Practical and Innovative Applications of IoT & IoT Networks Smart Home

TITLE:

To Design and implement IoT system for the applications like: Home Automatiom **THEORY:**

In the present era, there is a strong emphasis on enhancing comfort, and one effective solution is the integration of IoT (Internet of Things) devices. These devices enable us to streamline our lives by offering remote control over various aspects. For instance, household appliances, door locks, and machinery can be conveniently managed through smartphones or web servers. A practical approach to achieving this is by creating an Android application using MIT App Inventor.

The process involves programming a NodeMCU, which serves as the central hub, to establish an HTTP web server. This server enables the control of home appliances. The communication between the NodeMCU and the Android app primarily employs the HTTP GET method.

To determine the functionality of the web server, a straightforward method is to open a web browser and utilize specific URLs. These URLs are configured to trigger actions such as turning lights on or off. This provides a seamless way to interact with and monitor the connected devices.

http://172.128.10.40/gpio/1 http://172.128.10.40:/gpio/0

The IP address of the NodeMCU is 172.128.10.40. You can easily locate your NodeMCU's IP address by checking the serial monitor. Upon running the code in the Arduino IDE, the device's IP address will be displayed in the serial monitor. This process ensures the verification of the web server's functionality.

MIT App Inventor stands as an open-source online platform tailored for Android applications. Although initially developed by Google, it is now overseen by the Massachusetts Institute of Technology (MIT). This tool serves as an accessible option, even for novices, to craft software applications for the Android platform. Its user-friendly approach hinges on a graphical interface, enabling users to effortlessly construct applications through a drag-and-drop method, all of which are compatible with Android devices.

Subsequent to the design phase within MIT App Inventor, the application can be

acquired on an Android phone through a QR code, or alternatively, its APK can be downloaded onto a computer for later installation on a smartphone. Once this is accomplished, the next step involves establishing a connection between the application and the ESP8266 module, facilitating the control of various home appliances.

How Relay works?

A relay serves as an electrical switch that is activated through an electrical signal. It proves invaluable in scenarios where multiple circuits need to be managed using a single input. By utilizing a relay, it becomes feasible to control the operation of an electrical circuit, toggling it on or off. The functioning of a relay hinges on a low-level current that is capable of controlling the switching of a higher magnitude current.

Typically featuring five terminals, a relay's configuration is as follows:

In the absence of voltage applied to the coil, the COM (common) terminal establishes a connection with the NC (normally closed) terminal.

Upon the application of voltage to the coil, an electromagnetic field is generated, attracting the armature. This action causes the COM terminal to connect with the NO (normally open) terminal.

Relay Driver:

A compact driver circuit employs a Transistor, Diode, and Resistor to configure the

relay. The Transistor serves to enhance the current, the Resistor provides the necessary bias to the transistor, and in instances when the transistor is in the off state, the Diode is employed to avert any reverse current flow. It's important to note that a 5V Relay module is utilized in this setup.

COMPONENTS REQUIRED:

- ESP8266 (NodeMCU)
- Lamp
- 5V Relay
- Breadboard
- Connecting Wires

Circuit Diagram

In this experiment, we are going to log and monitor data over internet using MIT app Inventer IoT server. And we can view the logged data over time on Mobile app. System is made using ESP8266 WiFi module and Relay module. ESP8266 WiFi chip reads the current date and sends it to MIT app inventer server for live monitoring.

In this experiment, relay module can be used with esp8266 or Nodemcu and program from Arduino IDE, the mobile data has used to send data to MIT app and it was really productive, results are quite good.

To initiate the process of crafting an Android app for light control, we'll utilize MIT App

Inventor through the subsequent steps:

Begin by accessing the MIT App Inventor's official website:

http://ai2.appinventor.mit.edu/

Proceed by selecting the 'Create apps' option situated at the upper right-hand corner of the interface.

Moving forward, on the subsequent screen, navigate to 'Projects' and subsequently choose 'Start new project'.

My projects Start new project Import project (.aia) from my computer Import project (.aia) from a repository Delete Project Save project
Start new project Import project (.aia) from my computer Import project (.aia) from a repository Delete Project Save project
Import project (.aia) from my computer Import project (.aia) from a repository Delete Project Save project
Import project (.aia) from a repository Delete Project Save project
Delete Project Save project
Save project
Save project as Checkpoint
Export selected project (.aia) to my computer
Export all projects
Import keystore Export keystore Delete keystore

Create an Android APP using MIT App Inventor

Next, select the 'Button' element and proceed to drag and drop two buttons onto the primary screen. To personalize the buttons, you can input your preferred names from the available options located on the right-hand side.

