
Triaxial Star  

 

RAMEN  KUMAR  PARUI a *  

a  ARC, Room No-F101, Block F, Mall Enclave, 

13, K. B. Sarani, Kolkata- 700080, India. 

Email: rkparuidr@yahoo.com 

* ORCID No- 0000-0001-6838-3341 

 

Abstract:The idea of a “Triaxial Star” first proposed by Chandrasekhar in 1969. More than 50 

years passed, the detection of triaxial star remains unreachable. Detection of gravitational waves 

would be  a probe to the astronomers to investigate the properties of the compact objects in a 

new direction in the light of gravitational waves. Recent discovery of cosmic baby , i.e., swift 

J1818.0-1607  with age ~ 300 years,  offers the astronomers an opportunity , through continuous  

observations,  to increase our knowledge about the physics of the evolution of a magnetar from 

its new born phase to end stage, generation of ultra-strong magnetic field in its interior, source of 

continuous gravitational waves, physics of coupling between magnetic field decay and cooling 

for keeping the internal temperature ~ 108 K for a period of ~ 104 years, , etc. Cosmic Baby most 

probably the first detected Triaxial star.  
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1. Introduction: Compact Star and Professor Chandrasekhar 

A compact star is a system inside which a struggle is continuing between gravity and degenerate 

pressure created by its constituents. Gravity tries to crash the star’s material by pulling towards 

the center of star, while degenerate pressure, created among the material particles due 

compactness, tries to counteract and overcome the gravity pull. In his book “An Introduction to 

the study of Stellar structure (Dover, 1967)“ Professor Chandrasekhar first gave a detailed 

picture of “what is a star, what is going on inside it, etc” in the form of mathematical language. 

Before the discovery of neutrons in 1932, electrons were the latest discovered particles on that 

time. Professor Chandrasekhar thus considered the latest star, i.e., white dwarf. He calculated the 

maximum mass of a white dwarf full of electrons = 1.4 M⊙ (M⊙  being the solar mass) which is 

known as Chandrasekhar limit. In 1932 Chadwick discovered neutrons. Then T. Gold proposed 

the possible existence of a new compact star beyond white dwarf, called Neutron Star which is 

made full of neutrons. 

In the year 1969 Professor Chandrasekhar  theoretically proposed another new compact star, 

called “Triaxial Star”. Note that, in 1967 Jocelyn Bell, a Ph.D. scholar of Cambridge University, 

UK, detected a peculiar type  signal but its rhythm was very accurate. This star later identified as 

neutron star. However, the triaxial star  was confined in theoretical works only although neutron 

stars (isolated ,  rotating neutron stars or pulsars, and magnetars) became a gold mine to the 

astronomers and scientists. In searching the gravitational wave sources, isolated neutron stars, 

millisecond pulsars became the efficient gravitational wave sources. Many theoretical studies 

suggested that the triaxial neutron stars, i.e. triaxially deformed neutron stars, are the most 

significant gravitational wave sources . So, triaxially deformation in star thus gave an impetus to 

the astronomers, scientists to search for a triaxial star. 

2. What is Triaxialityin a Star 

More than 50 years passed after the proposed concept of triaxial star but till date it is remained 

undetectable. Several theoretical works suggested that star with fast rotation can be deformed 

and would become a triaxial star .Classically, the figures of equilibrium of uniformly, rotating 

homogeneous masses pertain various sequences of ellipsoidal figures. The Maclaurin sequence is 

a sequence of oblate spheroids along which the eccentricity (“e” ) of the meridional sections 

increases from zero to one (Chandrasekhar and Lebovitz 1964 ). Initially it was thought that the 

sequence of the square of the angular velocity of rotation ( Ω2) is not a parameter of unrestricted 

range. This means that for each value of  Ω2, (except less than a certain determinate maximum, 



there are two permissible spheroidal figures of equilibrium. But Jacobi first showed that a 

sequence of genuine triaxial ellipsoids of equilibrium diverges from the Maclaurin sequence. 

This means that there is a  bifurcation point which clearly distinguish the permissible sequences 

of figures of equilibrium from Maclaurin spheroidal sequence to Jacobi ellipsoidal sequence. 

Let us consider a situation of general ellipsoid ( also called a triaxial ellipsoid, see fig.1) whose 

quadratic surface can be expressed in Cartesian co-ordinates by 

( x2/ a2 ) + (y2 / b2) + (z2 / c2)  = 1       (1) 

where the semi – axes are of lengths a, b, c.  

Now,  

i) If all the three are same, i.e., a = b = c  then it is a sphere. 

ii) If the length of two axes of an ellipsoid are the same, then the figure is called a 

spheroid , i.e., an oblate spheroid or a prolate spheroid depending on whether c < a or 

c > a, respectively. 

