squares lagrangian 𝐿1 =  𝑥 − 1 2, with Euler-Lagrange equation 𝑥 = 0. On 

any other Riemannian manifold   0,∞ , 𝑔 𝑥  , we find the least squares Lagrangian 

𝐿2 = 𝑔(𝑥) 𝑥 − 1 2, with Euler-Lagrange equation 𝑥 =
𝑔 ′ 𝑥 

2𝑔 𝑥 
 1 − 𝑥   1 + 𝑥  . Here, 𝛤 𝑥 =

𝑔 ′ 𝑥 

2𝑔 𝑥 
  is  a linear connection. We can extend the previous ODE to the ODE system: 

𝑥 𝑖 𝑡 = 𝑎0
𝑖  𝑥 𝑡  + 𝑎𝑗

𝑖 𝑥 𝑡  𝑥 𝑗  𝑡 + 𝑏𝑗𝑘
𝑖  𝑥 𝑡  𝑥 𝑗  𝑡 𝑥 𝑘 𝑡 , 𝑖, 𝑗, 𝑘 = 1,… , 𝑛, 

with possible disorder in velocities. 

Now, Let M be a differentiable manifold of dimension n and 𝐼 ⊂ 𝑅 be a nontrivial 

interval. If the ODE system (2.2) is an Euler-Lagrange system on M for a regular 

Lagrangian 𝐿 𝑡, 𝑥, 𝑥  , then there exists a fundamental tensor field 𝑔 =  𝑔𝑖𝑗    on TM such 

that: 

𝑔𝑖𝑗  𝑡, 𝑥, 𝑥  =
1

2

𝜕2𝐿

𝜕𝑥 𝑖𝜕𝑥 𝑗
 𝑡, 𝑥, 𝑥  , 𝑖, 𝑗 = 1,… . , 𝑛. 

Conversely, given 𝑔𝑖𝑗  𝑡, 𝑥, 𝑥  , to determine 𝐿 𝑡, 𝑥, 𝑥  , we need complete integrability 

conditions.  In these conditions, using two successive curvilinear integrals of the second type, 

we can write 

𝐿 𝑡, 𝑥, 𝑥  =   𝑔𝑖𝑗  𝑡, 𝑥, 𝑥  
𝛾𝑥 0𝑥 

𝑑𝑥 𝑖𝑑𝑥 𝑗 + 𝑎𝑖 𝑡, 𝑥 𝑥 𝑖 + 𝑏 𝑡, 𝑥 .
𝛾𝑥 0𝑥 

  

The pair  𝑀, 𝑔  is called a Lagrangian manifold. 

Theorem 2.3. If 𝑢 is positive, then the motion described by the Hamiltonian   𝐻 =
1

2
𝑔 𝑥 , 𝑥  − 𝑢 𝑥   is generatedby a flow and a Riemannian metric. 

Proof. Let us show that the movement of planets and motion in closed Newmann economical 

systems are generated by flows and Riemannian metrics. Given a function 𝑢 𝑥 , 𝑥 ∈ 𝑀 and a 

Riemannian metric g on M, let us consider the Hamiltonian 𝐻 =
1

2
𝑔 𝑥 , 𝑥  − 𝑢 𝑥   [Udriste 

(2004)]. If 𝑢 𝑥 > 0, then the vector field 𝑋 𝑥 = = 2𝑢(𝑥) 𝐸(𝑥) (Galileiformula), where E 

is an arbitrary unit vector field with respect to the metric g, satisfies 𝑔(𝑋,𝑋) = 2𝑢(𝑥). 

Consequently such a Hamiltonian, equal to the difference between the kinetic energy and a 



positive function, is coming from a vector field (flow) and a Riemannian metric, 

corresponding to a perfect square Lagrangian. 

3. MULTI-TIME GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN 

MANIFOLDS. 

We start with an operator   𝑇, 𝑕 ,  𝑀, 𝑔 ,  𝑋𝑛 , where:  

(i)  𝑇, 𝑕  is an oriented Riemannian manifold (source space) of dimension m, with 

local coordinates 𝑡 =  𝑡𝛼 , 𝛼 = 1, … ,𝑚, metric tensor 𝑕𝛼𝛽  and  Christoffel symbols 𝐻𝛽𝛾  
𝛼 .  

