
Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 1

MODULE II

2.1 ITERATION

The while statement, Infinite loops, “Infinite loops” and break, Finishing iterations with Continue,

Definite loops using for, Loop pattern ,Counting and summing loops, Maximum and minimum loops

2.2 STRINGS

A string is a sequence, Getting the length of a string using len, Traversal through a string with a loop,

String slices, Strings are immutable, Looping and counting, The in operator, String comparison string

methods, Parsing strings, Format operator

2.3 FILES

Files, Persistence, Opening files, Text files and lines, Reading files, Searching through a file, Letting the

user choose the file name, Using try, except, and open, Writing files, Debugging

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 2

while condition:

statement_1

statement_2

…………….

statement_n

statements_after_while

MODULE II

2.1 ITERATION
Iteration is a processing of repeating some task. In a real time programming, we require a set of

statements to be repeated certain number of times and/or till a condition is met. Every programming

language provides certain constructs to achieve the repetition of tasks. In this section, various such

looping structures are discussed.

 The while Statement

The while loop has the syntax as below –

 Here, while is a keyword, the flow of execution for a while statement is as below.

 The condition is evaluated first, yielding True or False

 If the condition is false, the loop is terminated and statements after the loop will be executed.

 If the condition is true, the body will be executed which comprises of the statement_1 to

statement_n and then goes back to condition evaluation.

 Consider an example –

n=1

while n<=5:
print(n) #observe indentation

n=n+1

print("over")

The output of above code segment would be –

1

2

3

4

5

over

 In the above example, a variable n is initialized to 1. Then the condition n<=5 is being checked. As

the condition is true, the block of code containing print statement print(n) and increment statement

(n=n+1)are executed. After these two lines, condition is checked again. The procedure continues till

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 3

condition becomes false, that is when n becomes 6. Now, the while-loop is terminated and next

statement after the loop will be executed. Thus, in this example, the loop is iterated for 5 times.

 Consider another example –

n=5

while n>0:
print(n) #observe indentation

n=n-1

print("Blast off!")

The output of above code segment would be –

5

4

3

2

1

Blast off!

 Iteration is referred to each time of execution of the body of loop.

 Note that, a variable n is initialized before starting the loop and it is incremented/decremented

inside the loop. Such a variable that changes its value for every iteration and controls the total

execution of the loop is called as iteration variable or counter variable. If the count variable is

not updated properly within the loop, then the loop may not terminate and keeps executing

infinitely.

 Infinite Loops, break and continue

 A loop may execute infinite number of times when the condition is never going to become false.

 For example,

n=1

while True:

print(n)

n=n+1

 Here, the condition specified for the loop is the constant True, which will never get terminated.

Sometimes, the condition is given such a way that it will never become false and hence by

restricting the program control to go out of the loop. This situation may happen either due to

wrong condition or due to not updating the counter variable.

 In some situations, we deliberately want to come out of the loop even before the normal

termination of the loop. For this purpose break statement is used.

 The following example depicts the usage of break. Here, the values are taken from keyboard until

a negative number is entered. Once the input is found to be negative, the loop terminates.

while True:

x=int(input("Enter a number:"))

if x>= 0:

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 4

Output:

else:

print("You have entered ",x)

print("You have entered a negative number!!")

break #terminates the loop

Enter a number:23

You have entered 23

Enter a number:12

You have entered 12

Enter a number:45

You have entered 45

Enter a number:0

You have entered 0

Enter a number:-2

You have entered a negative number!!

 In the above example, we have used the constant True as condition for while-loop, which will

never become false. So, there was a possibility of infinite loop. This has been avoided by using

break statement with a condition.

 The condition is kept inside the loop such a way that, if the user input is a negative number, the

loop terminates. This indicates that, the loop may terminate with just one iteration (if user gives

negative number for the very first time) or it may take thousands of iteration (if user keeps on

giving only positive numbers as input). Hence, the number of iterations here is unpredictable.

 But, we are making sure that it will not be an infinite-loop, instead, the user has control on the

loop.

 Another example for usage of while with break statement: the below code takes input from the

user until they type done:

while True:

line = input(">")

if line == 'done':

break

print(line)

print('Done!')

 In the above example, since the loop condition is True, so the loop runs repeatedly until it hits the

break statement.

 Each time it prompts the user to enter the data. If the user types done, the brak statement exits the

loop. Otherwise the program echoes whatever the user types and goes back ti the top of the loop.

 Output will be:

>hello

hello

>finished

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 5

finished

>done

Done!

 Sometimes, programmer would like to move to next iteration by skipping few statements in the

loop, based on some condition with current iteration. For this purpose continue statement is used.

#Python program to demonstrate continue statement

Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is

specified that you have to do this using loop and only one loop is allowed to use. Here comes the usage of

continue statement. What we can do here is we can run a loop from 1 to 10 and every time we have to compare

the value of iterator with 6. If it is equal to 6 we will use the continue statement to continue to

next iteration without printing anything otherwise we will print the value.

