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                                                ABSTRACT 

 

In conformal mapping , we highlight mostly the topic of Möbius transformation 

and see how various regions and curves are transformed by this transformation. 

There are some elementary mappings which will be used frequently to explain 

the various concepts of conformal mapping. Here we describe “ Möbius 

transformation ’’ and its related properties . 
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1.    Introduction 

 
The function w = f(z) = u + iv defines a correspondence between points of 

z- plane and w – plane . If the point z describes some curve C in the z – 

plane , then point w will move along a corresponding curve C′ in the w – 

plane because to each (x, y) there corresponds a point (u, v) . Hence the 

function w = f (z) defines a mapping or transformation of z- plane into w- 

plane . 

 

2. Conformal mapping or conformal transformation  
 

Suppose two curves C1, C2 in the z- plane intersect at the point P and the 

corresponding curves C1
′ , C2

′  in the w- plane intersect at P′ under the 

transformation w = f(z). 

If the angle of intersection of the curves at P is same as the angle of 

intersection of the curves at P′, both in magnitude and sense, then the 

transformation is said to be conformal at P . 

 

      *    Necessary condition for w = f(z)  to represents a conformal mapping : 

If w = f(z)  to represents a conformal mapping of a domain D in the z- plane 

into a domain D′ of w – plane , then f(z) is an analytic function of z in D. 

      *    Sufficient  condition for w = f(z) to represents a conformal mapping : 

             If f(z) is analytic and f ′(z) ≠ 0 in a region R of z- plane then the mapping  

             w = f(z) is conformal at all points of R. 

       *   Critical Points : The points at which f ′(z) = 
dw

dz
 = 0 or ꝏ are called critical    

            points. 

      *   Coefficient of Magnification :  Coefficient of magnification for the  

            conformal mapping w = f(z) at z = α + iβ is |f ′(α + iβ)| . 

*     Angle of Rotation :  Angle of rotation for the conformal mapping w = f(z)  

       at  z = α + i β is arg [f ′(α + iβ)] . 

       



3   Möbius Transformation :  What is Möbius transformation ? They are 

simply a composition of one , some or all of the following special types of 

transformations . 

Translation :  It is a map of the form T(z) = z + α , α ϵ C/ {0} . If α = 0, then it is 

identity map. 

Magnification :  It is a map of the form T(z) = r z , r ϵ R/ {0} . Notice that for 

r=1, this is the identity map whereas for r = 0 it is a constant map . If r > 0 , then 

this is a “ Magnification ’’ and if 0 < r < 1 , it is a “ Shrinking ’’ depending on r< 1 

or -1< r <0 . 

Rotation :  It is a map of the form T(z) = eiϴz , ϴ ϵ R . This map produces a 

rotation through an angle about the origin with positive sense if ϴ > 0.  The 

rotation coupled with magnification is referred to as “ dilation ’’  T(z) = a z (a ≠0). 

Inversion :  It is a map of the form T(z) = 
1

𝑧
  which produces a geometric 

inversion ( or reciprocal map or the inversion map ) . 

3.2  Definition of Möbius Transformation :  Möbius transformation named 

in honour of the geometer A. F. Möbius (1790 – 1868) are rational function of 

the form  

                                                  w = T(z) = (
az+b)

cz+d
)                                                    (3.1) 

where a, b, c, d are complex constants such that ad – bc ≠ 0 . This map is called 

“ Bilinear Transformation ’’ or sometimes “ Linear Fractional Transformation’’ . 

The relation (3.1) can also be written as  

                                 cwz + dw – az – b = 0 ,                                                               (3.2) 

which is linear in w as well as in z : that is why the relation (3.1) is called bilinear 

transformation . Solving (3.1) for z , we get  

                                        z = T′(w) = 
−dw+b

cw−a
 ,                                                              (3.3) 

where (-d)(-a) – bc = ad – bc ≠ 0 . The transformation (3.3) is the inverse of (3.1). 