In spherical coordinate system (r, θ, ϕ ) the eqn. (1) becomes  

                                (2) 

Geodesic form 

 (a) 

                                                                                                    (b) 

Fig. 1 : (a) Ellipsoid in Cartesian Coordinates   (b) Ellipsoid in Geodesic Coordinates (Panou 2013) 



In this case we consider a triaxial ellipsoid where Cartesian coordinates are ( x, y, z ) but three 

semi-axes are a = ax, b = ay, and c = b then  eqn.(1) takes the form 

     x2 /ax
2  + y2 / ay

2  + z2 / b2  = 1 , 0 < b < ay < ax                                (3)    

The linear eccentricities can be calculated as      

                                          (4) 

and  he
2 = hx

2 – hy
2 .  

This  triaxial ellipsoid can be  parameterized as 

                                                            (5)      

where  Ellipsoidal latitude  and ellipsoidal longitude can therefore be 

interpreted with the help of this parameter. Consequently, the initial fundamental coefficients in 

this parameterization, E, F, and G, can be written as (Panou 2013) 

                                                                        (6) 

                                                        (7) 

This implies that  

i) F = 0 indicates that the β-curves and  λ-curves are orthogonal. 

ii) B ≠ 0 and  Λ≠ 0 for all points and E = G = 0 means umbrella shape. 

iii) For an orthogonal parameterization the line element “ds” on the triaxial ellipsoid is  

 

ds2 = E dβ2 + G dλ2                                                                                                  (8) 

 



3. General Properties of Equilibrium Figure 

A relative equilibrium figures concern, in general, the liquid figures such that  an equatorial  

symmetry plane exists. It has a similar situation in the case galaxies. This means that for liquid 

and stellar figures the internal flows are absent. Naturally, it is believed that for all figures of  

equilibrium figures a much stranger inequality is present, namely, angular velocity Ω2 / ( 𝜋G𝜌) ≤ 

0.45 satisfying the validity of Maclaurin spheroid. 

Now, we can consider rotation in equilibrium figure. In that case, the liquid figures of relative  

equilibrium can rotate only around the least axis. In triaxial liquid figure, i.e., with internal flow, 

can rotate around the middle axis and possess an oblique rotation. In stellar system this 

equilibrium figures can rotate around any of the three axes turn into so called “interia ellipsoid” 

or “inclined rotation”. Although there is no  direct relation between an angular velocity and 

flattening for equilibrium figures of relative equilibrium but direction of internal flows w.r.t. 

rotation of the figure plays an important role in astrophysics for modeling of stars and galaxies 

where consideration of complex interrelation (i.e., anisotropy) is essential.  

As all the gravitating equilibrium figures are of negative heat capacity, an interpretation of 

bifurcation point, creates an interest for astrophysical degenerate systems or compact objects. 

The ratio of rotational kinetic energy (T) and gravitational binding / potential energy (W) , i.e., 

T/ |W| therefore indicates whether the system with the angular momentum distribution for 

axisymmetric ( i.e., for Maclaurin spheroid) or non-axisymmetric (Jacobian ellipsoid). We know 

that a stable star can be deformed if it rotates faster. Rapid rotation in a star (i.e, for self-

gravitating, incompressible fluids in equilibrium) differentiates its new figure from the earlier 

one i.e., 

(i) Figure of axisymmetric Macllaurin spheroid (earlier) ; 

(ii) Figure of non-axisymmetric, i.e., Triaxial Jacobi ellipsoids (new figure) 

As soon as the T/|W| ratio approaches approximately 0.14 (Bonazzola et al 1998),  we can argue 

that this new configuration is a spinning compact star (or simply a "Triaxial Star") that is 

triaxially deformed, as opposed to an exact ellipsoid in relativistic gravity or for compressible 

fluids. I would like to know why triaxial figures are significant. The straight forward explanation 

is as follows: To model the relativistic neutron star as an axisymmetric uniformly rotating 

structure associated with the equation of state (EoS) of high density nuclear matter, relativistic 

astrophysics can allow for fluid compressibility through triaxiality. 

3.1    Triaxiality and Gravitational Wave 

Let us examine a reasonably stiff (piecewise) polytropic equation of state with a triaxial 

configuration that has tri-planar symmetry with respect to three orthogonal X, Y, and Z planes. 

The scenario that could arise in this instance is that the masses derived from the supra-massive 



triaxial solution would always be smaller than those of axisymmetric equilibrium, even if they 

would surpass the maximum mass of the spherical solution. In this context, two crucial facts are 

as follows: 

 

Fig. 3: : Diagram of a rotating triaxial ellipsoid, with its major axes aligned to a    

rectangular coordinate system, spinning about the z axis (Neunzert 2019) 

 

(i)  The equation of state (EoS) determines the variation in the maximum masses of the 

axisymmetric and triaxial star equilibrium solutions; 

(ii) There will be strong evidence of significantly softer EoS of high density materials in 

the neutron star core if this difference turns out to be merely 10%. 