#loop from 1 to 10
for i in range(1, 11):

 # If i is equals to 6,
 # continue to next iteration
 # without printing
 if i == 6:
 continue
 else:
 # otherwise print the value
 # of i
 print(i, end = " ")

Output:

1 2 3 4 5 7 8 9 10

 Example of a loop that copies its input until the user types “done”, but treats lines that start with

the hash character as lines not to be printed

while True:

line=input('>')

if line[0] == '#':

continue

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 6

> hello there

hello there

> #dont print this

> print this!

print this!

> done

Done!

for var in list/sequence:

statement_1

statement_2

………………

statement_n

statements_after_for

if line =='done':

break

print(line)

print('Done!')

Output:

 Above, all lines are printed except the one that starts with „#‟ because whenth econtinue is

executed, it ends the current iteration and jumps back to the while statement to start the next

iteration, thus skipping the print statement.

 Definite Loops using for

 The while loop iterates till the condition is met and hence, the number of iterations are usually

unknown prior to the loop. Hence, it is sometimes called as indefinite loop.

 When we know total number of times the set of statements to be executed, for loop will be used.

This is called as a definite loop. The for-loop iterates over a set of numbers, a set of words, lines

in a file etc. The syntax of for-loop would be –

Here, for and in are keywords

list/sequence is a set of elements on which the loop is iterated. That is, the loop

will be executed till there is an element in list/sequence

statements constitutes body of the loop

 Example: In the below given example, a list names containing three strings has been created.

Then the counter variable x in the for-loop iterates over this list. The variable x takes the elements

in names one by one and the body of the loop is executed.

names=["Ram", "Shyam", "Bheem"]

for x in names:

print("Happy New Year",x)

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 7

Happy New Year Ram

Happy New Year Shyam

Happy New Year Bheem

Done!

print('Done!')

The output would be –

NOTE: In Python, list is an important data type. It can take a sequence of elements of different types.

It can take values as a comma separated sequence enclosed within square brackets. Elements in the list

can be extracted using index (just similar to extracting array elements in C/C++ language). Various

operations like indexing, slicing, merging, addition and deletion of elements etc. can be applied on

lists. The details discussion on Lists will be done in Module 3.

 The for loop can be used to print (or extract) all the characters in a string as shown below –

for i in "Hello":

print(i, end=‟\t‟)

Output:

H e l l o

 When we have a fixed set of numbers to iterate in a for loop, we can use a function

range(). The function range() takes the following format –

range(start, end, steps)

 The start and end indicates starting and ending values in the sequence, where end is excluded in

the sequence (That is, sequence is up to end-1). The default value of start is 0. The argument steps

indicates the increment/decrement in the values of sequence with the default value as 1. Hence, the

argument steps is optional.

 Let us consider few examples on usage of range() function.

Ex1. Printing the values from 0 to 4 –

for i in range(5):

print(i, end= „\t‟)

Output:

0 1 2 3 4

Here, 0 is the default starting value. The statement range(5)is same as range(0,5) and range(0,5,1).

Ex2. Printing the values from 5 to 1 –

for i in range(5,0,-1):

print(i, end= „\t‟)

Output:

5 4 3 2 1

The function range(5,0,-1)indicates that the sequence of values are 5 to 0(excluded) in steps of -1

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 8

(downwards).

Ex3. Printing only even numbers less than 10 –

for i in range(0,10,2):

print(i, end= „\t‟)

Output:

0 2 4 6 8

 Loop Patterns

The while-loop and for-loop are usually used to go through a list of items or the contents of a file and

to check maximum or minimum data value. These loops are generally constructed by the following

procedure –

 Initializing one or more variables before the loop starts

 Performing some computation on each item in the loop body, possibly changing the variables

in the body of the loop

 Looking at the resulting variables when the loop completes

The construction of these loop patterns are demonstrated in the following examples.

Counting and Summing Loops: One can use the for loop for counting number of items in the list as

shown –

count = 0

for i in [4, -2, 41, 34, 25]:

count = count + 1

print(“Count:”, count)

 Here, the variable count is initialized before the loop. Though the counter variable is not being

used inside the body of the loop, it controls the number of iterations.

 The variable count is incremented in every iteration, and at the end of the loop the total number of

elements in the list is stored in it.

 One more loop similar to the above is finding the sum of elements in the list –

total = 0

for x in [4, -2, 41, 34, 25]:

total = total + x

print(“Total:”, total)

 Here, the variable total is called as accumulator because in every iteration, it accumulates the sum

of elements. In each iteration, this variable contains running total of values so far.

NOTE: In practice, both of the counting and summing loops are not necessary, because there are

built-in functions len()and sum()for the same tasks respectively.

Maximum and Minimum Loops: To find maximum element in the list, the following code can be

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 9

used –

big = None

print('Before Loop:', big)

for x in [12, 0, 21,-3]:

if big is None or x > big :

big = x

print('Iteration Variable:', x, 'Big:', big)

rint('Biggest:', big)

Output:

Before Loop: None

Iteration Variable: 12 Big: 12

Iteration Variable: 0 Big: 12

Iteration Variable: 21 Big: 21

Iteration Variable: -3 Big: 21

Biggest: 21

 Here, we initialize the variable big to None. It is a special constant indicating empty.

