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Abstract: The average symbol error rate (ASER) of a multiple-input multiple-output (MIMO) 

system under generalized- K  fading channels is analyzed in this work. The hexagonal quadrature 

amplitude modulation (HQAM) technique is applied to evaluate the ASER. Transmit antenna 

selection (TAS) at the base station is performed and maximal ratio combining (MRC) at the 

receiver is considered for the downlink transmission. Depending on the channel state information 

(CSI), the antenna at the transmit end that maximizes the MRC output SNR is selected for 

transmission. The effect of fading parameters on the ASER of the system has been investigated. 

The effect of the number of transmit and receive antennas on the system has been analyzed. The 

dependence of constellation size and the adjustment parameter on the ASER performance is 

examined. 
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I. INTRODUCTION 

 

In beyond 5G as well as 6G wireless communication systems very high data rates and energy 

efficiency can be achieved by the application of higher order two-dimensional (2D) constellations 

such as hexagonal quadrature amplitude modulation (HQAM). HQAM has the densest 2D 

packing, thereby providing reduced peak as well as average constellation power [1]. HQAM is 

utilized in multiple-antenna systems, optical communications, advanced channel coding and 

multicarrier systems [2].   

The multiple-input-multiple-output (MIMO) is used to improve the channel throughput. For a large 

number of antennas, the hardware complexity as well as the price of the MIMO scheme goes high. 

Simultaneous transmissions from multiple antennas have the inherent disadvantages of inter-

antenna interference, the requirement of synchronization etc. The transmit antenna selection (TAS) 

is one of the most useful technique to overcome these disadvantages. In the TAS scheme, the CSI 

of all links are sent back to the base station and based on CSI information the transmitter allots the 

best antenna for the transmission. The most useful diversity combining method is the maximal 

ratio combining (MRC), where the received SNR at all the receiving antennas are added to 

maximize the receiver output SNR. The TAS scheme has been investigated over various flat fading 

channels in the past. In [3], the expression of ABER for TAS/MRC communication systems under 

Hoyt fading channels has been examined and in [4] the derivation for both outage probability as 

well as exact SER for the TAS/MRC scheme has been presented.  

In wireless communication, as a result of fading the received signals experience differences in 

attenuation, delay and phase shift. The generalized- K ( GK ) distribution can be used to model the 

fading, shadowing and the propagation path-loss experienced in mobile communication channels 

[5].  GK  fading distribution is a composite fading that consists of Nakagami-m and Gamma 
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distribution. The GK  fading model is a generalized model as it can be used to approximate other 

fading models, such as K  fading, and Rayleigh-Lognormal (R-L) [5][6][7]. It can usually cover 

many transmission scenarios obtained in real wireless systems, than the other composite channel 

models [8]. In [6], the outage probability and the channel capacity over GK  fading channel are 

analyzed. However, the ASER analysis of specific wireless communication structures like 

TAS/MRC operating under the influence of GK  channels is not available in the technical 

literature. In this work, ASER performance with HQAM technique for the TAS at the base station 

and MRC at the receiver under GK  fading channel is investigated. 

 

II. METHODOLOGY 
The TAS/MRC wireless transmission system with TA transmit antennas at the base station and RA 

receive antennas with the user is depicted in Figure 1. Through the application of channel state 

information (CSI), the scheduler of the base station selects the best transmit antenna which 

maximizes the post-processing SNR at the output of the MRC receiver. The channel between the 

transmit antenna and the user is modelled as a slow flat GK fading channel. MRC diversity is 

carried out by the user of the system to improve the quality of the downlink information. In the 

MRC receiver, the received signals from all diversity antennas are co-phased, multiplied by a 

weight factor proportional to the branch SNR and added together. 

