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                                                                       ABSTRACT 

This article suggests using a Deep Learning Neural Network (DLNN) approach to forecast transient stability. 

Transient Stability Assessments (TSA) have long been acknowledged as being crucial for maintaining the reliable and 

secure operation of power systems. Due to the introduction of new components such as power electronics, electric 

vehicles, and renewable energy sources, the complexity of power system dynamic features has increased, causing 

serious worries among TSA.  The development of renewable energy sources is currently having an impact on the 

reliability and security of the electrical network. Wide area monitoring systems have been used in the electrical system, 

producing large amounts of data that have ushered in new approaches to resolving these problems. Due to the 

possibility of catastrophic outages, transient stability issues are grabbing the attention of a wide spectrum of 

stakeholders. The objective of this study is to investigate TSA concerns in the electrical system using data collecting 

and DLNN. The Nigerian 28 Bus system was modeled using the DIgSILENT environment using data from the 

National Control Center (NCC) Oshogbo. The Relief-F feature selection method is used in a Python environment to 

create a data processing pipeline for feature selection. To forecast transient stability on Python, the chosen feature will 

be fed into a particular form of DLNN. The DLNN reduces the time complexity of TSA, increasing accuracy. The 

accuracy value produced for the Nigeria 28 bus system is 90.16 percent once the system converges after 31 epochs. 

The IEEE 9 bus test system is used to validate the DLNN approach, which is used to evaluate transient stability. The 

outcome of this work is compared with similar work in the conclusion in terms of some evaluation performance.  

 

Keywords- Transient stability assessment, Deep Learning Neural Network, Long-short Term Memory, Transient 

stability, Power system stability, Artificial Intelligence, Neural Network, Relief F, Recurrent Neural Network. 

 

                                                         I.   INTRODUCTION 

Power system stability refers to a power system's capacity to return to an equilibrium state and perform as 

intended in the wake of a disturbance. Rotor angle instability caused by synchronism loss has long been linked to the 
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instability issue [4]. Transient stability is the capacity of a power system to retain synchronism in the face of significant 

distractions [12]. It is crucial in this case that TSA is efficient and precise. Thanks to the quick development of artificial 

intelligence techniques, data-driven TSA procedures have gained a lot of attention in recent years, and numerous 

research findings have been made public. So that relevant academia can have a better awareness of the research state, 

key technologies, and current difficulties in the field [7], a thorough evaluation of the available data-driven TSA 

approaches is required. The three types of TSA methods offered are time domain or traditional simulation method, 

direct method, and data-driven artificial intelligence approach.   The behavior of synchronous generators in connection 

to their related control systems, loads, renewable energy output, flexible AC transmission devices (FACTs), and the 

transmission network is described by a set of highly nonlinear Differential and Algebraic Equations (DAE). When a 

power system experiences significant variations, the DAE model cannot be linearized around an operational 

point thus, it must be numerically solved for each situation using time domain simulations. Power outages are mostly 

caused by transient instability, which can also lower a power system's overall performance [15].   

Time domain simulations, a type of TSA, are costly and computationally challenging, particularly for large power 

systems with a nearly infinite number of operating points and contingencies [13], [14.] 

To achieve these objectives, the prediction model is trained using a Deep learning technique (LSTM) and a data set 

for a range of operating conditions. The LSTM reduces the TSA's time complexity, improving prediction accuracy 

even more. The Nigeria 28 Bus System is used to show off the improved performance of the suggested model, and 

the IEEE 9 Bus System is used to corroborate it. 

 

                            II.   TRANSIENT POWER SYSTEM STABILITY 

In this study, a prediction model for the transient stability in Nigeria's 28 bus system is constructed using 

deep learning neural network methodologies. The mathematical process for transient stability is described in this 

section. 

 

A.  Transient Stability TS 
Rotor angle stability is the capacity of a synchronous machine in a power system to retain synchronism 

following an interruption. The consequences of power system disruptions on generation could not always be the same, 

thus some generators would experience increased load as a result of adaptive operation and will slow down, while the 

remaining generators will speed up to maintain grid frequency [6–9]. As the generator's speed increases, the tilt of the 

rotor in relation to the stator varies. To maintain balance between the mechanical input torque and the electrical output 

torque, the rotor continuously alternates between accelerating and decelerating [10], [11]. This behavior reduces the 

generator's capacity to generate electricity and damages the generator, prime mover, and transformers. The 

synchronous machine needs to be secured as a result [2]. The dynamic reaction of a power system to disturbances is 

controlled by a collection of DAE, and their compact form is: 

𝑥 = ℎ (𝑥, 𝑦)                              (1) 

 

0 = 𝑔 (𝑥, 𝑦)                               (2) 

Indicated are the state and algebraic variables x and y. Additionally, h and g denote the corresponding DAE's vectors 

[4], [5]. The algebraic variables y, such as bus voltages and active power injections, and the state variables x, such as 

rotor angles and frequencies, are solved to get time-varying trajectories. This is accomplished by discretizing the set 

of differential equations using numerical techniques like the trapezoidal approach (1). The generated algebraic 

equations and the remaining algebraic equations are solved by the Newton's technique at each time step (2). To 

evaluate transient stability, the dynamic trajectories over the simulation time window are monitored. This method 

provides an accurate assessment of temporary for a specific situation [16]. 