 Hence, we cannot use relational operator == while comparing it with big. Instead, the is operator

must be used.

 In every iteration, the counter variable x is compared with previous value of big. If x > big, then x

is assigned to big.

 Similarly, one can have a loop for finding smallest of elements in the list as given below –

small = None

print('Before Loop:', small)

for x in [12, 0, 21,-3]:

if small is None or x < small :

small = x

print('Iteration Variable:', x, 'Small:', small)

print('Smallest:', small)

Output:

Before Loop: None

Iteration Variable: 12 Small: 12

Iteration Variable: 0 Small: 0

Iteration Variable: 21 Small: 0

Iteration Variable: -3 Small: -3

Smallest: -3

NOTE: In Python, there are built-in functions max() and min()to compute maximum and minimum

values among. Hence, the above two loops need not be written by the programmer explicitly. The

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 10

inbuilt function min()has the following code in Python –

def min(values):

smallest = None

for value in values:

if smallest is None or value < smallest:

smallest = value

return smallest

2.2 STRINGS

 A string is a sequence of characters, enclosed either within a pair of single quotes or double

quotes.

 Each character of a string corresponds to an index number, starting with zero as shown below:

S= “Hello World”

character H e l l o w o r l d

index 0 1 2 3 4 5 6 7 8 9 10

 The characters of a string can be accessed using index enclosed within square brackets.

 So, H is the 0
th

 letter, e is the 1
th

 letter and l is the 2
th

 letter of “Hello world”

 For example,

>>> word1="Hello"

>>> word2='hi'

>>> x=word1[1] #2
nd

 character of word1 is extracted

>>> print(x)

e

>>> y=word2[0] #1
st
 character of word1 is extracted

>>> print(y)

h

 Python supports negative indexing of string starting from the end of the string as shown below:

S= “Hello World”

character H e l l o w o r l d

Negative index -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

 The characters can be extracted using negative index also, which count backward from the end of

the string.

 For example:

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 11

>>> var=“Hello”

>>> print(var[-1])

o

>>> print(var[-4])

e

 Whenever the string is too big to remember last positive index, one can use negative index to

extract characters at the end of string.

 Getting Length of a String using len()

 The len() function is a built-in function that can be used to get length of a string, which returns the

number of characters in a string

 Example:

>>> var="Hello"

>>> ln=len(var)

>>> print(ln)

5

 The index for string varies from 0 to length-1. Trying to use the index value beyond this range

generates error.

>>> var="Hello"

>>> ln=len(var)

>>> ch=var[ln]

IndexError: string index out of range

 Traversal through String with a Loop

 Extracting every character of a string one at a time and then performing some action on that

character is known as traversal.

 A string can be traversed either using while loop or using for loop in different ways. Few of such

methods is shown here –

 Using for loop:

st="Hello"

for i in st:

print(i, end='\t')

Output:

H e l l o

 In the above example, the for loop is iterated from first to last character of the string st. That is, in

every iteration, the counter variable i takes the values as H, e, l, l and o. The loop terminates when

no character is left in st.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 12

 Using while loop:

st="Hello"

i=0

while i<len(st):

print(st[i], end=„\t‟)

i+=1

Output:

H e l l o

 In this example, the variable i is initialized to 0 and it is iterated till the length of the string. In

every iteration, the value of i is incremented by 1 and the character in a string is extracted using i

as index.

 Example: Write a while loop that starts at the last character in the string and traverses backwards

to the first character in the string, printing each letter on separate line

str="Hello"

i=-1

while i>=-len(str):

print(str[i])

i-=1

Output:

o

l

l

e

H

 String Slices

 A segment or a portion of a string is called as slice.

 Only a required number of characters can be extracted from a string using colon (:) symbol.

 The basic syntax for slicing a string would be – st[i:j:k]

 This will extract character from i
th

 character of st till (j-1)
th

 character in steps of k.

 If first index is not present, it means that slice should start from the beginning of the string. I

 f the second index j is not mentioned, it indicates the slice should be till the end of the string.

 The third parameter k, also known as stride, is used to indicate number of steps to be incremented

after extracting first character. The default value of stride is 1.

 Consider following examples along with their outputs to understand string slicing.

st="Hello World" #refer this string for all examples

1. print("st[:] is", st[:]) #output Hello World

As both index values are not given, it assumed to be a full string.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 13

2. print("st[0:5] is ", st[0:5]) #output is Hello

Starting from 0
th

 index to 4
th

 index (5 is exclusive), characters will be printed.

3. print("st[0:5:1] is", st[0:5:1]) #output is Hello

This code also prints characters from 0th to 4th index in the steps of 1. Comparing this

example with previous example, we can make out that when the stride value is 1, it is

optional to mention.

