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ABSTRACT 

Food borne pathogens cause numerous diseases globally, particularly in developing countries, causing 

significant economic impact. Early detection is crucial for containment. Detection methods have evolved from 

culture-based methods to immunological and molecular biology-based approaches. The goal is to find rapid, 

sensitive, specific, and cost-effective methods, including microbe culturing and biosensor technology. Food 

safety is crucial for livelihoods and millions of people are affected by issues. Collaboration between government 

agencies, food processing businesses, and private consumer organizations is essential for improving food 

inspections. Bioassay technology offers benefits like efficiency, precision, and simplicity, making traditional 
procedures imprecise. Advancements in science and technology encourage the implementation of 

biotechnology, providing high sensitivity and specificity in monitoring food safety. 

INTRODUCTION 

The preservation of the food supply’s safety depends heavily on biotechnology. Both food producers 
and consumers will greatly benefit from the establishment of trustworthy procedures to guarantee the presence 

of transgene. Better tracking techniques will boost public trust in food biotechnology. The development of 

sensitive, dependable, quick, and affordable technologies for the detection of dangerous pathogenic organisms 

in food supply and the infectious agent like for mad cow disease also make use of contemporary biotechnology 

tools. 

Contaminated food causes potential health risks and thus a major concern globally. Globally, by 

ingesting food contaminated with pathogenic micro-organism and toxic chemicals 600 million people falling ill 

and 420,000 deaths are occurring each year [1]. Thus detecting contaminants in food is crucial for food safety. 
The detection methods should be rapid and accurate to ensure food safety. Due to the lack of sensitivity, time 

consuming and accuracy in traditional methods of food pathogen detection like biochemical detection and 

microbial isolation new advanced techniques with high specificity, accuracy, ease to use methods are being 

evolving. Other than traditional methods , advanced detection techniques including nucleic acid based methods 

like conventional PCR, Real time PCR, digital PCR, nucleic acid sequence-based amplification (NASBA), loop-

mediated isothermal amplification (LAMP), rolling circle amplification (RCA), biosensors, microbial based 

biosensors, surface plasmon resonance (SPR) technique ,and Cas-based nucleic acid detection systems 

(CRISPR) methods. Compared to traditional methods these new advanced techniques detect food borne 

pathogens with high sensitivity, rapid turnaround time and specificity. Hence, these methods are enhancing our 

capacity and knowledge in detecting food borne contamination and facilitating the consumers in ensuring to take 

safe food, making these techniques crucial and urgent need in food market [2]. 

I. TRANSGENE DETECTION 

Food biotechnology success requires ongoing product development and effective commercialization 

through market acceptance. The creation of trustworthy ways of detecting the transgene in human food items is 

must for consumer’s satisfaction and for their endorsement of the use of transgenic food products [3]. But there 
is also a higher risk of transgenic product contamination in non-transgenic products as the number of GMOs 

(genetically modified organisms) allowed for production and commercialization rises. One such well reported 

incident occurred when Safeway and Taco Bell in October 2000 voluntarily recalled a maize product after 

discovering traces of genetically modified corn in them. For these and many more reasons, the effectiveness and 

acceptance of GMOs in the future will depend on accurate transgenic product identification techniques. Real-
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time qPCR (RT PCR) is the most potent, accessible, and economical transgenic product detection technology 

currently in use [4]. Choosing the unique gene sequence to amplify in PCR is the major issue to implement in 

this detection technique. The major components used to detect GMOs today are signature sequences, such 

promoter sequences and antibiotic resistance gene markers however, they are not optimal because the same 

signature sequences can be found in other types of GMO. Additionally, there is an untested worry that these 
antibiotic resistance gene markers and signature sequences, may result in negative effects on human health and 

the environment. The European Union, which has strict regulations on GMOs, outlawed the use of antibiotic 

resistance gene to use as markers for cloning and transformation of particular genes from year 2004 in order to 

allay this worry. A threshold level of 1% for the presence of transgenic product was also established for the 

mandatory labeling of GMO foods by the European Union, which prompted more aggressive research on highly 

specialized, exact, and sensitive techniques for detecting and quantifying transgenic products in food products. 

A revolutionary concept for the global identification of GMOs was created by researchers for the 

German company Icon Genetics [5]. The development of a standardized process for the addition of non 
transcribed DNA-based technical data to the transgene prior to its insertion into the organism’s genome was 

suggested. According to Marillonet et al., 2003 [5], this coding would be based on triplets codons , just as amino 

acid codons, and each triplet codon should  encode for one of the 26 english alphabets ,  and an Arabic numeral 

from 0 to 9, and one space character, for a total of 37 characters. The scientists were able to incorporate into 

these characteristics biologically inert, non-genetic coding sequences that correspond to distinctive data like the 

brand name of the business, the date and location of manufacture, the model of the product, and the serial 

number. Cloning will take place between conserved sequences that have primer-binding domains and the 

variable region that contains the information. Only PCR and fragment sequencing are required to read the 

DNA’s encoded information. 