 

 

 

 

 

 

 

 

 

 

 
      

 

 

 

 

 

 

 

Figure1: TAS with MRC receiver system 
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It was verified that both a single GK  RV and the sum of independent GK RVs can be 

approximated by a single Gamma RV [9]. Denoting i  as a Gamma distributed RV with a shape 

parameter   and a scale parameter  , the probability density function (PDF) of the instantaneous 

SNR i  is given as [10][11]  
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fading parameters. The CDF of the instantaneous SNR over a GK  fading channel is expressed as 
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Simplifying by utilizing [12, (3.381.1)], 
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whereby,  .,.g  is the lower incomplete Gamma function. In TAS with MRC at the receiver system, 

the best   is selected from A AT R  number of RVs. The CDF of which can be written as 
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Therefore, the PDF of the output SNR is 
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Differentiating the lower incomplete Gamma function with the help of [13, (6.5.25)], 
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Writing the  .,.g  in infinite series applying [14, (1.7)], the pdf of output SNR for TAS/MRC 

system over GK  fading channel is derived as 
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III. ASER ANALYSIS 

The ASER depends on the fading distribution and modulation technique. It can be given as [15], 
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where,  p e   is the conditional error probability. For M-ary HQAM, the  p e   is expressed 

as [16] [17], 
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approximation may be applied for the Gaussian Q-function  .Q . Prony approximation with two 

exponential terms can be obtained as  
2 2t uQ e e      [18]. The value of the constants are

0.208  , 0.147  , 0.971t  ,  and 0.525u  .  Putting the value of  f   and  p e  into (8), 

the ASER can be given as 
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Where, 
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And, 
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Solving the integrals using [12, (3.381.4)], 
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And, 
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IV. NUMERICAL RESULTS AND DELIBERATIONS  

 

Numerically evaluated data for ASER with HQAM technique have been presented in this section. 

ASER vs. average SNR per branch (in dB), has been plotted in Figure 2, considering 2AT   and

2AR  . From Figure 2, it is observed that for a fixed value of k, the ASER performance improves 

as the value of m increases, corresponding that the channel fading becomes less severe. Similarly, 

it has been observed that for a fixed value of m the ASER performance improves as the value of k  

increases, implying that the channel becomes less shadowing. The performance of the system gets 

better with the increase of the fading parameters. It is considered that the adjustment parameter

1  . Similarly, with the increase in the constellation size, the ASER performance deteriorates, 

since the more number of transmitted symbols are influenced by channel fading.  



In Figure 3, the ASER is plotted against average SNR with different constellation sizes and fading 

parameters. For analysis 3AT   and 2AR    are kept constant. It is considered that 1  . The 

ASER performance improves with the increase in average SNR. From Figure 3, it is observed that 

ASER performance improves with the increase in the fading parameters as well as the decrease in 

the constellation size.  

In Figure 4, ASER vs. Average SNR per branch   (in dB), has been plotted for the HQAM scheme 

with different numbers of TA and RA. The fading parameters are kept constant at 1, 1k m  . Again 

in the figure 16M  , and 1  . From Figure 4, one can observe that when the number of transmit 

antennas become larger for a fixed number of receive antennas, the ASER performance of the 

system improves. Similarly, the same observations can be made by increasing the number of 

receive antennas for a fixed number of transmit antennas.  From the figure, it is observed that with 

the increase in selection gain, the ASER performance of the TAS with the MRC receiver system 

has improved.  

 

In Figure 5, the ASER performance of TAS configuration with HQAM modulation and for different 

numbers of transmit antennas (TA) and adjustment parameters ( ) is shown. In Figure 5, 1k  , 

2m  , 16M  , and 4AR  . One can observe that when the number of transmit antennas increase 

for a fixed number of receive antennas, the ASER performance of the system improves.  From 

Figure 5, it is observed that with the increase in adjustment parameters ( ), the ASER performance 

of the system improves.   

 

  

 

 

 

 

 

 

 

 

 



 
Figure 2: ASER vs. Average SNR in dB for different values of fading parameters and M with

2, 2, 1A AT R    .

 

Figure 3: ASER vs. Average SNR in dB for different values of fading parameters and M with

3, 2, 1A AT R    . 



 

Figure 4: ASER vs. Average SNR (dB) for different numbers of transmit antennas (TA) and received 

antennas (RA) with 1, 1k m  , 16, 1M   .

 

Figure 5: ASER vs. Average SNR (dB) for different number of transmit antennas (TA) and adjustment 

parameters ( ) with 1, 2k m  , 16, 4AM R  . 



V. CONCLUSIONS 

The ASER with HQAM over the GK fading channels has been investigated. In this work, the TAS 

at the base station and MRC receiver scenario is considered. The expressions of the ASER have 

also been derived in terms of the Gamma function. The arbitrary number of transmit, receive 

antennas, fading parameters and adjustment parameter are considered for the analysis. 

Constellation size is varied from M=8 to M=16.  
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