 

Another important situation we have to consider for a newly born neutron star which 

is supernova fall back accretion and condition for gravitational collapse. We now 

consider a situation. We are aware that a neutron star is created when a supernova 

bursts with a magnetic field as strong as B ≤ 5 x 1014 G. It rotates at a speed of T/ |W| 

~ 0.14 for 50–200 seconds before collapsing into a black hole. All that exists in this 

hypothetical scenario is a compact star that is triaxially distorted and may have 

generated triaxially via enormous stellar core collapse. If this occurs, that is, once a 

triaxial star of that kind forms, a huge number of gravitational waves would be 

released. This offers us the chance to extract attributes from high density nuclear 

materials located inside compact stars, such as neutron stars. For instance, the 

following relation can be used to estimate the typical values of the amplitude (h) of 

gravitational waves emitted from a triaxial star: 

h ~ 9.1 x 10-21 (30 Mpc / D ) ( M / 1.4 Mo )
3/4  ( R / 10Km )1/4𝑓 - 1/5 (9) 



where D, M, R, and f stand for the wave frequency in Hz, the mean radius, the source 

mass, and the distance to the source, respectively. The detectability of gravity waves 

emitted by triaxially compact stars was calculated by Piro and Thrane (2012) to be 

approximately 17 Mpc for the Advanced LIGO detector under the fallback accretion 

scenario (Harry 2010). 

Deformation of a star due strong magnetic fields 

Theoretical models of neutron stars, in general assumed that they are made entirely of neutrons. 

In general relativity, the equilibrium configuration of neutron star (i.e. by solving Einstein-

Maxwell equations) is coupled with both rotation and magnetic field i.e., consideration of 

magnetic field is essential. This means in a spherical symmetric back ground perturbation due to 

internal magnetic field in the shape of neutron star surface structure would appear. Therefore, a 

neutron star or magnetar (the special type of neutron star with internal strong magnetic field) can 

significantly be deformed by both rotation and strong magnetic field. Theoretical calculation 

(Bonanno et al 2003) hints that at the end of the collapse of the core of a massive star, 

differential rotation could generate a strong toroidal magnetic fields ~1016 – 1017 G inside the 

proto-neutron star. Of course, the relativistic models of magnetized stars (i.e., neutron stars, 

magnetars) require the simultaneous of both poloidal and toroidal field components. The 

combined effects of magnetic field and rotation could make: 

(a)  An apparent morphological alteration, or surface deformation, that is pertinent to the 

electromagnetic emission 

(b) Regarding the quadruple distortion, or internal matter distribution, which is pertinent to 

the gravitational wave emission. 

 

4. The Ellipticity of the Star 

The stellar deformation can be expressed in terms of stellar ellipticity or simply “ellipticity”(ϵ ). 

There are two definitions relevant for two conceptually different quantities — i) the surface 

ellipticity(ϵsurface)and ii) the quadruple  elliptcity  (ϵqud ). 

(A) The Surface Ellipticity 

The surface ellipticity can be defined as (Chandrasekhar and Miller 1974) 

ϵsurface  =  ( Equatorial radius Re  - ( Polar radius Rp ) / (Polar radius Rp )                         (10) 

In the case of neutron star, to know the degree of deformation we can write 

ϵ    = √{  1 – ( Rp / Re )
2 }                                                                                                   (11) 

The equ.(1) describes the geometrical shape of the star. This means the surface ellipticity 

describes the external appearance of the star. 



In case of neutron star, the above equ. (2) gives us a relationship between the mass and radius of 

the neutron star. The known facts are : 

(a) If the polar radius Rp of the neutron star increases, then it’s  mass decreases. 

(b) If the equatorial radius Re of the neutron star increases, the mass increases. 

(c) The maximum deformation appears at the ellipticity ϵ ~ 0.257. In this case Re>Rp such 

that the neutron stars are maximally in oblate form. 

 

(B)   The Quadrupole Ellipticity 

It is a measure of the mass quadruple of the star (Bonazzola and Gourgouljan 1996, Haskell 

et al 2007)  which can be expressed as  

ϵQuad  = - Q / I                                                                                                 (12) 

where I = the mean value of the moment of inertia of the star, and Q = its mass – energy 

quadruple  moment.  

This quadruple ellipticity can also be written in terms of inertia components: 

ϵQuad = ( Izz – Iyy ) / Izz                                                                                    (13) 

In general, the quadruple ellipticity is a measure of the entire stellar bulk deformation. It is 

used to evaluate the gravitational wave emission of a rotating neutron star. 