4. print("st[3:8] is ", st[3:8]) #output is lo Wo

Starting from 3
rd

 index to 7
th

 index (8 is exclusive), characters will be printed.

5. print("st[7:] is ", st[7:]) #output is orld

Starting from 7
th

 index to till the end of string, characters will be printed.

6. print(st[::2]) #output is HloWrd

This example uses stride value as 2. So, starting from first character, every alternative

character (char+2) will be printed.

7. print("st[4:4] is ", st[4:4]) #gives empty string

Here, st[4:4] indicates, slicing should start from 4
th

 character and end with (4-1)=3
rd

character, which is not possible. Hence the output would be an empty string.

8. print(st[3:8:2]) #output is l o

Starting from 3rd character, till 7th character, every alternative index is considered.

9. print(st[1:8:3]) #output is eoo

Starting from index 1, till 7
th

 index, every 3
rd

 character is extracted here.

10. print(st[-4:-1]) #output is orl

Refer the diagram of negative indexing given earlier. Excluding the -1st character, all

characters at the indices -4, -3 and -2 will be displayed. Observe the role of stride with

default value 1 here. That is, it is computed as -4+1 =-3, -3+1=-2 etc.

11. print(st[-1:]) #output is d

Here, starting index is -1, ending index is not mentioned (means, it takes the index

10) and the stride is default value 1. So, we are trying to print characters from -1 (which is

the last character of negative indexing) till 10
th

 character (which is also the last character in

positive indexing) in incremental order of 1. Hence, we will get only last character as output.

12. print(st[:-1]) #output is Hello Worl

Here, starting index is default value 0 and ending is -1 (corresponds to last character in

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 14

negative indexing). But, in slicing, as last index is excluded always, -1
st
 character is omitted

and considered only up to -2
nd

 character.

13. print(st[::]) #outputs Hello World

Here, two colons have used as if stride will be present. But, as we haven‟t mentioned stride

its default value 1 is assumed. Hence this will be a full string.

14. print(st[::-1]) #output is dlroW olleH

This example shows the power of slicing in Python. Just with proper slicing, we could able

to reverse the string. Here, the meaning is a full string to be extracted in the order of -1.

Hence, the string is printed in the reverse order.

15. print(st[::-2]) #output is drWolH

Here, the string is printed in the reverse order in steps of -2. That is, every alternative

character in the reverse order is printed. Compare this with example (6) given above.

By the above set of examples, one can understand the power of string slicing and of Python script.

The slicing is a powerful tool of Python which makes many task simple pertaining to data types like

strings, Lists, Tuple, Dictionary etc. (Other types will be discussed in later Modules)

 Strings are Immutable

 The objects of string class are immutable.

 That is, once the strings are created (or initialized), they cannot be modified.

 No character in the string can be edited/deleted/added.

 Instead, one can create a new string using an existing string by imposing any modification

required.

 Try to attempt following assignment –

>>> st= “Hello World”

>>> st[3]='t'

TypeError: 'str' object does not support item assignment

 The error message clearly states that an assignment of new item („t‟) is not possible on string

object(st).

 The reason for this is strings are immutable

 So, to achieve our requirement, we can create a new string using slices of existing string as below

>>> st= “Hello World”

>>> st1= st[:3]+ 't' + st[4:]

>>> print(st1)

Helto World # l is replaced by t in new string st1

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 15

 Looping and Counting

 Using loops on strings, we can count the frequency of occurrence of a character within another

string.

 The following program demonstrates such a pattern on computation called as a counter.

 Initially, we accept one string and one character (single letter). Our aim to find the total number of

times the character has appeared in string.

 A variable count is initialized to zero, and incremented each time „a‟ character is found. The

program is given below –

word="banana"

count=0

for letter in word:

if letter =='a':

count=count+1

print("The occurences of character 'a' is %d "%(count))

Output:

The occurences of character 'a' is 3

 Encapsulate the above code in a function named count and generalize it so that it accepts the string

and the letter as arguments

def count(st,ch):

cnt=0

for i in st:

if i==ch:

cnt+=1

return cnt

st=input("Enter a string:")

ch=input("Enter a character to be counted:")

c=count(st,ch)

print("%s appeared %d times in %s"%(ch,c,st))

Output:

Enter a string: hello how are you?

Enter a character to be counted: h

h appeared 2 times in hello how are you?

 The in Operator

 The in operator of Python is a Boolean operator which takes two string operands.

 It returns True, if the first operand appears as a substring in second operand, otherwise returns

False.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 16

 For example,

>>> 'el' in 'hello' #el is found in hello

True

>>> 'x' in 'hello' #x is not found in hello

False

 String Comparison

 Basic comparison operators like < (less than), > (greater than), == (equals) etc. can be applied on

string objects.

 Such comparison results in a Boolean value True or False.

 Internally, such comparison happens using ASCII codes of respective characters.

 Consider following examples –

Ex1. st= “hello”

if st== „hello‟:

print(„same‟)

Output is same. As the value contained in st and hello both are same, the equality results in True.