It follows that the inverse of a bilinear transformation is another bilinear 

transformation having the same determinant . 

Note :  All the elementary transformations discussed in (3.1) are bilinear 

transformation. 



We can extend T and T′ to mapping in the extended complex plane . The value 

T(ꝏ) should equal to the limit of T(z) as z → ꝏ . Therefore , we defined  

                                T(ꝏ) = lim
z→ꝏ

T(z) = lim
z→ꝏ

a+
b

z

c+
d

z

  = 
a

c
 

and the inverse is T−1( 
a

c 
 ) = ꝏ .  

Similarly, the value of T−1(ꝏ) is obtained by  

                                    T−1(ꝏ) = lim
w→ꝏ

T−1(w) = - 
d

c
 

and the inverse is T(- 
d

c
 ) = ꝏ . 

With these extension we conclude that transformation w = T(z) is a one to one 

mapping of the extended complex w – plane . 

3.3  Properties  of Möbius Transformation 

Möbius transformations have a number of remarkable properties . Furthermore 

, these properties are global . Namely , they are valid for any z including z = ꝏ, 

i.e., valid in the entire extended complex z plane . Through this section , we 

desire the most important properties of Möbius transformations. 

(𝐏𝟏)   Bilinear transformations are conformal mapping of the extended z- plane. 

Proof :   Let w = 
az+b

cz+d
 , ad – bc ≠ 0 be a bilinear transformation. Then, 

                            
dw

dz
 = 

a(cz+d) − c(az+b)

(cz+d)2
 = 

ad − bc

(cz+d)2
 ≠ 0. 

So, w(z) is a conformal mapping . 

(𝐏𝟐)    The composition of two bilinear transformation is again a bilinear 

transformation . 

Proof :     T and S are two bilinear transformations given by 

                               T(z) = 
az+b

cz+d
 ; ad – bc ≠ 0 , 

and             S(z) = 
a′z+b′

c′z+d′
 ;  a′d′ - b′c′ ≠ 0. 

Then the composition ToS is defined by 



             (ToS)(z) = T(S(z)) = 
a (

a′z+b′

c′z+d′) + b

c (
a′z+b′

c′z+d′) + d
 = 

(aa′+bc′)z + ab′ + bd′

(ca′+dc′)z+cb′+dd′
 = 

Az+B

Cz+D
 , 

where A = aa′ +bc′, B = ab′+ bd′ , C = ca′+ dc′, D = cb′+dd′ . 

Also 

        AD – BC  = ad (a′d′ − b′d′) – bc (a′d′-b′d′) 

                        =  ( ad – bc) (a′d′ - b′c′) 

                       ≠ 0 ( since ad- bc ≠ 0 and a′d′ - b′c′ ≠ 0) . 

Thus ToS is a bilinear transformation . 

(𝐏𝟑)   Every bilinear transformation is a composition of translation , inversion , 

and dilation. 

Proof:    Let us consider a bilinear transformation 

                     T(z) = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 , where a, b, c, d ϵ C and ad- bc ≠ 0 . 

Case -I :  If  c = 0 then ad ≠ 0 i.e., a ≠ 0, d ≠ 0 and  

                    T(z) = 
az+b

d
 = 

a

d
 z + 

b

d
 

                           = T1(z) + 
b

d
 ( where T1(z) = 

a

d
 z and 

a

d
 ≠ 0 i.e., T1 is a dilation ) 

                           = T2( T1(z)) ( where T2(z) = z + 
b

d
  is a translation ) . 

Hence T(z) = T2o T1 . 