II. FOOD PATHOGEN DETECTION 

The toxin producing bacteria like Vibrio, Salmonella, Listeria, and lethal strain of E.coli (O157:H7) 

which secretes toxins called shigha toxin contaminate food and cause food poisoning. The shigha toxins are 

encoded by genes stx1 and stx 2. These shigha toxins (stx1 and stx 2) when appeared in blood stream it can 

induce damage to other organs like kidney and inner lining of large intestine leading to severe diarrhea and 

dehydration [6]. Primarily this lethal strain of E.coil is prevelanet in North American cattles’ intestine. These 
lethal strains are spreads   in community through unpasteurized milk, ground beef and roast beef. The O157:H7 

strain is primarily prevalent in the intestines of healthy cattle in North America. According to the Centre for 

Disease Control (CDC), ground beef, unpasteurized milk, and roast beef are the main sources of food borne 

transmission for Shiga toxin-producing E. coli (STEC), such as O157:H7, which is estimated to cause 73,480 

illnesses and 61 fatalities annually in the United States alone [7]. 

Greater effort has been made to develop quick and accurate procedures for food contamination 

identification. Because PCR provides quick, precise, and extremely sensitive results—in contrast to traditional 

methods— PCR based methods become more preferable techniques for food pathogen detection. Shiga toxins 
(stx) [8], intimin [9], enterohemorrhagic E. coli hemolysin [10], and -glucuronidase (EC 3.2.1.31) [11] are 

detected through PCR amplification. However in conventional PCR following gel electrophoresis the quantity 

of sample analyzed is limited. To overcome this limitation scientist from Centre for Food Safety and Applied 

Nutrition, Food and Drug Administration, Washington, D.C., and the Department of Nutrition and Food 

Science, University of Maryland, College Park, Maryland, developed an assay for quick and large scale 

detection. This method involves analysis of PCR product using ELISA (Enzyme linked immunosorbent assay). 

This method includes labeling of digoxigenin- dUTP and a biotin-labeled primer for the stx1 and stx2 genes. 

This PCR-ELISA method can be used to detect E. coli O157:H7 and other STEC in food in large scale level. 

After the PCR amplification the PCR products were added to microtiter wells already coated with streptavidin. 

In this procedure, and the ELISA was used to identify them using an anti-DIG-peroxidase conjugate. Other 

immunoassays like flow injection immunoassay, enzyme-linked fluorescent assay (ELFA), and few other 
serological assays, are known for quantification of the target organisms [13], but due to lack of sensitivity and 

selectivity, limits its widespread use.                                                                                                               

In various fields like food, agriculture, medical and pharmaceuticals other label free detection methods 

such as spectroscopic methods using signatures of absorption via electromagnetic radiation, nuclear magnetic 

resonance, fluorescence, laser light and mass spectroscopy  are being employed [14, 15, 16, 17]. As an 

alternative, bio-recognition technique is an alternative emerging technique to ensure food safety [18]. The 

development of new bio-recognition ligands is providing good opportunities for designing and development of 

sensitive methods for detecting microorganisms in recent years. Another alternative, Biosensors are providing 
rapid microbial detection techniques for the detection of bacteria in food [19]. Biosensors consist of sensing 



elements which is made up of bio macromolecules and a transducer that transfer signal to a visual recordable 

signal. Biosensors are user friendly, rapid, sensitive and specific for the detection on pathogens or toxins [19].  

Another methods like LAMP and NASBA are sensitive, specific, and cost-efficient, making them useful in low 

resource settings [19].  

SURFACE PLASMON RESONANCE (SPR) 

 
The SPR biosensing technology enables for real-time monitoring in done at the interface of a dielectric/ 

transparent medium and a thin gold film of chemical and biochemical interactions. The evanescent wave 

phenomenon is used in this optical approach to monitor change in refractive index(RI)  near to the sensor 

surface. Any alteration at the metal-dielectric contact has a large impact on the angular position. Many real-time 

monitoring SPR approaches rely on the prism-based Kretschmann configuration, which employs the metal-side 

excitation of a surface-bound electromagnetic wave. The occurrence of antigen-antibody binding events may be 

tracked by observing the movement of the angular minimum towards higher angles or the variation in 
reflectance at a constant angle. 

Other than normal SPR, optical SPR biosensor is also used. This method allowed multiple and 

simultaneously analysis of analytes. The current SPR technology is integrated in detection system to increase 

feed, food, and environmental safety [20, 21]. 