Ex2. st= “hello”

if st<= „Hello‟:

print(„lesser‟)

else:

print(„greater‟)

Output is greater. The ASCII value of h is greater than ASCII value of H. Hence, hello

is greater than Hello.

NOTE: A programmer must know ASCII values of some of the basic characters. Here are few –

A – Z : 65 – 90

a – z : 97 – 122

0 – 9 : 48 – 57

Space 32

Enter Key 13

 String Methods

 String is basically a class in Python.

 When we create a string in program, an object of that class will be created.

 A class is a collection of member variables and member methods (or functions).

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 17

 When we create an object of a particular class, the object can use all the members (both variables

and methods) of that class.

 Python provides a rich set of built-in classes for various purposes. Each class is enriched with a

useful set of utility functions and variables that can be used by a Programmer.

 A programmer can create a class based on his/her requirement, which are known as user-defined

classes.

 The built-in set of members of any class can be accessed using the dot operator as shown–

objName.memberMethod(arguments)

 The dot operator always binds the member name with the respective object name. This is very

essential because, there is a chance that more than one class has members with same name. To

avoid that conflict, almost all Object oriented languages have been designed with this common

syntax of using dot operator.

 Python provides a function (or method) dir to list all the variables and methods of a particular class

object. Observe the following statements –

>>> s="hello" # string object is created with the name s

>>> type(s) #checking type of s

<class „str‟> #s is object of type class str

>>> dir(s) #display all methods and variables of object s

[' add ', ' class ', ' contains ', ' delattr ', ' dir ', ' doc ', ' eq ', ' format ', ' ge ', ' getattribute ',

' getitem ', ' getnewargs ', ' gt ', ' hash ', ' init ', ' init_subclass ', ' iter ', ' le ', ' len ', ' lt ',

' mod ', ' mul ', ' ne ', ' new ', ' reduce ', ' reduce_ex ', ' repr ', ' rmod ', ' rmul ', ' setattr

', ' sizeof ', ' str ', ' subclasshook ', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith',

'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',

'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust',

'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind',

'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

 Note that, the above set of variables and methods are common for any object of string class that

we create.

 Each built-in method has a predefined set of arguments and return type.

 To know the usage, working and behavior of any built-in method, one can use the command help.

 For example, if we would like to know what is the purpose of islower() function (refer above list

to check its existence!!), how it behaves etc, we can use the statement –

>>> help(str.islower)

Help on method_descriptor:

islower(...)

Python Application Programming (18EC646) Module II

Dr.Renuka sagar, Assoc prof,Dept of ECE, BITM,Bly Page 18

S.islower() -> bool

Return True if all cased characters in S are lowercase and if there is at least one upper

cased character in S, returns False otherwise.

 This is built-in help-service provided by Python. Observe the className.memberName format

while using help.

 The methods are usually called using the object name. This is known as method invocation. We

say that a method is invoked using an object.

 Now, we will discuss some of the important methods of string class.

 capitalize(s) : This function takes one string argument s and returns a capitalized version of that

string. That is, the first character of s is converted to upper case, and all other characters to

lowercase. Observe the examples given below –

Ex1. >>> s="hello"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello #1
st
 character is changed to uppercase

Ex2. >>> s="hello World"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello world

Observe in Ex2 that the first character is converted to uppercase, and an in-between uppercase

letter W of the original string is converted to lowercase.

 s.upper(): This function returns a copy of a string s to uppercase. As strings are immutable, the original

string s will remain same.

>>> st= “hello”

>>> st1=st.upper()

>>> print(st1)

'HELLO'

>>> print(st) #no change in original string

'hello'

 s.lower(): This method is used to convert a string s to lowercase. It returns a copy of original string after

conversion, and original string is intact.

>>> st='HELLO'

>>> st1=st.lower()

>>> print(st1) hello

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 19

>>> print(st) #no change in original string

HELLO

 s.find(s1) : The find() function is used to search for a substring s1 in the string s. If found, the index

position of first occurrence of s1 in s, is returned. If s1 is not found in s, then -1 is returned.

>>> st='hello'

>>> i=st.find('l')

>>> print(i) #output is 2

>>> i=st.find('lo')

>>> print(i) #output is 3

>>> print(st.find(„x‟)) #output is -1

The find() function can take one more form with two additional arguments viz. start and end positions for

search.

>>> st="calender of Feb. cal of march"

>>> i= st.find(„cal‟)

>>> print(i) #output is 0

Here, the substring „cal‟is found in the very first position of st, hence the result is 0.

>>> i=st.find('cal',10,20)

>>> print(i) #output is 17

Here, the substring cal is searched in the string st between 10
th

 and 20
th

 position and hence the result is 17.

>>> i=st.find('cal',10,15)

>>> print(i) #output is -1

In this example, the substring 'cal' has not appeared between 10

th
 and 15

th
 character of st. Hence,

the result is -1.

 s.strip(): Returns a copy of string s by removing leading and trailing white spaces.