Case – II   c ≠ 0 

Now, 

T(z) = 
az+b

cz+d
 - 

a

c
 + 

a

c
 

       = 
bc− ad

c2
 

1

z+
d

c

  + 
a

c
 ( here 

bc−ad

c2
 ≠ 0 ) 

       = 
bc− ad

c2
 

1

T1(z)
 + 

a

c
 ( where T1(z) = z + 

d

c
 , is  a translation ) 

       =  
bc− ad

c2
 T2(z) + 

a

c
 ( where T2(z) = 

1

z
 is the inversion ) 

       =  T3( T2( T1(z)) + 
a

c
 ( where T3(z) = 

bc− ad

c2
 z is a dilation ) 



       = T4(T3( T2( T1(z))) ( where T4(z) = z + 
a

c
 is a translation ). 

Therefore  T = T4oT3oT2oT1 . 

Hence proved . 

(𝐏𝟒)     The inverse of a bilinear transformation is also a bilinear transformation. 

Proof :  The proof is already done ( see section 3.2) . 

(𝐏𝟓)    The identity mapping w = z is trivially a bilinear transformation . 

(𝐏𝟔)   The associative law for composition of bilinear transformation holds . 

(𝐏𝟕)    Every bilinear transformation maps circles and straight lines into circles 

and lines ( a line is a circle with infinite radius i.e., line is a circle through the 

point of infinity ). 

Proof :   `Under each of the elementary transformations the family of circles 

and straight lines are transformed into the family of circles and lines . 

Hence the result follows . 

Therefore from the above properties (P2), (P4), (P5) and (P6) we can state the 

following : 

Theorem 3.1    The set of all bilinear transformations form a group with respect 

to the composition of bilinear transformations . 

3.4    Invariants/ Fixed Points : 

Definition :  A bilinear transformation T(z) has a fixed point ( invariant point) 𝑧0 

if T(𝑧0) = 𝑧0 . 

Proposition 1 :  Every bilinear transformation ( except the identity map ) has at 

most two fixed point . 

Proof :  If T(z) has a fixed point z, then T(z) = z of  

𝑎𝑧+𝑏

𝑐𝑧+𝑑
 = z ⇔ c𝑧2+ dz = az + b ⇔ c𝑧2 – (a-d)z – b = 0. 

The last equation is quadratic in z and hence can have at most two roots . 

For the identity map, I(z) = z for all points in the domain of definition . Hence 

every point of the domain  is a fixed point . 

This completes the proof . 



Proposition 2 :   If a bilinear transformation w = f(z)  has exactly two fixed 

points 𝑧1 and 𝑧2 , then for some non- zero constant k they satisfy the equation 

                                              
w−z1

w−z2
 = k 

z−z1

z−z2
 .                                                               (3.4) 

Moreover, if T(z) has only one fixed point z1 , then it can be written as 

                                     
1

w−z1
 = k′ + 

1

z− z1
 , k′ ≠ 0 .                                                     (3.5) 

Proof :     First Part :  Let z1 and z2 be the given fixed points of the bilinear 

transformation w = 
az+b

cz+d
 and these are the roots of the equation  

cz2 – (a – d)z – b = 0 . 

This means  

                      c𝑧1
2 – (a – d)𝑧1 – b = 0 ⇔ c𝑧1

2 – a 𝑧1 = b - d𝑧1 ,                             (3.6)  

                      c𝑧2
2 – (a – d)𝑧2 – b = 0 ⇔ c𝑧2

2 – a 𝑧2 = b - d𝑧2  .                            (3.7)   

Utilizing (3.6), we get 

                                    w - 𝑧1 = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 - 𝑧1          

                                                 =   
𝑎𝑧 + 𝑏 − 𝑧1(𝑐𝑧+𝑑)

𝑐𝑧+𝑑
          

                                                 =  
(𝑎− 𝑧1𝑐)𝑧 +𝑏 − 𝑑𝑧1

𝑐𝑧 +𝑑
       

                                                 =  
(𝑎− 𝑧1𝑐)𝑧 +𝑐𝑧1

2– a 𝑧1 

𝑐𝑧+𝑑
 

                                                  =  
(𝑎−𝑧1𝑐) ( 𝑧− 𝑧1)

𝑐𝑧 + 𝑑
  . 