BIOSENSORS 

 
Electrochemical biosensors transform the interaction between an analyte and biorecognition agent to 

electrical signals. The electrical signals are proportional to the concentration of the detecting analyte.  

Electrochemical biosensors can be of different types depending on the parameter being measured, they can be, 

impedimetric, potentiometric or amperometric. Xu, Wang, and Li (2016) developed an electrochemical 

biosensor with a limit of detection (LOD) of 102 CFU ml1 for detecting E. coli O157:H7 in food, water, and 

environmental materials [22]. These biosensors, however, have limitations, such as the possibility of enzyme-
substrate reactions and redox hindrances. Other biorecognition components, such as non-functionalized gold 

nanoparticles and nucleic acids, might be employed. Furthermore, the homogeneous distribution of microbial 

pathogens in food, water, and environmental samples makes electrochemical approaches challenging to apply, 

particularly in the absence of sample preparations. 
Recently, based on smartphones some modern efficient analytical method involving electrochemical 

biosensor and optical aptasensor have been developed for detection of food pathogen contamination. This 

techniques involve several bioreceptors like aptamers, enzymes, antibodies, microorganisms and cells have been 

integrated with smartphone-based biosensors [23].  

 

 
MICROBIAL BIOSENSORS 

 
Microbial biosensors are analytical devices that combine microorganisms with a transducer to detect 

targets in real time. Microbial bio-sensors involve coating of antimicrobial substances and antimicrobial 

delivery system. These approaches include cost effective and stable bio based receptors of antimicrobial 

peptides, bacteriophages , DNAzymes, and engineered liposomes. Numerous delivery systems of antimicrobial 

substances are developed using cell-based carriers, microbubbles and lipid colloidal particles. They are more 

favourable than enzyme biosensors due to their complexity and expense. Three types of microbial biosensors 

available which are: potentiometric, amperometric and conductometric. In amperometric biosensors the current 

generated by oxidation and reduction reaction at electrode surfaces  are measured to detect BOD (biological 

oxygen demand) in  chemicals and industrial waste. In potentiometric biosensors employ an ion-selective 

electrode and/or a gas-sensing electrode covered with an immobilised layer of microbes to detect, penicillin, 

organophosphates, tryptophan, trichloroethylene, urea, Sucrose and ethanol. A caffeine based biosensor was 

created by immobilizing Pseudomonas alcaligenes MTCC 5264 in a whole cell biosensor. Alltogether, these 
newely evolved techniques other than traditional methods can reduce microbial contamination risks and enhance 

the detection of microbes in  situ [24]. 

 

AMINOACIDS BIOSENSORS 

 

Approaches using (poly) amino acids probes are used for real time sensing of contaminations in food.  

Till now probes of numerous (poly) amino acids like poly(alanine), poly(leucine), poly(cysteine), 

poly(tyrosine), poly(histidine), poly(arginine),  poly(lysine), poly(tryptophan), poly(glutamic) and 

poly(glycine), were used to detect food contamination [25]. 



 

 

NANOMATERIALS BASED CRISPER/CAS DETECTION SSYSTEM FOR FOOD PATHOGEN 

 Recently, many of CRISPR/Cas-assisted bio based sensors have been described for food safety 

detection. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a technique with sequence 

specific nucleic acid targeting capability for nucleic acid detection. This technique comes up with high 

sensitivity, programmability, and biocompatibility with single base resolution.  

Nano-biosensors are in wide use in fields of food safety. The application of nanomaterials in biosensors 

attracted scientists to developed CRISPR based biosensors involving various nanomaterials to detect 

contaminants like food borne pathogenic viruses, GMOs, food borne pathogenic bacteria, food adulteration, 

toxins, pesticide residues, and antibiotic residues etc. in food get better detection success. Nanoparticles like 

Graphene, Quantum dots (QDs) and metal nanoparticles incorporated with CRISPR detection system to improve 

analytical performance.  A nanomaterial has high specific surface area and binding sites which have greatly 

facilitated the development of CRISPR/Cas-assisted detection system [26]. 

CONCLUSION 

Conventional methods for detecting food borne pathogens are selective but time-consuming and 

laborious. Rapid detection methods have emerged to overcome these limitations. Nucleic acid-based methods 

like PCR, mPCR, qPCR, and DNA microarray have high sensitivity but require trained personnel. Biosensors-

based methods have emerged for food borne pathogen detection due to their rapidity, cost-effectiveness, and 

ease of operation. These methods don't require trained personnel and can detect food borne pathogens. 
Numerous Immunological-based methods like ELISA, PCR-ELISA and lateral flow immunoassay are also used, 

but need improvement in food matrix detection. Combining rapid methods is also possible for more effective 

and accurate detection. 
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