>>> st=" hello world "

>>> st1 = st.strip()

>>> print(st1)

hello world

The strip() function can be used with an argument chars, so that specified chars are removed from

beginning or ending of s as shown below –

>>> st="###Hello##"

>>> st1=st.strip('#')

>>> print(st1) #all hash symbols are removed

Hello

We can give more than one character for removal as shown below –

>>> st="Hello world"

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 20

>>> st1=st.strip("Hld")

ello wor

 S.startswith(prefix, start, end): This function has 3 arguments of which start and end are option. This

function returns True if S starts with the specified prefix, False otherwise.

>>> st="hello world"

>>> st.startswith("he") #returns True

When start argument is provided, the search begins from that position and returns True or False based on

search result.

>>> st="hello world"

>>> st.startswith("w",6) #True because w is at 6th position

When both start and end arguments are given, search begins at start and ends at end.

>>> st="xyz abc pqr ab mn gh“

>>> st.startswith("pqr ab mn",8,12) #returns False

>>> st.startswith("pqr ab mn",8,18) #returns True

The startswith() function requires case of the alphabet to match. So, when we are not sure about the case

of the argument, we can convert it to either upper case or lowercase and then use startswith()function as

below –

>>> st="Hello"

>>> st.startswith("he") #returns False

>>> st.lower().startswith("he") #returns True

 S.count(s1, start, end): The count() function takes three arguments – string, starting position and ending

position. This function returns the number of non-overlapping occurrences of substring s1 in string S in

the range of start and end.

>>> st="hello how are you? how about you?"

>>> st.count('h') #output is 3

>>> st.count(„how‟) #output is 2

>>> st.count(„how‟,3,10) #output is 1 because of range given

Example:

st=input("Enter a string:")

ch=input("Enter a character to be counted:")

c=st.count(ch)

print("%s appeared %d times in %s"%(ch,c,st))

 Parsing Strings

 Sometimes, we may want to search for a substring matching certain criteria.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 21

 For example, finding domain names from email-Ids in the list of messages is a useful task in some projects.

 Consider a string below and we are interested in extracting only the domain name.

“From mamatha.a@saividya.ac.in Wed Feb 21 09:14:16 2018”

Now, aim is to extract only saividya.ac.in, which is the domain name.

We can think of logic as–

o Identify the position of @, because all domain names in email IDs will be after the symbol @

o Identify a white space which appears after @ symbol, because that will be the end of domain

name.

o Extract the substring between @ and white-space.

The concept of string slicing and find() function will be useful here.

Consider the code given below –

st="From mamatha.a@saividya.ac.in Wed Feb 21 09:14:16 2018"

atpos=st.find('@') #finds the position of @

print('Position of @ is', atpos)

spacePos=st.find(„ „, atpos) #position of white-space after @

print('Position of space after @ is', spacePos)

host=st[atpos+1:spacePos] #slicing from @ till white-space

print(host)

Output:

Position of @ is 14

Position of space after @ is 29

saividya.ac.in

 Format Operator

 The format operator, % allows us to construct strings, replacing parts of the strings with the data stored in

variables.

 The first operand is the format string, which contains one or more format sequences that specify how the

second operand is formatted.

Syntax: “<format>” % (<values>)

 The result is a string.

>>> sum=20

>>> '%d' %sum

„20‟ #string ‘20’, but not integer 20

mailto:mamatha.a@saividya.ac.in
mailto:mamatha.a@saividya.ac.in

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 22

 Note that, when applied on both integer operands, the % symbol acts as a modulus operator. When the first

operand is a string, then it is a format operator.

 Consider few examples illustrating usage of format operator.

Ex1. >>> "The sum value %d is originally integer"%sum

'The sum value 20 is originally integer„

Ex2. >>> '%d %f %s'%(3,0.5,'hello')

'3 0.500000 hello„

Ex3. >>> '%d %g %s'%(3,0.5,'hello')

'3 0.5 hello„

Ex4. >>> '%d'% 'hello'

TypeError: %d format: a number is required, not str

Ex5. >>> '%d %d %d'%(2,5)

TypeError: not enough arguments for format string

2.3 FILES

 File handling is an important requirement of any programming language, as it allows us to store

the data permanently on the secondary storage and read the data from a permanent source.

 Here, we will discuss how to perform various operations on files using the programming

language Python.

 Persistence

 The programs that we have considered till now are based on console I/O. That is, the input was

taken from the keyboard and output was displayed onto the monitor.

 When the data to be read from the keyboard is very large, console input becomes a laborious job.

 Also, the output or result of the program has to be used for some other purpose later, it has to be

stored permanently.

 Hence, reading/writing from/to files are very essential requirement of programming.

 We know that the programs stored in the hard disk are brought into main memory to execute

them.

 These programs generally communicate with CPU using conditional execution, iteration,

functions etc.

 But, the content of main memory will be erased when we turn-off our computer.

 Here we will discuss about working with secondary memory or files. The files stored on the

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 23

secondary memory are permanent and can be transferred to other machines using pen-drives/CD.

