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1. INTRODUCTION 

 

In this direction  we studied on approximation of f belong to many classes also Hölder metric by 

Cesặro mean, Nӧrlund mean, Euler mean has been discussed by several investigator like respectively Alexits 

[2], Khan [6], Chandra [3], Mohapatra and Chandra [11], Das, Ghosh and Ray[4], etc.  Further in this field 

several researchers like Lal and Kushwaha [8], Lal and Singh [9], Rathore and Shrivastava [14], Nigam [12], 

Albayrak, Koklu and Bayramov [1], Rathore, Shrivastava and Mishra ([15], [16],), Kushwaha [7],  Singh and 

Mahajan [18], Mishra and Khatri [10] etc. Recently Rathore, Shrivastava and Mishra [17] has been determined 

on approximation of function in the Hölder metric by (C, 2) (E, q) product summability method of Fourier 

series. We extend the result on approximation of function 𝑓 ∈ 𝐻𝑤 class by (C, 2)(E, 1) mean of conjugate series 

of Fourier series, has been proved. 

 

2. DEFINITION AND NOTATIONS 

 

Let f (x) be periodic with period -2π and integrable in the sense of Lebesgue. The Fourier series of f(x) 

is given by  

 f(x) = 
𝑎0

2
+ ∑ (𝑎𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛𝑛𝑥)∞

𝑛=1  ≅  ∑ 𝐴𝑛
∞
𝑛=0 (𝑥)             (2.1)  

with nth partial sum Sn (f; x). 

The conjugate series of Fourier series (2.1) is given by 

                         

           ∑ (𝑏𝑛𝑐𝑜𝑠𝑛𝑥 − 𝑎𝑛𝑠𝑖𝑛𝑛𝑥)∞
𝑛=1  ≅  ∑ 𝐵𝑛

∞
𝑛=1 (𝑥)      (2.2) 

with nth partial sum 𝑆�̃� (f; x) 

Let 𝑤(𝑡) and 𝑤∗(𝑡) denote two given moduli of continuity such that 

(𝑤(𝑡))
𝛽

𝛼⁄
 =O(𝑤∗(𝑡)) as t→ 0+ for 0< β≤ 𝛼 ≤ 1 

Let 𝐶2𝜋 denote the Banach Spaces of all 2
 
𝜋 − periodic continuous function defined on [-π, π] under 

“sup’’ norm for 0<α≤ 1 and some positive constant K the function space Hw is defined by 

   Hw = {ƒϵ 𝐶2𝜋: |f(x)-f(y)| ≤ K w |x-y|}.               (2.3)  

with the norm  ǁ. ǁ𝑤∗ defined by 

             ǁfǁ𝑤∗  = ǁfǁc + Sup
𝑥,𝑦

∆𝑤∗
 [f(x, y)],                   (2.4) 

where  

                ǁƒǁc = Sup
−π≤x≤π

|f(x)|.                       (2.5)                 

 and                                               
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  ∆𝑤∗
{ƒ(x, y)}=  

 |f(x)−f(y)|

𝑤∗ (|x−y|)
 ,         (x ≠ y).                            (2.6) 

 

the convention that ∆0 f(x, y)=0. If there exit positive constant B and K such that w |x-y| ≤ 𝐵 |x − y|𝛼 

and 𝑤∗|x-y| ≤ 𝐾 |x − y|𝛽  then  

 

       Hα = {ƒϵ 𝐶2𝜋: |f(x)-f(y)| ≤ K|x-y|α, 0<α≤ 1}.  (see Prӧssdorf’s[13])    (2.7) 

 

 Hα is Banach space and the metric induced (2.5) by the norm ǁ.ǁα on the Hα is called the Hölder 

metric. If can be seen that ǁƒǁβ≤ (2π)α-β ǁƒǁα  for 0≤β<α≤1.Thus {(Hα, ǁ.ǁα)} is a family of Banach Spaces 

which decreases as α increase.  