Similarly using equation (3.7), we have 

w - 𝑧2 = 
(𝑎−𝑐𝑧2) (𝑧 − 𝑧2)

𝑐𝑧 +𝑑
 

Hence ,                 
𝑤 − 𝑧1

𝑤 − 𝑧2
 = 

𝑎 − 𝑐𝑧1

𝑎 − 𝑐𝑧2
 . 

𝑧 − 𝑧1

𝑧 − 𝑧2
 = k 

𝑧 − 𝑧1

𝑧 − 𝑧2
 

where            k = 
𝑎 − 𝑐𝑧1

𝑎 − 𝑐𝑧2
 . 

Second Part :   For the second part , z1 is the only fixed point . Then the 

equation cz2 – (a-d)z – b = 0 has one root z1 , say . So 

              cz1
2 – (a- d)z1 – b = 0 ⇔  cz1

2 - az1 = b- dz1  



and z1( being the repeated root) is given by  

                            z1 = 
a− d

2c
 ⇔ a - cz1 = d + cz1 .                                                    (3.8) 

From previous analysis , we obtained  

                        
1

w− z1
 = 

cz + a− cz1−cz1

(a− cz1)(z− z1)
 

                                  = 
c(z− z1) + a− cz1

(a− cz1)(z− z1)
 

                                 =  
c

a− cz1
 + 

1

z− z1
 . 

Therefore  ,  
1

w− z1
 = k′ + 

1

z− z1
 ,  k′ = 

c

a− cz1
 = 

2c

a+ d
 . 

Hence proved . 

Remarks :  

1.     Equations (3.4) and (3.5) are known as the normal form or 

canonical form of a bilinear transformation . 

2.     A  Möbius transformation which has a unique fixed point is 

parabolic . 

3.    If a Möbius transformation has exactly two fixed points , then it is 

called loxodromic . 

3.5 Cross Ratio : 

In this section , we develop the specific bilinear transformation which maps 

three distinct points in the extended z- plane onto three distinct points in 

the extended w- plane. For this purpose we introduce the concept of cross 

ratio . 

Definition :   For three distinct complex numbers z1, z2 , z3 in cꝏ , the cross 

ratio of four points z, z1 , z2 , z3 is defined to be  

                           (z, z1, z2, z3) = 
(z− z1)(z2 − z3)

( z1− z2) ( z3− z)
 .                                              (3.9) 

If one of the numbers in (3.9) is replaced by infinity, say z3 , then 

 

( z, z1, z2 , ꝏ) = lim
z3→ꝏ

( z− z1) (
z2

z1  
 −1)

(z1− z2)(1− 
z

z3
)
 = 

z− z1

z1− z2
 . 



This means that the factors involving z3 are replaced by 1. To recollect cross 

ratio (3.9), we write differences of z, z1, z2 , z3 in cyclic order z- z1, 

z1- z2 , z2 - z3, z3 – z and put them in the numerator and the denominator 

alternatively . 

Theorem 3.2 :   The cross ratio is invariant under bilinear transformation . 

Proof :    Let the bilinear transformation be defined by 

                              w = T(z)= 
az+b

cz+d
 , ad – bc = 1 , 

such that , wk = T(zk), k= 1, 2, 3 then we have to show that 

                  (T(z), T(z1), T(z2), T(z3)) = (z, z1, z2, z3) .                                   (3.10) 

Since zk corresponds to wk ; assuming ad – b c = 1 , we have 

                                     w - wk = 
z −zk 

(czk+ d) (cz +d)
 , 

so that for any pair of (z, w) 

                   w - w1 = 
z− z1

(cz1 +d) ( cz + d)
 , w - w2 = 

z− z2

(cz2+d) ( cz + d)
 , 

                                    w - w3 = 
z− z3

(cz3+d)(cz+d)
 .                                                       (3.11) 

Replace w by w2 , and z by z2 , we get 

                            w2 - w1 = 
z2− z1

(cz1+d)(cz2+d)
 , 

                    w2 - w3 =
z2− z3

(cz3+d)(cz2+d)
.                  (3.12) 

Equations (3.11) and (3.12) yield 

                                
w −w1

w1−w2
  . 

w2− w3

w3 − w
 = 

z − z1

z1− z2
 . 

z2− z3

z3− z
 

and this is nothing but  

                            (w, w1, w2, w3) = (z, z1, z2, z3) . 