 Opening Files

 To perform any operation on a file, one must open a file.

 File opening involves communication with operating system.

 In Python, a file can be opened using a built-in function open().

 While opening a file, we must specify the name of the file to be opened. Also, we must inform the

OS about the purpose of opening a file, which is termed as file opening mode.

 The syntax of open() function is as below –

fhand= open(“filename”, “mode”)

Here, filename is name of the file to be opened. This string may be just a name of the file, or it

may include pathname also. Pathname of the file is optional when the file is

stored in current working directory

mode This string indicates the purpose of opening a file. It takes a pre- defined set of

values as given in Table below

fhand It is a reference to an object of file class, which acts as a handler or tool for all

further operations on files.

 When our Python program makes a request to open a specific file in a particular mode, then OS

will try to serve the request.

 When a file gets opened successfully, then a file object is returned. This is known as file handle

and is as shown in Figure below.

 It will help to perform various operations on a file through our program. If the file cannot be

opened due to some reason, then error message (traceback) will be displayed.

Figure A File Handle

 A file opening may cause an error due to some of the reasons as listed below –

o File may not exist in the specified path (when we try to read a file)

o File may exist, but we may not have a permission to read/write a file

o File might have got corrupted and may not be in an opening state

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 24

 Since, there is no guarantee about getting a file handle from OS when we try to open a file, it is

always better to write the code for file opening using try-except block.

 This will help us to manage error situation.

Mode Meaning

r Opens a file for reading purpose. If the specified file does not exist in the

specified path, or if you don‟t have permission, error message will be displayed.

This is the default mode of open() function in Python.

w Opens a file for writing purpose. If the file does not exist, then a new file with the

given name will be created and opened for writing. If the file

already exists, then its content will be over-written.

a Opens a file for appending the data. If the file exists, the new content will

be appended at the end of existing content. If no such file exists, it will be created

and new content will be written into it.

r+ Opens a file for reading and writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and

writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist,

it creates a new file for reading and

writing.

rb Opens a file for reading only in binary format

wb Opens a file for writing only in binary format

ab Opens a file for appending only in binary format

 Text Files and Lines

 A text file is a file containing a sequence of lines

 It contains only the plain text without any images, tables etc.

 Different lines of a text file are separated by a newline character \n.

 In the text files, this newline character may be invisible, but helps in identifying every line in the

file. There will be one more special entry at the end to indicate end of file (EOF).

NOTE: There is one more type of file called binary file, which contains the data in the form of bits.

These files are capable of storing text, image, video, audio etc. All these data will be stored in the

form of a group of bytes whose formatting will be known. The supporting program can interpret

these files properly, whereas when opened using normal text editor, they look like messy, unreadable

set of characters.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 25

 Reading Files

 When we successfully open a file to read the data from it, the open() function returns the file

handle (or an object reference to file object) which will be pointing to the first character in the file.

 A text file containing lines can be iterated using a for-loop starting from the beginning with the

help of this file handle. Consider the following example of counting number of lines in a file.

NOTE: Before executing the below given program, create a text file (using Notepad or similar editor)

myfile.txt in the current working directory (The directory where you are going store your Python

program). Open this text file and add few random lines to it and then close. Now, open a Python script

file, say countLines.py and save it in the same directory as that of your text file myfile.txt. Then, type

the following code in Python script countLines.py and execute the program. (You can store text file

and Python script file in different directories. But, if you do so, you have to mention complete path of

text file in the open() function.)

Sample Text file myfile.txt:

hello how are you? I

am doing fine what

about you?

Python script file countLines.py

fhand=open('myfile.txt','r') count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

Output:

Line Number 1 : hello how are you?

Line Number 2 : I am doing fine

Line Number 3 : what about you?

Total lines= 3

 In the above program, initially, we will try to open the file 'myfile.txt. As we have already created

that file, the file handler will be returned and the object reference to this file will be stored in

fhand.

 Then, in the for-loop, we are using fhand as if it is a sequence of lines. For each line in the file, we

are counting it and printing the line.

 In fact, a line is identified internally with the help of new-line character present at the end of each

line.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 26

 Though we have not typed \n anywhere in the file myfile.txt, after each line, we would have

pressed enter-key. This act will insert a \n, which is invisible when we view the file through

notepad.

 Once all lines are over, fhandwill reach end-of-file and hence terminates the loop.

 Note that, when end of file is reached (that is, no more characters are present in the file), then an

attempt to read will return Noneor empty character „‟(two quotes without space in between).

 Once the operations on a file is completed, it is a practice to close the file using a function close().

 Closing of a file ensures that no unwanted operations are done on a file handler.

 Moreover, when a file was opened for writing or appending, closure of a file ensures that the last

bit of data has been uploaded properly into a file and the end-of-file is maintained properly.

 If the file handler variable (in the above example, fhand) is used to assign some other file object

(using open() function), then Python closes the previous file automatically.