 

5. Magnetar and  Triaxiality 

A magnetar is a type of neutron star characterized by an exceptionally powerful magnetic field. 

These magnetic fields reach strengths of approximately 1015 Gauss, which is a magnitude of a 

thousand trillion times greater than Earth's magnetic field and between 100 to 1,000 times 

stronger than the magnetic field of a typical radio pulsar. This extreme magnetic intensity 

renders magnetars the most magnetically potent objects currently identified. 

Magnetars share similarities with other neutron stars, including a diameter of approximately 20 

kilometers and a mass of around 1.4 times that of the Sun (1.4 M⊙). They originate from the 

gravitational collapse of a star with a mass within the range of 10 to 25 times that of the Sun (10–

25 M⊙). What sets magnetars apart from other neutron stars is their significantly more potent 

magnetic fields and relatively slower rotation. While most observed magnetars have rotation 

periods ranging from 2 to 12 seconds (Kaspi 2010), typical neutron stars, like those observed as 

radio pulsars, typically rotate at rates of one to ten times per second. ( Condon and Ransom 

2021). Extremely powerful and distinctive bursts of gamma and X-ray radiation are produced by 

the significant characteristics of a magnetar's magnetic field. In contrast to other celestial bodies, 



a magnetar's active life is brief. After roughly 10,000 years, their powerful magnetic fields begin 

to weaken, which is when the activity and intense X-ray emission stop.  

The formation of magnetars is thought to follow the same process as that of all neutron stars, 

originating from the core-collapse of a massive star during a supernova explosion. However, the 

precise conditions leading to the creation of a magnetar rather than an ordinary neutron star or 

pulsar remain somewhat unclear. Some theories propose that, to attain such intense magnetic 

fields, the neutron star must initially rotate at rates ranging from 100 to 1,000 times per second. 

The prevailing explanation for the powerful magnetic fields of magnetars is that they arise from 

a magneto-hydrodynamic dynamo process occurring within the turbulent and incredibly dense 

conducting fluid present before the neutron star stabilizes into its equilibrium configuration. 

(Thompson and Duncan 1993). These magnetic fields persist due to ongoing currents in a 

proton-superconductor phase of matter at a mid-depth in the neutron star, where mass is 

primarily composed of neutrons. When two neutron stars combine, a similar 

magnetohydrodynamic dynamo mechanism creates even stronger transient fields. (Price and 

Rosswog 2006). However, an alternate theory posits that they originate from the collapse of stars 

with unusually robust magnetic fields (Zhou et al 2019). 

Note that since then, the magnetar model—which is predicated on the degradation of the magnetic 

field driving the emission of X-rays and gamma rays—has been able to satisfactorily explain both SGRs 

and anomalous X-ray pulsars. The spin-down rate of an SGR was measured from observed pulsations, 

and the results indicated that the object was a neutron star with a magnetic field strength of 8 × 1014G. 

However, magnetars appear to be X-ray intense for a limited duration, as their pulse periods are 

grouped between 6 and 12 seconds. In addition, if magnetars remained active for a long time, we should 

also notice them with pulse periods of tens of seconds or longer. 

6. Recently  detected Magnetar, the Cosmic Baby 

The Swift Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory (Ghurels et 

al., 2004) discovered a magnetar brief burst with typical characteristics on March 12, 2020, at 

21:16:49 UT (Evans et al., 2020). Following observation for 64 seconds, the Swift X-ray 

Telescope (XRT) ultimately discovered a new, unidentified x-ray source that is currently known 

as Cosmic Baby. This source is named Swift 1818.0 – 1607. Table I displays the key parameters 

of this cosmic infant, which were derived from the timing analysis of preliminary observations at 

the moment of detection. 

Table I :Various early  observed / measured parameters of Swift J1818.0 – 1607 (Parui 2023,2023a) 

Typical properties Value  Reference 

 

Characteristic age 

(shortest known ) 

 

~ 240 years 

 

Esposito et al 

(2020 ) 

Surface magnetic 

field 

~ 2.7 x 1014 G 



Dipolar magnetic 

field at poles 

≈ 7  x 1014 G 

Spin down 

Luminosity ( Ėrot) 

~ 1.4 x 1036 erg.s-1 

Luminosity ~ 8 x 1034 erg.s-1 

Coherent periodicity 

of x-ray signal 

1.36 s Enoto et al (2020  

) 

Spin period 

derivative 

~ 8.2 x 10-11 s.s-1 Champion et al 

(2020) 

 Period derivative 

 

~ 9  x 10-11 s.s-1 

Spin Period 

 

0.7333920 s 

 

Upon doing several observations at multiple wavelengths using different telescopes (such TMRT 

and NICER) till July 27, 2020, certain verified parameters of the cosmic infant magnetars 

become accessible. A few examples of these include the spin period derivative (~3.74 x 10-11 s-2), 

spin down luminosity (~1.1 x 1036 erg. s-1), and surface dipole magnetic field (~ 3 x 1014 G). 