Thus, equation (3.10) established . 

4.  Solved Problems :  

Problem 1    Show that the transformation w = 
2z+3

z − 4
 changes the circle x2 +y2-

4x = 0 into the straight line 4u+ 3 = 0. 



Solution :    The given transformation is  

                                                w = 
2z+3

z− 4
 .                                                                   (4.1) 

Solving for z, we have  

                                               z = 
4w +3

w − 2
 . 

 therefore                                z̅ = 
4w̅  + 3

w̅  − 2
 .                                                               (4.2) 

The given equation of circle is 

                                                  x2 + y2 – 4x = 0 , 

i.e.,                                 (x +iy) (x – iy) – 4x = 0 , 

or,                               z z̅ – 2( z + z̅ ) = 0  ( since 2x = z + z̅ ) . 

With the help of equation (4.2) , above equation can be written as 

                         
4w+3

w − 2
  = 

4w̅  +3

 w̅ −2
 – 2 ( 

4w +3

w − 2
 + 

4w̅ + 3

w̅ − 2
 ) = 0 , 

or                                2 (w + w̅) + 3 = 0 , 

or                          4u + 3 = 0   ( since w + w̅ = 2u ) , 

which is a straight line in u – plane . 

Problem 2 :  Find the fixed point and the normal for the bilinear transformation  

w = 
3z −4

z − 1
 . 

Solution :  Putting w = z in  w = 
3z −4

z − 1
 for fixed points , we get (z − 2)2 = 0. 

Thus z = 2 is the only fixed point so that transformation is parabolic . 

For normal form of the given bilinear transformation , we proceed as follows 

                            w – 2 = 
3z −4

z −1
 – 2 = 

z − 2

z −1
 , 

i.e.,           
1

w − 2
 = 

z − 1

z − 2
 = 

z − 2 +1

z − 2
 = 1 + 

1

z − 2
 , 

which is the required normal form . 

Problem 3 :    Find the bilinear transformation which transforms the points z= 

2, 1, 0 into w = 1, 0, i . 



Solution :   We know that the bilinear transformation which transforms z = 

z1, z2 , z3 respectively into w = w1, w2, w3 is  

                      
(w− w1)(w2 −w3)

(w1−w2)(w3 −w)
  = 

(z− z1)(z2 −z3)

(z1−z2)(z3 −z)
 . 

Substituting the points in this equation , we get 

                                 
(w−1) (0−i)

(1−0) (i− w)
 = 

( z− 2) ( 1− 0)

(2−1) (0 − 2)
 , 

or                                    
i − iw

i − w
 = 

2 − z

z
 , 

or                               (i – iw) z = (i – w) (2 –z) 

or                                     w = 
2iz − 2i

(1 −i)z − 2
 . 

This is the required transformation . 

Problem 4 :  Find the bilinear transformation which maps the points z = ꝏ, i , 0 

into the points 0 , i , ꝏ respectively . 

Solution :  We know the bilinear transformation, mapping z = z1, z2 , z3 onto  

w = w1, w2, w3 respectively is given by 

                      
(w− w1)(w2 −w3)

(w1−w2)(w3 −w)
  = 

(z− z1)(z2 −z3)

(z1−z2)(z3 −z)
 . 