Palette		Viewer	
User Interface Button	0		Display hidden components in Viewer Check to see Preview on Tablet size.
CheckBox	9		Screen1
DatePicker	۲		Text for Button1
Mage Image	۲		Text for Button2
A Label	۲		
ListPicker	۲		
ListView	•		
🛕 Notifier	7		

Following this step, access the 'connectivity' section and proceed to drag and drop the web component onto the main screen.

Create an Android APP using MIT App Inventor

Now, access the 'Blocks' section to incorporate blocks into your application.

Create an Android APP using MIT App Inventor

Within the blocks menu, select 'button1,' and then choose the highlighted red option.

Subsequently, click on 'web1.' Scroll down and opt for the block indicated with a red mark.

Now, access the 'Text' menu and select the initial option. Enter your desired URL within the text menu.

Create an Android APP using MIT App Inventor

Next, click on 'web1' once more and proceed to select the option highlighted in red.

Apply the identical procedure for 'Button2.'

mitapp1	Screen1 • Add Screen Remove Screen
Blocks	Viewer
 Built-in Control Logic Math Text 	when Button1 . Click do set Web1 . Url to f http://192.168.1.40/gpio/1 call Web1 . Get
Lists Colors Variables Procedures	when Button2 • .GotFocus do set Web1 • . Uri • to C • http://192.168.1.40/gpio/0 • call Web1 • .Get

Create an Android APP using MIT App Inventor

The app is now prepared for download. Just click on the 'Build' option to obtain the APK file. There are two methods available to acquire the app APK: through the QR code or directly on your PC. Subsequently, you can install the downloaded APK on your Android device.

Screen1 • Add Screen Remove Screen Viewer when Button1 • .Click do set Web1 • . Url • to • * http://192.168.1.40/gpio/1 call Web1 • .Get
Viewer when Button1 . Click do set Web1 . Url to f " http://192.168.1.40/gpio/1 call Web1 . Get
when Button1 . Click do set Web1 . Url to f http://192.168.1.40/gpio/1 call Web1 . Get
when Button1 . Click do set Web1 . Url to the http://192.168.1.40/gpio/1 call Web1 . Get
do set Web1 . Url to f http://192.168.1.40/gpio/1 call Web1 .Get
call Web1 .Get
when Button2 .GotFocus
do set Web1 . Url to C thttp://192.168.1.40/gpio/0 "
call Web1 .Get

Your application is now fully prepared, granting you the ability to control the lighting using the on-off buttons featured within the app.

Program:

#include <ESP8266WiFi.h> const char* ssid = "OPPO_pcl"; const char* password = "pclatane123"; WiFiServer server(80); void setup() { Serial.begin(115200); //Default Baud Rate for NodeMCU delay(10); pinMode(2, OUTPUT); // Connect Relay to NodeMCU's D4 Pin digitalWrite(2, 0); // Connect to WiFi network Serial.println(); Serial.println(); Serial.print("Connecting to "); Serial.println(ssid); WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { *delay(500);* Serial.print("."); ł Serial.println(""); Serial.println("WiFi connected"); // Start the server server.begin(); Serial.println("Server started"); // Print the IP address Serial.println(WiFi.localIP()); } void loop() { // Check if a client has connected WiFiClient client = server.available(); if (!client) { return; }

```
// Wait until the client sends some data
 Serial.println("new client");
 while(!client.available()){
 delay(1);
}
 String req = client.readStringUntil('\r');
 Serial.println(req);
 client.flush();
int val;
 if (req.indexOf("/gpio/0") != -1)
  val = 0;
 else if (req.indexOf("/gpio/1") != -1)
  val = 1:
 else {
  Serial.println("invalid request");
  client.stop();
  return;
}
String s = "HTTP/1.1 200 OK\r\nContent-Type:
text/html\r\n<!DOCTYPE HTML>\r\n<html>\r\nGPIO is now ";
s += (val)?"high":"low";
s += "</html>\n";
// Send the response to the client
client.print(s);
delay(1);
Serial.println("Client disonnected");
}
```

CONCLUSION:

After the study of this assignment, we are familiar with the home automation and use of MIT app Inventer to upload data on cloud.