(ii)  𝑀, 𝑔  is a Riemannian manifold (target space) of dimension n, withlocal 

coordinates 𝑥 =  𝑥 𝑖 , 𝑖 = 1,… , 𝑛, metric tensor 𝑔𝑖𝑗  and Christoffel symbols 𝐺𝑗𝑘
𝑖  . 

(iii) 𝑋𝛼 𝑡, 𝑥 =  𝑋𝛼
𝑖 (𝑡, 𝑥) , 𝛼 = 1,… ,𝑚; 𝑖 = 1, … , 𝑛 are 𝐶∞ vector fields on M, 

dependent on   𝑡, 𝑥 which define the first order PDE system: 

𝜕𝑥

𝜕𝑡𝛼
 𝑡 = 𝑋𝛼 𝑡, 𝑥 𝑡  .                                                                                                       (3.1) 

Theorem 3.1. The Cauchy problem consisting in the PDE system (3.1) and the initial 

condition 𝑥 𝑡0 = 𝑥0  has a unique solution (existence and uniqueness),  if and only if the 

system is completely integrable. An equality of the type: 

𝑕𝛼𝛽
𝜕2𝑥

𝜕𝑡𝛼𝜕𝑡𝛽
 𝑡 = 𝐹  𝑡, 𝑥 𝑡 , 𝑥𝛾 𝑡  , (𝑡, 𝑥, 𝑥𝛾)𝐽1 ∈ (𝑇,𝑀)                                              (3.2) 

is called a (time dependent) second order elliptical PDE (system) on M. 

Proof: Let 𝛤:𝐺 𝑡 = 0 be a hypersurface in T, containing the point 𝑡0  and ⋀(𝑡) be a unit 

vector field along Γ, transversal (non-tangent) to Γ . Denote 𝜑0(𝑡) and 𝜑1(𝑡) as vector 

functions with n componentson Γ, the first being of class 𝐶1 and the second of class 𝐶0. The 

Cauchy problem attached to PDE (3.2) [Mihlin(1983)] and find in an unilateral 

neighbourhood of  Γ, the solution of the PDE (3.2) satisfying the Cauchy conditions: 

𝑥 𝑡  𝛤 = 𝜑0 𝑡 , 𝐷ᴧ𝑥 𝑡  𝛤 = 𝜑1 𝑡 .                                                                                 (3.3) 

Hence the solution of this Cauchy problem exists and it is unique. 

We know the Cauchy conditions, one can find the values of all first order partial 

derivatives of the function 𝑥 𝑡  on the Cauchy surface  Γ, firstly, 

 

 ∂x

∂tα
 
Γ

=
∂φ

0

∂tα
 t , α = 1,… , m − 1 

 

and then the equalities: 

𝜑1 𝑡 = 𝐷ᴧ𝑥 𝑡 |𝛤 =
𝜕𝑥

𝜕𝑡𝛼
 𝑡 ⋀𝛼 𝑡 , 

Together with ⋀𝑚 ≠ 0,𝑔𝑖𝑣𝑒 

 
𝜕𝑥

𝜕𝑡𝑚
 𝑡 |𝛤 =

1

⋀𝑚 (𝑡)
 𝜑1 𝑡 −  

𝜕𝜑0

𝜕𝑡𝛼
(𝑡)𝑚−1

𝛼=1 ⋀𝛼 𝑡  .  



The initial conditions (3.3) are equivalent either to the initial conditions: 

𝑥 𝑡 |𝛤 = 𝜑0 𝑡 ,
𝜕𝑥

𝜕𝑡𝑚
 𝑡 |𝛤 = 𝑊𝑚 (𝑡) and 

𝑥 𝑡 |𝛤 = 𝜑0 𝑡 ,
𝜕𝑥

𝜕𝑡𝛼
 𝑡 |𝛤 = 𝑊𝛼  𝑡 , 𝛼 = 1,… ,𝑚. 

with the complete integrability conditions and the compatibility condition to 𝜑0. 

The multi-time geometric dynamics was introduced in our papers [Udriste (2004), 

(2012)] like Multi-time World Force Law involving field potentials (components of the d-

tensor), gravitational potentials (components of the two Riemannian metrics), and the Yang-

Mills potentials (components of the Riemannian connections and the nonlinear connection). 

This evolution can be called also harmonic maps deformation in a gyroscopic field of forces. 