Substituting points in above equation , we have  

                          
(w −0)(i−w3)

(0 −i)(w3− w)
 = 

(z − z1)(i − 0)

( z1− i) (0 − z)
 , 

where z1 → ꝏ , w3 → ꝏ . 

Since , z1 = ꝏ and w3 = ꝏ , we take the quotient involving z1 and w3 in above 

equation to be (-1) . 

Thus                                   
w − 0

0 − i
 = 

( i− 0)

( 0 − z)
 , 

or                                      
w

−i
  = 

i

− z
 , 

or                                 w = - 
1

z
 . 

This is the required transformation . 

Problem 5 :   For the conformal mapping w = z2, show that 



(a)  The coefficient of magnification at z = 2 +I is 2√5 . 

(b)   The angle of rotation at z = 2 + i  is tan−1 0.5 . 

Solution :  Let w = f(z) = z2  

therefore   f ′(z) = 2z. 

Hence f ′(2 +i) = 2(2 + i) = 4 + 2i . 

(a)  Coefficient of magnification at z = 2+i is  

                =     |f "(2 + i)| = |4 + 2i| = √42 + 22 = 2√5 . 

(b)  Angle of rotation at z = 2+ i is 

arg [f ′(2 + i)] = arg (4+2i) = tan−1 2

4
 = tan−1 0.5. 

Problem 6:  What is the image of the rectangular region of the z- plane bounded 

by the lines x= 0, y = 0, x = 1, y =2 under the transformation  w = z+(2+i) in the w 

– plane . 

Solution :    Given transformation is  

                          w = z + (2- i)   .                                                                                  (4.3) 

Here, z = x +iy  and w = u +iv  . 

Using above in equation (4.3) , we have  

                          u + iv = x + iy + ( 2 – i) = ( x+ 2) + i(y -1) . 

Comparing real and imaginary parts on both sides , we obtain  

                                     u = x +2 and v = y – 1 .                                                           (4.4) 

(a)   x = 0, u = 2 , 

(b)     y = 0 ,  v = -1 , 

(c)     x = 1, u = 3, 

(d)     y = 2 , v = 1 . 

Thus , the image of the rectangular region in the z – plane bounded by the lines 

x = 0 , y = 0, x = 1 and y = 2 under the transformation w = z +( 2- i) is the 

rectangular  region bounded by u = 2 , v = -1, u = 3 and v = 1 in the w – plane . 



Problem 7 :    What is the image of the rectangular region of the z- plane 

bounded by the lines x = 0, y= 0, x = 1, y= 2  under the transformation w = 2z in 

the w – plane . 

Solution :  The given transformation is  

                                           w = 2z .                                                                             (4.5) 

Here, z = x +iy and w = u +iv . 

Putting above in equation (4.5), we obtained 

                                    u + iv = 2 (x + iy) , 

or                    u + iv = 2x + 2iy . 

Comparing real and imaginary parts on both sides , we get 

u = 2x    and  v = 2y . 

(a)   x = 0, u = 0, 

(b)      y = 0, v = 0 ‘ 

(c)    x = 1 , u = 2 , 

(d)    y = 2 , v = 4 . 

Hence, the image of the rectangular region of the z – plane bounded by the 

lines x = 0, y = 0, x = 1, y = 2 under the transformation w = 2z is the rectangular 

region bounded by u = 0, v = 0, u =2, v = 4 in the w – plane . 

Problem 8 :  What is the image of triangular region of the z – plane bounded by 

the lines x = 0, y = 0, √3 x + y = 1 under the transformation  w = eiπ/3z in the z- 

plane . 

Solution :   Given transformation is  

                                    w = eiπ/3z .                                                                             (4.6) 

Here, z = x +iy  and  w = u + iv  . 

Substituting above in equation (4.6) , we get 

                   u + iv = ( cos
π

3
 + i sin

π

3
 ) ( x +iy)  , ( since eiϴ = cos ϴ + isin ϴ ) , 

or                  u + iv  = ( 
1

2
 + i

√3

2
 ) ( x + iy) , 



or                u + iv = 
( 1 + i √3)

2
 ( x + iy) , 

or                 2(u +iv) = x + iy + i √3 x - √3 y , 

or                 2(u +iv) = ( x - √3 y) + i (√3 x + y) . 