Astronomers were able to obtain the first high resolution x-ray picture of the cosmic baby 

because to Chandra Observatory's (Blumer and Safi-Harb 2020) studies of J1818.0-1607, which 

started less than a month after the cosmic baby was discovered. Even still, there is a great deal of 

diversity in practically every cosmic infant property metric. 

7. Ellipticity of  Cosmic Baby Magnetar Swift J1818.0-1607 

The idea of a magnetar emerged to explain the characteristics of transitory gamma-ray sources, 

or Soft Gamma Repeaters (SGRs). The aforementioned fact cannot be explained by rotational 

power, or energy. Therefore, the ultra-strong magnetic field could serve as a backup supply of 

energy for these very high energy sources. The basic idea regarding these peculiar high energy 

sources could be the ultra-strong magnetized neutron stars, magnetars with surface (dipole) fields 

in the range 1014 – 1016 G and internal magnetic fields >~1016 G (at least one order of magnitude 

stronger) (Paczynski 1992, Thompson and Duncan 1995 ). Massive flares and rapid radio bursts 

are just two examples of the high energy emissions produced by magnetars, which are isolated 

young neutron stars with strong magnetic fields. The compact object becomes anisotropic when 

the density of the neutron star core surpasses approximately 1015 g.cm-3 (Ruderman, 1972). This 

means that the internal pressure can be divided into two components: the transverse pressure (pt), 

which is the orthogonal to the radial pressure (pr), and the internal pressure (pr). This pressure 

anisotropy affects the structure, stability, and physical properties of the star matter (Dev and 

Gleiser 2002). The extremely strong internal magnetic field of the stellar mass can also cause 

anisotropic pressure, which is the deformation of the spheroidal shape of a revolving neutron star 

and the emission resultant from such distortion.  

The intrinsic field structure of a neutron star can function as a powerful and efficient source of 

gravitational wave emission, as initially noted by Cutler (2002). He claimed that a neutron star 



with a strong internal toroidal field—a neutron star that is magnetically distorted—becomes 

prolate and has the highest potential to emit strong gravitational waves. Therefore, a key 

component of the powerful gravitational wave source is the ellipticity of the magnetic 

deformation (σ) in the form of a star object. Specifically, the stellar body's triaxiality—its 

reliance on the strength of the internal strong magnetic field, the field's decay, and the dynamic 

shape shift to a triaxial ellipsoid form. 

According to Lai and Shapiro (1991), a magnetar is an isolated neutron star that rotates slowly 

and has an extremely high internal magnetic field that can reach 1016–1018 G and even up to 1020 

G. A magnetar is a triaxial stellar entity in general, especially in its newborn period (Melatos 

1999). One can estimate the internal ultra-strong magnetic field of a neutron star (or magnetar) 

based on the geometric distortion caused by a strong toroidal magnetic field. This is defined as 

the toroidal magnetic field being greater than or equal to at least one order of the surface dipolar 

magnetic field. Therefore, constraints on the ellipticities of magnetars can be used to constrain 

the toroidal magnetic field as a period or duration of GW emission. Therefore, if the field is 

dipolar, hydro-magnetic stresses arising from non-radial gradients of the super-strong internal 

magnetic field deform the magnetar, which is the area between the magnetic poles and the 

equator. The following formula can be used to express the fractional difference (ε) between the 

major moments of intertia: ( Melatos 1999; Goldreich 1970; deCampli 1980) 

ε ~ δp R5 / I1≈ 2 x 10-9 (Bint / 1010 T )2                                                                          (14) 

where  δp  = induced matter-density perturbation 

                  ~ Bint
2 / μoCs

2 , 

            R = the stellar radius, 

            Cs = the isothermal sound speed ( = 3-1/2 c, “ c “ being the velocity of light), 

Bint = the characteristic magnitude of the internal magnetic field such that  

i) ≈ Bo, if the internal magnetic field is confined to the stellar crust, 

ii) >~ Bo, if it is generated deep inside the star (i.e. convective dynamo model ( 

Thopson and Duncan 1993), 

iii) Bint<~ 109 T in the case of rotation powered pulsars 

The significant characteristics of the triaxial star are  (Melatos 1999) : 

 a) Compared to the elastic deformation resulting from shear forces in the crystalline stellar crust 

of a revolving neutron star, the hydrodynamic deformation in a magnetar is substantially greater.;  



b) In a revolving neutron star, the principal axes of inertia are aligned arbitrary with respect to 

the magnetic axis of the external magnetic dipole field. 