 

The series  ∑ 𝑢𝑛
∞
𝑛=0  is said to be (C, 2) summable to S. If the (C, 2) transform of Sn is defined as(see Hardy [5]) 

 𝑡𝑛
(𝐶,2)̃(𝑓: 𝑥)  = 

2

(n+1)(n+2)
∑ (𝑛 − 𝑘 + 1)𝑛

𝑘=0 𝑆�̃� → 𝑆 as n→∞                                 (2.8) 

The 𝑡𝑛
(𝐸,1)̃(𝑓: 𝑥) denotes the transform of (E, 1) ̃     is defined as  

𝑡𝑛
(𝐸,1)̃(𝑓: 𝑥) = 

1

2𝑛
∑ (𝑛

𝑘
)𝑛

𝑘=0 𝑆�̃� → 𝑆, as n→∞                               

Thus if 

𝑡𝑛
(𝐶,2)(𝐸,1)̃

(𝑓: 𝑥) = 
2

(n+1)(n+2)
∑ (𝑛 − 𝑘 + 1)𝑛

𝑘=0 𝑡𝑘
(𝐸,1)̃

→ 𝑆     as n→∞            (2.9) 

where   𝑡𝑛
(𝐶,2)(𝐸,1)̃

  denotes  the sequence of (C, 2)(E, 1) ̃  product summability  of the sequence 𝑆𝑛, the series 

∑ un
∞
n=0   is said to be summable (C, 2)(E, 1) ̃   to the definite number S. If                              

  

𝑡𝑛
(𝐶,2)(𝐸,1)̃

(𝑓: 𝑥) = 
2

(n+1)(n+2)
∑ (𝑛 − 𝑘 + 1)𝑛

𝑘=0 ∑ (𝑘
𝑣

)𝑘
𝑣=0 𝑆�̃� → 𝑆   as n→∞    (2.10) 

 

The conjugate function 𝑓(𝑥)̃  is defined for almost every x by 

𝑓(𝑥)̃  = - 
1

2𝜋
∫  𝜑(𝑡) cot

𝑡

2

𝜋

0
𝑑𝑡 

          = lim
ℎ→0

(− 
1

2𝜋
∫ 𝜑(𝑡) cot

𝑡

2

𝜋

ℎ
𝑑𝑡)       (2.11) 

 

“The degree of approximation En(f) be given by 

             𝐸𝑛(𝑓) = 𝑚𝑖𝑛 ‖𝑇𝑛 − 𝑓‖𝑝 ,                                 (2.12) 

where Tn(x) is a trigonometric polynomial of degree n” by ( see Zygmund[20]). 

 

We shall use following notation 

              

            Φ x (t) =    f(x+t)+ f(x-t) -2f(x)   
  

                              (2.13) 

 and   

          𝜑 (t) = Φ x (t) - Φ y (t).        (2.14) 

 

3. Known Theorem.  

 

Theorem 1 ( see [18]). Let w(t) defined in  ( ) br such that  

                       

                    ∫
𝑤(𝑢)

𝑢2

𝜋

𝑡
 du = O (H(t), H(t) ≥ 0,       (3.1) 

          

                  ∫ 𝐻(𝑢)𝑑𝑢 
𝑡

0
 = O(t H(t), as t→ 0+       (3.2) 

 

 then, for 0< β≤ 𝛼 ≤ 1 and f є 𝐻𝛼 , we have  

‖𝑡𝑛
𝐶1.𝐸1

(𝑓)- f(x)‖𝑤∗ =O (((𝑛 + 1)−1𝐻 (
𝜋

𝑛+1
))

1−
𝛽

𝛼⁄

)      (3.3) 

4. MAIN THEOREM  

 

We prove the following theorem 

 

“On approximation of function 𝑓 ∈ 𝐻𝑤 class by (C, 2)(E, 1) mean of conjugate of Fourier series” has been 

established. 
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Theorem:  “If 0≤β<α≤1 and 𝑓 ∈ 𝐻𝑤  then 

  

|| 𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) − 𝑓(𝑥)||𝑤∗   

                        =    Ο{
𝑤(|𝑥−𝑦|)β/α

𝑤∗(|𝑥−𝑦|)
(log(n + 1))β/α [(𝑛 + 1)−1 𝐻 (

𝜋

𝑛+1
)]

1−β/α

 }   (4.1) 

where   𝑡𝑛
(C,2)(E,1)̃

 is the product summability  (C, 2)(E, 1)̃  mean of Sn (f; x)”. 