Comparing real and  imaginary parts on both sides, we have  

                                       2u = x - √3 y ,                                                                     (4.7) 

                                        2v = √3 x + y .                                                                    (4.8) 

Multiplying both sides of equation (4.8) by √3 , we have 

                                        2√3 v = 3x + √3 y .                                                           (4.9) 

Adding equations (4.7) and (4.9) , we obtain 

                                2u + 2√3 v = x + 3x = 4x , 

or                          u + √3 v = 2x .                                                                            (4.10) 

Further multiplying both sides of equation (4.7) by √3 , we get 

                                      2√3 u = √3 x – 3y .                                                            (4.11) 

Again subtracting equation (4.8) from equation (4.11), we have  

                           2√3 u – 2v = -3y – y , 

 or                     2( √3 u – v) = - 4y , 

or                       √3 u – v =  - 2y , 

or                       v - √3 u = 2y  .                                                                               (4.12) 

(a)     x = 0,  v = - 
1

√3
 u , 

(b)     y = 0 ,  v = √3 u, 

(c)     √3 x + y = 1 ,  v = 
1

2
 . 

Hence, the image of triangular region of the z- plane bounded by the lines x=0, 

y= 0, √3 x + y = 1 under the transformation w = eiπ/3z is the triangular region 

bounded by  v = - 
1

√3
 u , v = √3 u and v = 

1

2
 in w – plane . 



Problem 9 :   Find the image of the line  y – x + 1  = 0 under the transformation 

w = 
1

𝑧
 in w – plane . 

Solution :    Given transformation is  

                                          w = 
1

𝑧
  .                                                                             (4.13) 

Here, z = x +iy and w = u +iv . 

Putting above in equation (4.13), we get 

                             u + iv = 
1

𝑥 + 𝑖𝑦
 , 

or                     x + iy = 
1

𝑢 + 𝑖𝑣
 .  

𝑢 − 𝑖𝑣

𝑢 − 𝑖𝑣
 = 

𝑢 − 𝑖𝑣

𝑢2+ 𝑣2
 , 

or                        x + iy = 
𝑢

𝑢2 +𝑣2
  - i 

𝑣

𝑢2 +𝑣2
  . 

Comparing real and imaginary parts on both sides , we have  

                                        x = 
𝑢

𝑢2 +𝑣2
 ,                                                                        (4.14) 

and                                 y =  − 
𝑣

𝑢2 +𝑣2
 .                                                                  (4.15) 

With the help of equations (4.14) and (4.15) , equation y – x + 1 = 0 can be 

written as 

                                    − 
𝑣

𝑢2 +𝑣2
  - 

𝑢

𝑢2 +𝑣2
 + 1  = 0 , 

or                               - v – u + 𝑢2 + 𝑣2 = 0 , 

or                𝑢2 – u  +  (
1

2
)

2
− (

1

2
)

2
+ 𝑣2 – v + (

1

2
)

2
− (

1

2
)

2
 = 0 , 

or                               (𝑢 −
1

2
)

2
+   (𝑣 −

1

2
)

2
= 

1

4
 + 

1

4
 , 

or                                  (𝑢 −
1

2
)

2
+   (𝑣 −

1

2
)

2
= 

1

2
 . 

This is equation of the circle with centre ( 
1

2
,

1

2
 ) and radius 

1

√2
 . 

Thus the image of the line y – x + 1 = 0 under the transformation w = 
1

𝑧
 is a 

circle in w – plane . 

Problem 10 :  Show that the transformation w = 
1

𝑧
 maps the circle in z – plane 

to a circle in w – plane or a straight line if the former passes through the origin . 