Notably, the magnetic axis in the magnetar situation is approximately parallel to one of the primary axes 

of inertia (let's say e3). Put another way, the magnetic axis alignment is not exactly aligned with respect 

to the axis of inertia due to the complex internal field structure around the magnetar's generation site. 

8.      Origin and decay of  core magnetic field of Swift J1818.0-1607 

Imagining the magnetar as a neutron star with a small ellipticity and a uniform, slightly distorted 

ellipsoid shape 

𝜖  = ( I1 –I2 ) / I3                                                                                                           (15) 

The following constraint on the magnetarellipticity is obtained using equation (10) where I1, I2, 

and I3 are the principal moments of inertia of the neutron star, with the assumption that I3 is 

aligned with the spin axis (Moriya and Tauris 2016).  

| 𝜖 | <  (5 / 3G )1/2 { C R3 Po Bdipole /  2
4 𝜋 I }                                                                (16) 

Equation (16) becomes, using the conventional neutron star parameters specified by Cutler and 

Jones (2001), I = 1045 g.cm2, R = 10 km, Po = initial spin period, and the angle between the spin 

axis and the primary axis of the neutron star distortion = π/2. 

| 𝜖 | ≅ 3 x 10 – 4( Bdipole / 1014 G ) (Po / 1ms)  (17 ) 

We may now constrain the average value of this component by using the relation, assuming that 

the primary source of neutron star deformation is the magnetar's internal toroidal magnetic field 

component (Btoroidal). Carpenter (2002) 

        | 𝜖 | ~  1.6 x 10 – 4  (Btoroidal / 1016 G ) 2(18), 

and  Btoroidal  as (Moriya 2016) 

Btoroidal< ~ 1.4 x 1016 G ( Bdipole / 1014 G) ½  (Po / 1 ms ) 1/2  (19) 

Using the available  parameters, such as observed dipolar magnetic field strength Bdipole = 7 x 

1014 G ,  spin period Po = 1.36s of the Swift J1818.0-1607 we can estimate the ultra-strong 

internal toroidal field strength Btoroidal<~ 1018 G. This value is consistent with the value 1017 – 

1018 G in the case of newly born proto-neutron stars (Del Zanna et al 2018; Ciolfi et al 2019; 

Franceschetti and Del Zanna2020) and also supports the model proposed by Dall”Osso et al 

(2012) that the internal magnetic field must be a very large initial value ( >~ 1016 G) for the 

internal magnetic field decay. 

The decay of Core Magnetic field 



Theoretical research on the decay of magnetic fields in neutron star cores (Dall'Osso et al., 2012; 

Thompson and Duncan, 1996) suggests that the evolution and dissipation of magnetic fields in 

magnetar interiors are influenced by three distinct processes that may be involved: ohmic 

dissipation, ambipolar diffusion, and Hall drift. Specifically, ambipolar diffusion and ohmic 

dissipation contribute directly to dissipation, whereas Hall drift contributes indirectly. Additional 

research (Goldreich and Reisenegger 1992; Pons and Geppert 2007) also shows that following 

the Hall drift, the conservation of total energy essentially stays the same; that is, Hall diffusion 

will cause a new equilibrium configuration with a lower total energy to appear in the magnetar 

interior. Their experimental results, however, indicate that the initial stable magneto-

hydrodynamic configurations remain quite close to the new equilibrium configuration. In terms 

of the early phase evolution of magnetars, which are those with ages significantly less than ~104 

years, the primary mode of internal field degradation is predicted to be even the ambipolar 

diffusion in the neutron star core. 

Yet, it is proposed that ambipolar diffusion at high temperature in the core of a neutron star, or 

magnetar, plays a major impact (Goldreich and Reisenegger 1992; Pons and Geppert 2007). The 

temperature of the magnetar core material will be greater than 109 K since the core magnetic 

field of a neutron star, or magnetar, is less than 1018 G, or more than 1016 G. The field 

degradation is not frozen in this instance. This suggests that in the high-temperature region, an 

equilibrium state between heating and cooling may emerge.Therefore, magnetar core fields 

larger than that would have the capability to 

i) release sufficient energy in addition to 

ii) in order to counteract neutrino cooling during the early phase, when the effective 

solenoidal and irrotational modes are still degenerate.. 

 As long as the temperature is high enough, it can be said that the field decay is negligible when 

the time scale for the decay occurs on the same time scale in both modes. (e.g., > T9). The reason 

ambipolar diffusion matters is that 

(a)  It soon becomes active following the magnetar's creation, and 

(b)  It can stop the magnetar core from dropping below a certain temperature.  ~ 109 K for a    

 period of thousands yrs ( at least 103yrs ) ( Zhou et al 2018).  