 

5. Lemmas: We shall use the following lemmas-  

 

 

Lemma 1.  Let     𝑀�̃�(𝑡)  =
1

𝜋(𝑛+1)(𝑛+2)
 ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

)
cos(𝑣+

1

2
)𝑡

sin𝑡
2⁄

𝑘
𝑣=0 }]𝑛

𝑘=0               

               then        𝑀�̃�(𝑡) = O (
1

𝑡
) ,   for 0 ≤  t ≤

𝜋

(𝑛+1)
  

Proof   Using | sin
𝑡

2
 | ≥

𝑡  

𝜋
  and | cos (𝑣 +

1

2
) 𝑡|  ≤ 1 , for 0 ≤  t ≤

𝜋

(𝑛+1)
        

  │𝑀𝑛
̃

(𝑡)│  =
1

𝜋(𝑛+1)(𝑛+2)
 │ ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

)
cos(𝑣+

1

2
)𝑡

sin𝑡
2⁄

𝑘
𝑣=0 }]𝑛

𝑘=0 │     

             =
1

𝜋(𝑛+1)(𝑛+2)
  ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

)
│cos(𝑣+

1

2
)𝑡│

│sin𝑡
2⁄ │

𝑘
𝑣=0 }]𝑛

𝑘=0    

 =  
1

t(𝑛+1)(𝑛+2)
  ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

)𝑘
𝑣=0 }]𝑛

𝑘=0  

    =
1

t(𝑛+1)(𝑛+2)
  ∑ (n − k + 1)𝑛

𝑘=0            (⸪ ∑ (𝑘
𝑣

)𝑘
𝑣=0 = 2𝑘) 

                                            =
(n+1)

t(𝑛+1)(𝑛+2)
 -

1

 t(𝑛+1)(𝑛+2)
 ∑ k𝑛

𝑘=0  

              =
1

t(𝑛+2)
  -

n(n+1)

2t(𝑛+1)(𝑛+2)
 

              =
1

t(𝑛+2)
  -

n

2t(𝑛+2)
 

 = O (
1

𝑡
)              (5.1) 

Lemma2. Let    𝑀�̃�(𝑡)  =
1

𝜋(𝑛+1)(𝑛+2)
 ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

)
cos(𝑣+

1

2
)𝑡

sin𝑡
2⁄

𝑘
𝑣=0 }]𝑛

𝑘=0               

                  then  𝑀�̃�(𝑡) = O (
1

𝑡2(𝑛+2)
) ,   for 

𝜋

(𝑛+1)
≤  t ≤ π  

Proof- Using | sin
𝑡

2
 | ≥

𝑡  

𝜋
    and   | sin 𝑡|  ≤ 1  for 

𝜋

(𝑛+1)
≤  t ≤ π 

          │𝑀𝑛
̃

(𝑡)│  =
1

𝜋(𝑛+1)(𝑛+2)
 │ ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

)
cos(𝑣+

1

2
)𝑡

sin𝑡
2⁄

𝑘
𝑣=0 }]𝑛

𝑘=0 │     

                                     =
1

𝑡(𝑛+1)(𝑛+2)
 │ ∑ [

(𝑛−𝑘+1)

2𝑘 {∑ (𝑘
𝑣

) cos (𝑣 +
1

2
) 𝑡𝑘

𝑣=0 }]𝑛
𝑘=0 │     

                                     =
1

𝑡2(𝑛+1)(𝑛+2)
 ∑ (𝑛 − 𝑘 + 1)𝑛

𝑘=0        (see [] ) 

 

                                     =
(n+1)

𝑡2(𝑛+1)(𝑛+2)
  - 

n(n+1)

2t2(𝑛+1)(𝑛+2)
 

                                     =  
1

𝑡2(𝑛+2)
              (5.2) 

Lemma 3. (see [18]). If w(t) satisfies condition (3.1) and (3.2) then 

   

                      ∫ 𝑡−1𝑤(𝑡)𝑑𝑡 
𝑢

0
 = O(u H(u),       as u→ 0+.           (5.3) 

 

Lemma 4 Let Φ x (t) defines (2.13) for 𝑓 ∈ 𝐻𝑤 

 

                          │Φ x (t) – Φ y (t) │≤ 2M w│ x-y│                                (5.4) 

 

 also                │Φ x (t) - Φ y (t) │≤ 2M w│ t │                     (5.5) 

  

It is easy to verify. 
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6. PROOF OF THE MAIN THEOREM  

Using (Titchmarsh [19]) and Riemann – Lebesgue theorem, the partial sum Sn(f; x) of the series (2.1) is given 

by  

 

𝑆�̃� (𝑓; 𝑥) − 𝑓 (x) =
1

2𝜋
∫

𝜙𝑥(𝑡)