Solution :   The given transformation is  

                                           w = 
1

𝑧
 ,                                                                             (4.16) 

Here,     w = u + iv and z = x +iy . 

Putting above in equation (4.16), we get 

                                    u + iv = 
1

𝑥 + 𝑖𝑦
 , 

or                          x + iy = 
1

𝑢 + 𝑖𝑣
 , 

or                         x + iy = 
1

𝑢 + 𝑖𝑣
 .  

𝑢 − 𝑖𝑣

𝑢 − 𝑖𝑣
 = 

𝑢 − 𝑖𝑣

𝑢2+ 𝑣2
 , 

or                        x + iy = 
𝑢

𝑢2 +𝑣2
  - i 

𝑣

𝑢2 +𝑣2
  . 

Comparing real and imaginary parts on both sides , we have  

                                        x = 
𝑢

𝑢2 +𝑣2
 ,                                                                       (4.17) 

and                                 y =  − 
𝑣

𝑢2 +𝑣2
 .                                                                 (4.18) 

Equation of circle in z- plane is  

                           𝑥2 + 𝑦2+ 2gx + 2fy + c = 0 .                                                       (4.19) 

Using equations (4.17) and (4.18) in above , we obtain  

                             
u2

(u2 +v2)2
  + 

v2

(u2 +v2)2
 + 

2gu

u2 +v2
 + 

2f(−v)

u2 +v2
 + c = 0 , 

or                         
1

u2 +v2
 + 

2gu − 2fv

u2 +v2
 + c = 0 , 

or                        1 + 2gu – 2fv + c (u2+ v2) = 0 , 

or                      c(u2+ v2) + 2gu – 2fu + 1 = 0 .                                                    (4.20) 

Case(i)     If  c ≠ 0 , equation (4.20) is a equation of circle . 

Case(ii)    If c = 0, 2gu – 2fv + 1 = 0 , 

is equation of a straight line . 

Problem 11 :    Show  that the transformation w = 
1

𝑧
 maps a line in z – plane to a 

circle or staright line in w – plane . 

Solution :   Given transformation is 



                                                   w = 
1

𝑧
 .                                                                    (4.21) 

Here, w = u +iv and z = x + iy . 

Putting above in equation (4.21) , we obtain 

                                    u + iv = 
1

𝑥 + 𝑖𝑦
 , 

or                          x + iy = 
1

𝑢 + 𝑖𝑣
 , 

or                         x + iy = 
1

𝑢 + 𝑖𝑣
 .  

𝑢 − 𝑖𝑣

𝑢 − 𝑖𝑣
 = 

𝑢 − 𝑖𝑣

𝑢2+ 𝑣2
 , 

or                        x + iy = 
u

u2 +v2
  - i 

v

u2 +v2
  . 

Comparing real and imaginary parts on both sides , we have  

                                        x = 
u

u2 +v2
 ,   y =  − 

v

u2 +v2
 .                                              (4.22) 

The equation of line in z – plane is 

                                       ax + by +c = 0 .                                                                  (4.23) 

Using  equation (4.22) in above equation , we have 

                             
au

u2+v2
  - 

bv

u2+v2
  + c = 0 , 

Or                    au – bv + c ( u2 +v2) = 0 , 

or                c( u2 +v2) + au – bv = 0 .                                                                   (4.24) 

Case (i)   If c ≠ 0 i.e. , line in z- plane does not pass through origin then equation 

(4.24) becomes a circle in w – plane . 

Case (ii)  If c = 0 i.e., line in z – plane passes through origin then equation 

(4.24) becomes a straight line . 

5 .  Conclusions : 

In our book chapter,  we basically highlight about the topic “ Möbius 

transformation ’’ and see how it transforms different curves and regions 

from one complex plane to the other complex plane . We have also 

discussed some of its remarkable properties like conformality ( angle 

preserving property), circle preserving property and what a Möbius 

transformation is composed of . 
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