(c ) Coupling of heating and cooling — the decay of an internal magnetic field >~ 1016 G couples 

with the magnetar cooling at the early stage. 

 

9. Ellipticity and Triaxiality of Swift J1818.0-1607 

Rotational vs Magnetic Energies 



It is believed that a newly born rotating  compact star can  also achieve higher value of T / |W| 

when it is born from core collapse supernova. In that case, for a triaxial neutron star,  the ratio T / 

|W| is essentially constant along with the triaxial sequence for higher compactness (Zhou et al 

2018 ). 

 Thirty magnetars have been found to yet, not including extremely fast J1818.0-1607. The 30 

magnetars have spin and rotational periods ranging from 2 to 10 s. Based on the period 

derivatives, the surface dipolar fields are determined to be between 1013 and 1015 G (Kouveliotou 

et al 1999). Yet research (Jawor and Tauris, 2022) demonstrated that the magnetar's initial period 

had to be smaller than two seconds. Magnetars are young, with the majority of them having 

distinctive spin down ages of less than 104 years, according to analysis of observed data (White 

et al., 2022). They cannot be powered by spin-down energy losses since they are sluggish 

rotators. Here, a significant finding is that the rotational effect is negligible  for the 

magnetar (Kiuchi et al 2011). As a result, magnetic induced deformation is an alternate for 

obtaining the triaxial sequence. 

Their magnetic energy dissipating and rearranging is thought to be an alternate source. The 

deformation in shape and triaxial value of the magnetar are determined by the magnetar's internal 

structure, specifically, the cooling process and the equation of state (EoS) in the presence of 

strong magnetic field, high density, and strong gravity all at the same time. ( Yakovlev et al 

2005; Chamel and Haensel 2005). 

Numerical simulations(Lindblom et al 1998; Doneva et al 2015) demonstrated how a young 

magnetar will spin quickly and have a large magnetic field, both of which cause star 

deformation. A newborn magnetar will spin down as a result of both gravitational wave 

quadrupole radiation and a magnetic dipole torque, which is why a magnetar can release 

detectable gravitational waves. Electro-magnetic radiation is also produced by the magnetar's 

spin-down evolution. Stated otherwise, the relationship between the magnetar spin down 

dynamic evolution and the theoretical breaking index (n) is such that  

a) n = 3 when magnetic dipole radiation (i.e. electromagnetic phenomena ) dominates the 

spin down of the magnetar ; 

b) n = 5  when the GW radiation dominates the magnetar spin down. 

We are able to constrain the initial spin period (Po), dipole magnetic fields (Bdipole), and 

ellipticity (ϵ) of the neutron star (also known as a magnetar) by comparing the observed spin 

down light curves with their corresponding models. For instance, the ellipticityϵ ~ 10 -3 is often 

found in magnetars with an initial period Po ~ 1 ms and a surface dipole magnetic field Bdipole 

~ 1014 – 1015 G. However, according to Koranda et al. (1997), the magnetar's minimum rotation 

period has a theoretical value of between 0.3 and 0.5 ms. The relationships that fit the best (Xie 

et al., 2022) are 



log𝜖 = 3.79+0.52
-0.43   +  ( 2.19 +0.17

-0.15 ) log Po                                                 (20)  

and  log𝜖 = - 22.50+2.15
-2.22   + (1.29 +0.15

-0.14 ) log Bdipole                                                (21) 

suggest that  

a) A magnetar with a longer spin period and/or a greater magnetic field is associated with a 

longer ellipticity. 

b) A stronger magnetic field is associated with a longer rotation period;the neutron star 

deformation is related to its surface dipole magnetic field to some extent. 

However, it is suggested (Majid et al., 2022; Rizaldy et al., 2018) that a strong internal magnetic 

field (Bint) in the stellar core may generate neutron star deformation instead of a dipole magnetic 

field. This is done by the relation 

𝜖 ≈ 10 – 8  (Bint / 1012 G)                                                                                 (22) 

This relationship suggests that in order to obtain the ellipticity (ϵ) ~ 10–3 – 10– 4, one must 

possess a very strong internal magnetic field (Bint ~ 1016 – 1017 G). Additionally, the strength of 

the internal core magnetic field must be at least one or two orders of magnitude greater than the 

surface (i.e., external) magnetic field (Bdipole ~ 1015 G). 

The Estimation of theTriaxiality of Swift J1818.0-1607  

We can estimate the triaxiality  of cosmic baby by using the relation in equ. (22) with the 

observed parameter at the time of its discovery on 12th March 2020: 

i.e. rotational period = 1.36 s, surface dipolar magnetic field = 3 x 1014 G, surface magnetic field 

at poles = 7 x 1014 G, characteristic age ~ 300 years 

Using equations (17), (18), (19) and (22) and with the above parameters  as input we calculate 

the ellipticity, internal core magnetic field of Swift J1818.0-1607 and found ~ 9 x 10 -3 and 

8.9424  x 10 17 G, respectively. 