 

Definition 3.2. Using the vector field 𝑋𝛼 , the metric tensor 𝑕𝛼𝛽 , 𝑔𝑖𝑗 , and the Christoffel 

symbols 𝐻𝛽𝛾
𝛼 ,  𝐺𝑗𝑘

𝑖 , we define:  

𝐹𝑗𝛼
𝑖 = ∇𝑗𝑋𝛼

𝑖 − 𝑔𝑖𝑕𝑔𝑘𝑗 ∇𝑕𝑋𝛼
𝑘 ,    𝑓 =

1

2
𝑕𝛼𝛽𝑔𝑖𝑗𝑋𝛼

𝑖 𝑋𝛽
𝑗
 

and 

∇𝑗𝑋𝛼
𝑖 =

𝜕𝑋𝛼
𝑖

𝜕𝑋𝑗
+ 𝐺𝑗𝑘

𝑖 𝑋𝛼
𝑘 ,     𝐷𝛽𝑋𝛼

𝑖 =
𝜕𝑋𝛼

𝑖

𝜕𝑋𝑗
− 𝐻𝛼𝛽

𝛾
𝑋𝛾
𝑖 . 

The function 𝐹: 𝐽1(𝑇,𝑀) → 𝑅𝑛  is said to be generated by the operator  𝑋𝛼 , 𝑕, 𝑔  if it is of the 

form:  

𝐹 = 𝑕𝛼𝛽  −𝐺𝑗𝑘𝑥𝛼
𝑗
𝑥𝛽
𝑘 + 𝐻𝛼𝛽

𝛾
𝑥𝛾 + 𝐹𝑗𝛼 𝑥𝛽

𝑗
+ 𝑔𝑘𝑗  ∇𝑋𝛼

𝑘 𝑋𝛽
𝑗

+ 𝐷𝛽𝑋𝛼 . 

Theorem 3.2. If 𝐹: 𝐽1(𝑇,𝑀) → 𝑅𝑛  is generated by the triplet  𝑋𝛼 , 𝑕, 𝑔  then the set of 

maximal solutions ofPDE (3.2) is decomposable into a subset corresponding to the initial 

values 

𝑥 𝑡 |𝛤 = 𝜑0 𝑡 ,
𝜕𝑥

𝜕𝑡𝛼
 𝑡 |𝛤 = 𝑋𝛼 𝑡, 𝑥 𝑡  , 

solutions which are reducible to solutions of PDE (3.1), and a subset of solutions 

corresponding to the initial values: 

𝑥 𝑡 |𝛤 = 𝜑0 𝑡 ,
𝜕𝑥

𝜕𝑡𝛼
 𝑡 |𝛤 = 𝑊𝛼  𝑡 ∉ 𝐾+ 𝑋𝛼(𝑡, 𝑥 𝑡 ) , 

transversal to the solutions of PDE (3.1). The converse is also true. 

Proof. Each solution 𝑥 = 𝑥(𝑡) of any second order prolongation of the first order PDE 

system has the property: 𝑋𝛼 𝑡0 = 𝑋𝛼(𝑡0, 𝑥 𝑡0 ) implies 𝑋𝛼 𝑡 = 𝑋𝛼 𝑡, 𝑥 𝑡  , ∀𝑡 ∈ 𝑇. 

Any m-flow 𝑋𝛼   and two Riemannian metrics h and g determine a least squares Lagrangian 

density: 

L t, x, xγ =
1

2
hαβgij xα

i − xα
i (t, x)  x

β

j
− x

β

j
(t, x) . 

The Euler-Lagrange PDEs represent a prolongation of the m-flow and just a decomposable 

dynamics. 



Again,  normal PDE generates in the phase space a multidimensional flow, which together 

with the phase space geometry gives a geometric dynamic. This statement is true for any 

PDE, but then appears a multidimensional flow with constraints. 

Let us consider the operator  𝑇, 𝑕, 𝐻 , where T is a Kaehlerian manifold, h is a 

fundamental tensor field and H is a symmetric connection (derivation). We add the operator 

(𝑀,𝑋𝛼 , 𝑔, 𝐺), where M is a Kaehlerian manifold,  𝑋𝛼  is a m-flow on M, g is a fundamental 

tensor field and G is a symmetric connection (derivation). The 

quintuple (𝑋𝛼 ; 𝑕,𝐻; 𝑔, 𝐺)  generates an extended geometric dynamic on 𝑇 × 𝑀. 
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