𝑠𝑖𝑛
𝑡
2

𝑐𝑜𝑠(𝑛 + 1

2
)𝑡 𝑑𝑡

𝜋

0
                            (6.1) 

  If  𝑡𝑛
(E,1)̃

  denotes (E, 1)̃ transform of  𝑆�̃� (𝑓; 𝑥) then 

  𝑡𝑛
(E,1)̃(𝑓; 𝑥) − 𝑓(𝑥) =

1

2n+1 𝜋
∫

𝜙𝑥(𝑡)

sin𝑡
2⁄

𝜋

0
∑ (𝑛

𝑘
)𝑛

𝑘=0 cos (𝑘 +
1

2
) 𝑡 𝑑𝑡 ,         (6.2) 

 

If  𝑡𝑛
(C,2)(E,1)̃

 denotes  (C, 2)(E, 1) ̃  transform of 𝑆�̃� (𝑓; 𝑥), 
 

We write 

 

  𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) − 𝑓(𝑥)  =
1

𝜋(𝑛+1)(𝑛+2)
   ∑ [

(𝑛−𝑘+1)

2𝑘 ∫
𝜙𝑥(𝑡)

sin𝑡
2⁄

𝜋

0
{∑ (𝑘

𝑣
)𝑘

𝑣=0 cos (𝑣 +
1

2
) 𝑡}]𝑛

𝑘=0     (6.3)                   

               

Writing I n (x) = 𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) - 𝑓(𝑥)     we have 

 

│I n (x) │= │ 𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) - 𝑓(𝑥)│ 

              

                  ≤│
1

𝜋(𝑛+1)(𝑛+2)
 ∑ [

(𝑛−𝑘+1)

2𝑘 ∫
𝜙𝑥(𝑡)

sin𝑡
2⁄

𝜋

0
{∑ (𝑘

𝑣
)𝑘

𝑣=0 cos (𝑣 +
1

2
) 𝑡}]𝑛

𝑘=0 │ dt       (6.4) 

│I n (x) - I n (y) │ 

                =│
1

𝜋(𝑛+1)(𝑛+2)
  ∑ [

(𝑛−𝑘+1)

2𝑘 ∫
𝜙𝑥(𝑡)−𝜙𝑦(𝑡)

sin𝑡
2⁄

𝜋

0
{∑ (𝑘

𝑣
)𝑘

𝑣=0 cos (𝑣 +
1

2
) 𝑡}]𝑛

𝑘=0 │𝑑𝑡           (6.5)            

                = 
1

𝜋(𝑛+1)(𝑛+2)
  ∑ [

(𝑛−𝑘+1)

2𝑘 ∫
│𝜙𝑥(𝑡)−𝜙𝑦(𝑡)│

sin𝑡
2⁄

𝜋

0
{∑ (𝑘

𝑣
)𝑘

𝑣=0 cos (𝑣 +
1

2
) 𝑡}]𝑛

𝑘=0 𝑑𝑡      

    

                = 
1

𝜋(𝑛+1)(𝑛+2)
  ∑ [

(𝑛−𝑘+1)

2𝑘 ∫
│(𝑡)│

sin𝑡
2⁄

𝜋

0
{∑ (𝑘

𝑣
)𝑘

𝑣=0 cos (𝑣 +
1

2
) 𝑡}]𝑛

𝑘=0 𝑑𝑡      

                       

 

                =∫ │(𝑡)││𝑀𝑛(𝑡)│𝑑𝑡   
𝜋

0
  using Lemma 1 

                

               =[∫ + ∫ .
𝜋

𝜋
𝑛+1⁄

𝜋
𝑛+1⁄

0
] │(𝑡)││𝑀𝑛(𝑡)│𝑑𝑡  

 

               = I1 + I2                             (6.6)  

 

Now using (5.5) and Lemma3  

                 

                 |I1| =∫ |(𝑡)||𝑀𝑛 (𝑡)|
𝜋

𝑛+1⁄

0
𝑑𝑡                       

 

    = O (1) ∫ 𝑡−1
𝜋

(𝑛+1)⁄

0
 𝑤(𝑡)dt 

                         

                  =𝑂 ((𝑛 + 1)−1 𝐻 (
𝜋

𝑛+1
)).          (6.7) 

 

 

Now 

             |I2| = ∫ |
𝜋

𝜋
𝑛+1⁄

(𝑡)||𝑀𝑛 (𝑡)|𝑑𝑡                        using (5.5) and Lemma 2 

 