 If you run the above program and check the output, there will be a gap of two lines between each

of the output lines. This is because, the new-line character \n is also a part of the variable line in

the loop, and the print() function has default behavior of adding a line at the end (due to default

setting of end parameter of print()).

 To avoid this double-line spacing, we can remove the new-line character attached at the end of

variable line by using built-in string function rstrip() as below –

print("Line Number ",count, ":", line.rstrip())

 It is obvious from the logic of above program that from a file, each line is read one at a time,

processed and discarded.

 Hence, there will not be a shortage of main memory even though we are reading a very large file.

 But, when we are sure that the size of our file is quite small, then we can use read() function to

read the file contents.

 This function will read entire file content as a single string. Then, required operations can be done

on this string using built-in string functions. Consider the below given example –

fhand=open('myfile.txt')

s=fhand.read()

print(“Total number of characters:”,len(s))

print(“String up to 20 characters:”, s[:20])

 After executing above program using previously created file myfile.txt, then the output would be –

Total number of characters:50

String up to 20 characters: hello how are you? I

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 27

 Writing Files

 To write a data into a file, we need to use the mode w in open() function.

>>> fhand=open(“mynewfile.txt","w")

>>> print(fhand)

<_io.TextIOWrapper name='mynewfile.txt' mode='w' encoding='cp1252'>

 If the file specified already exists, then the old contents will be erased and it will be ready to write

new data into it.

 If the file does not exists, then a new file with the given name will be created.

 The write() method is used to write data into a file.

 This method returns number of characters successfully written into a file. For example,

>>> s="hello how are you?"

>>> fhand.write(s)

18

 Now, the file object keeps track of its position in a file.

 Hence, if we write one more line into the file, it will be added at the end of previous line.

 Here is a complete program to write few lines into a file –

fhand=open('f1.txt','w')

for i in range(5):

line=input("Enter a line: ")

fhand.write(line+"\n")

fhand.close()

 The above program will ask the user to enter 5 lines in a loop.

 After every line has been entered, it will be written into a file. Note that, as write() method doesn‟t

add a new-line character by its own, we need to write it explicitly at the end of every line.

 Once the loop gets over, the program terminates. Now, we need to check the file f1.txt on the disk

(in the same directory where the above Python code is stored) to find our input lines that have

been written into it.

 Searching through a File

 Most of the times, we would like to read a file to search for some specific data within it.

 This can be achieved by using some string methods while reading a file. For example, we may be

interested in printing only the line which starts with a character h.

 Then we can use startswith() method.

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 28

fhand=open('myfile.txt')

for line in fhand:

if line.startswith('h'):

print(line)

fhand.close()

 Assume the input file myfile.txt is containing the following lines –

hello how are you?

I am doing fine

how about you?

 Now, if we run the above program, we will get the lines which starts with h –

hello how are you?

how about you?

 Letting the User Choose the File Name

 In a real time programming, it is always better to ask the user to enter a name of the file which

he/she would like to open, instead of hard-coding the name of a file inside the program.

fname=input("Enter a file name:")

fhand=open(fname)

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

 In this program, the user input filename is received through variable fname, and the same has

been used as an argument to open() method.

 Now, if the user input is myfile.txt (discussed before), then the result would be

Total lines=3

 Everything goes well, if the user gives a proper file name as input. But, what if the input filename

cannot be opened (Due to some reason like – file doesn‟t exists, file permission denied etc)?

 Obviously, Python throws an error. The programmer need to handle such run- time errors as

discussed in the next section.

 Using try, except to Open a File

 It is always a good programming practice to write the commands related to file opening within a

try block. Because, when a filename is a user input, it is prone to errors.

 Hence, one should handle it carefully. The following program illustrates this –

Python Application Programming (18EC646) Module II

Dr.Renuka sagar,Assoc Prof,Dept of ECE,BITM,Bly Page 29

fname=input("Enter a file name:")

try:

fhand=open(fname)

except:

print("File cannot be opened") exit()

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

 In the above program, the command to open a file is kept within try block. If the specified file

cannot be opened due to any reason, then an error message is displayed saying File cannot be

opened, and the program is terminated.

 If the file could able to open successfully, then we will proceed further to perform required task

using that file.

 Debugging

 While performing operations on files, we may need to extract required set of lines or words or

characters.

 For that purpose, we may use string functions with appropriate delimiters that may exist between

the words/lines of a file.

 But, usually, the invisible characters like white-space, tabs and new-line characters are confusing

and it is hard to identify them properly. For example,

>>> s="1 2\t 3\n 4"

>>> print(s)

1 2 3

4

 Here, by looking at the output, it may be difficult to make out where there is a space, where is a

tab etc.

 Python provides a utility function called as repr() to solve this problem.

 This method takes any object as an argument and returns a string representation of that object.

 For example, the print() in the above code snippet can be modified as –

>>> print(repr(s))

'1 2\t3\n4'

Note that, some of the systems use \n as new-line character, and few others may use \r (carriage

return) as a new-line character. The repr() method helps in identifying that too.