Interestingly, Rizaldy and Sulaksono's (2018) Numerical Simulation study of magnetized 

deformation of neutron stars indicates an interesting finding for low mass neutron stars: the 

influence of magnetic field is larger for internal magnetic fields  > 4 × 1018 G for Bint. Rizaldy 

and Sulakseno (2018) assert that the balance between gravity and magnetic field is notably 

different for different orientations in the case of a modest mass rather than a huge neutron star. 

Even the magnetic field's gravitational pressure on the z-axis is noticeably more than it is on the 

other axes, giving low mass neutron stars their oblate shape. When compared to less massive 

neutron stars, the oblate shape of a big neutron star is much smaller. Stated otherwise, the 

internal toroidal magnetic field exhibits more effectiveness compared to the poloidal field. The 



deformation associated to the poloidal field ( Bp≈ 1014 and 1015  G) and the corresponding 

correction in ellipticity (i.e. ~ 10 - 4 – 10 – 2 , respectively) is negligible ( Morasi et al 2011). 

Though the recent observation of magnetized deformation of neutron stars, or magnetars, is due 

to the interaction of both toroidal and poloidal magnetic fields, or a combined magnetic field. 

Since the poloidal field component's impact to deformation is minimal, we will only be 

examining the toroidal magnetic field's effect. Since our main objective is to evaluate the 

ellipticity and stability of the deformed neutron star, magnetar Swift 1818.0-1607. Heras (2012) 

conducted a comparative investigation between pulsars and magnetars and discovered that, in a 

realistic scenario, the initial magnetic fields inside newborn neutron stars fall between 1014 and 

1016 G. Since ambipolar radiation is active, it inhibits both the cooling of the neutron star, or 

magnetar (since the effect is the same and applies to both types of stars), allowing the core 

temperature of the magnetar to remain higher than several times 108 K for a few thousand years 

(at least 103 years). It is possible that the ellipticity of the newly formed magnetar will not vary 

significantly during the next million years. Given that the Swift J1818.0 – 1607 is only 

approximately 300 years old, or in its infant phase compared to thousands of years old, it will 

undoubtedly display triaxility, or triaxial activity, at least until it reaches the age of 1000 years.   

This magnetar's estimated ellipticity falls within the range of triaxiality, and it will stay 

there for thousands of years before demonstrating triaxiality. Therefore, the Swift 

J1818.0-1607 can be regarded as a triaxial star, or alternatively as a triaxial magnetar. 

 

10. Conclusion : What do we want from Triaxial Cosmic Baby 

When the ratio T / |W| surpasses a certain threshold, newly formed rotating neutron stars have 

the ability to spontaneously violate their axial symmetry. Magnetars are a special class of 

somewhat slow-rotating neutron stars with very powerful magnetic fields. Incorporating a 

magnetic field component parallel to the rotation axis results in a non-dissipative phenomenon 

known as spontaneous symmetry breaking, which violates circular conservation. Swift J1818.0-

1607 is a juvenile magnetar with an approximate age of 300 years and a strong internal core 

magnetic field of 8.9424 x 1017G. With a spin or rotational period of around 1.36 seconds, it is 

the fastest of the 31 magnetars that have been found. The rotating axes are not aligned with its 

magnetic fields. The fast J1818.0-1607's aforementioned characteristics suggest that it is a 

perfect triaxial magnetar, or compact object, for testing and studying the discovery of a triaxial 

star and its peculiar characteristics. Despite being excessively powerful, its internal core 

magnetic field has a slow decline mode through ambipolar diffusion that activates shortly after 

formation (birth). We will thus have an opportunity to understand our understanding of the 

evolution of magnetar magnetic fields through continuous observation of Swift J1818.0 – 1607, 

as this process can prevent the magnetar core from cooling below a few times of 108 K (i.e. < 109 

K) for thousands of years. 

Finally, one  can conclude that Cosmic Baby is most probably the detected “First Triaxial Star” 



The frequency of the continuous gravitational waves emitted by this triaxial baby magnetar (i.e., 

the swift J1818.0-1607) would be very low due to its 1.36-second rotational period, which falls 

within the range of 1 to 10 seconds (Sieniawska and Bejger 2019; Ibrahim et al 2023). The 

author thus invites the Gravitational Wave Community to keep a close eye on this magnetar 

while they monitor other compact objects through their electromagnetic counterparts. It is 

believed that further observations would help us better understand the physics driving the 

evolution of the magnetars. 
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