      = 𝑂(1) ∫ 𝑡−2 𝑤(𝑡)
𝜋

𝜋
(𝑛+1)⁄

 dt  
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                      =𝑂 ((𝑛 + 1)−1 𝐻 (
𝜋

𝑛+1
)).              (6.8) 

Now using (5.4), Lemma 1, we get 

                      

                I1 = O (
1

𝑛+2
) ∫ 𝑡−1

𝜋
(𝑛+1)⁄

0
 𝑤(|𝑥 − 𝑦|)dt 

       = O (𝑤(|𝑥 − 𝑦|)) ∫ 𝑡−1
𝜋

(𝑛+1)⁄

0
 dt     

                   

                    = O (log (n+1) 𝑤(|𝑥 − 𝑦|))       (6.9) 

 

Now using (5.4) and Lemma2 

                  

                 I2 = 𝑂 (
1

𝑛+2
) ∫ 𝑡−2 𝑤(|𝑥 − 𝑦|)

𝜋
𝜋

(𝑛+1)⁄
 dt 

 

                     = O (w(|𝑥 − 𝑦|)).          (6.10) 

 

We observe that  

 

                  |I k|= |Ik|1-β/α |I k |β/α.      when     k =1, 2                                                            (6.11) 

 

 By using (6.7) and (6.9) respectively in the first and the second factor on the right of the above identify (6.11) 

for k = 1 we obtain that   

  

      |I1 | = O ([(𝑛 + 1)−1 𝐻 (
𝜋

𝑛+1
)]

1−β/α

. [log(n + 1) 𝑤(|𝑥 − 𝑦|)]β/α)                        (6.12)  

 

 Again using (6.8) and (6.10) in the first and second factor on the right of the identify (6.11) for k = 2 we have  

       

      |I2| = O ([(𝑛 + 1)−1 𝐻 (
𝜋

𝑛+1
)]

1−β/α

. [𝑤(|𝑥 − 𝑦|)]β/α)                          (6.13) 

 

 

Thus from (2.6),   (6.12) and (6.13) we get  

 

  𝑠𝑢𝑝
𝑥≠𝑦

│ Δ𝑤∗  In (x, y) │ = 𝑠𝑢𝑝(𝑥,𝑦)
𝑥≠𝑦

| 𝐼𝑛(𝑥)−𝐼𝑛(y)|

𝑤∗(|𝑥−𝑦|)
 

 

         =Ο{
𝑤(|𝑥−𝑦|)β/α

𝑤∗(|𝑥−𝑦|)
(log(n + 1))β/α [(𝑛 + 1)−1 𝐻 (

𝜋

𝑛+1
)]

1−β/α

 }   (6.14) 

 

Using the fact that 𝑓ϵ Hw=> 𝜙𝑥(𝑡)= O (w(t)) 

           

 Proceeding as above we obtain  

 

            || I n || c = Sup
−𝜋≤𝑥≤𝜋

|| 𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) − 𝑓(𝑥)||  

                                =Ο {(𝑛 + 1)−1 𝐻 (
𝜋

𝑛+1
)}.      (6.15) 

 

 Combining the result of (6.14) and (6.15),  we get 

 

|| 𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) − 𝑓(𝑥)||𝑤∗   =    Ο{
𝑤(|𝑥−𝑦|)β/α

𝑤∗(|𝑥−𝑦|)
(log(n + 1))β/α [(𝑛 + 1)−1 𝐻 (

𝜋

𝑛+1
)]

1−β/α

 }  (6.16) 

 

Proof of the main theorem is completes. 

 

7. Corollaries:  

From our main theorem can be derived following corollaries. 
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Corollary7. 1: “If β = 0 and  𝑓 ∈ 𝐿𝑖𝑝(𝛼, 𝑝), 0< 𝛼 ≤ 1 then 

           

          || 𝑡𝑛
(C,2)(E,1)̃

(𝑓; 𝑥) − 𝑓(x)||c = O{
1

(𝑛+1)𝛼}    for 0< 𝛼 < 1. 

  

                                                       = O(
log(𝑛+1)

(𝑛+1)
) , for  𝛼 =1 
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work. 

           

Conclusion 

The summability method F(a, q) includes method of summability like Borel, (E, 1), (E, q), (e, c) and [F, dn] then 

by using the result of main theorem we can  derive more generalizing result and also the result of J. K. 

Kushwaha [6] can be derived directly. 
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