 

B.  Long Short Term Memory Network in TSA  

Recalling information from the past in time series requires LSTM because, LSTMs are capable of 

remembering previous inputs, they are useful for time-series prediction and are used to follow data across time. 



LSTMs, which have a chain-like structure and four interacting layers, interact in various ways. In addition to time-

series predictions, LSTMs are commonly used in speech recognition, music production, and pharmaceutical research 

[17]. LSTM is used to address the long-term dependency problem's problems. LSTM networks are a subset of RNNs. 

At each stage, LSTM has the choice to read, write, or reset the transaction [3]. Equation 3 displays the LSTM's 

mathematical formulas; 

 

 

 

 

 

 

Where ct denotes the state of the LSTM cell and Wi, Wc, and Wo are the weights, the operator denotes the pointwise 

multiplication of two vectors. Based on the cell state, the output gate determines what data can be output, and the input 

gate determines what new data can be entered while updating the cell state [1], [3]. The LSTM cell shown in equation 

4 can be mathematically characterized as follows based on the connections. 
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The forget gate determines which information from the cell state will be deleted. This information is stored when the 

forget gate, ft, has a value of 1, and it is completely discarded when it has a value of 0.  The LSTM's structure is 

depicted in Figure 1. 
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                                              Figure 1:  LSTM Network Diagram [17]. 

 

C.   Network Structure of the Model 

This study constructs a six-layer network model for a Deep learning NN for TSA, which is described below.  

i. Data collection: The National Control Center (NCC), Oshogbo, is where appropriate data for modeling the 28-bus 

Nigeria network are acquired.  

ii. Using DIgSLIENT, the Nigeria 28 bus system was network modeled. 

iii. Data collection for DLNN: The Relief-F technique is applied to remove irrelevant data from redundant ones.  

iv. DLNN (LSTM): To perform the necessary Transient stability evaluation, a DLNN based on LSTM is modelled 

based on the data that is currently available, trained, tested, and validated.  

v. Performance evaluation: The Specificity, Accuracy, and Precision measures are then used to evaluate the 

performance of the LSTM model. 

vi. Evaluate outcomes in the context of related research. 

 

The suggested model for evaluating transient stability is depicted in Figure 2. The TSA model has four inputs: voltage, 

rotor angle, reactive power, and active power. 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2: Schematic design model of TSA 
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                                        III. RESULT AND DISCUSSION  

The test is run using the LSTM and Relief-f algorithm. Python/DIgSLIENT is utilized in this study to carry 

out the study. The Nigerian 28-bus power system for TSA is depicted in Figure 3 below in DIgSILENT model form. 

For TS, information was acquired via DIgSILENT under various scenarios. 

 

 

 

 

                                                Figure 3: Modelling of Nigerian 28-Bus System 

 

The user interface in this study allows users to import datasets, choose pertinent information from the enormous 

amount of data, and preprocess and choose pertinent subsets of the data using the Relief-F feature selection method. 

Table 1 displays loaded data for the 28 bus system in Nigeria. 

 



 

 

Table 1: Loaded Data Nigerian 28-Bus System 
V(p.u) P(KW) Q 

(KVAr) 
(ϴ) TSA 

Targ 

0.388583 -271.618 0.454232 -63.3957 0 

0.469965 563.2468 -306.641 97.48929 0 

0.255932 -209.335 151.7141 -102.012 0 

0.533196 409.5992 -385.232 58.1159 0 

0.147646 19.65125 190.0627 -142.138 0 

0.540542 127.6128 -338.973 17.22918 0 

0.220532 318.4933 72.08323 176.2186 0 

0.484492 -151.327 -180.955 -25.1795 0 

0.370508 535.4349 -148.529 133.0507 0 

0.366197 -274.478 26.74668 -69.1091 0 

0.489727 539.7334 -341.938 88.36538 0 

0.209501 -156.153 174.4907 -114.545 0 

0.543035 309.6819 -389.185 42.17829 0 

0.154649 150.4527 153.4337 -161.475 0 

0.514599 -27.5849 -260.075 -5.50633 0 

0.310105 458.6298 -49.8561 150.0938 0 

0.403731 -252.811 -30.6135 -54.6958 0 

0.465345 553.8266 -304.05 100.1514 0 

0.233219 -197.255 154.0606 -105.39 0 

0.54455 350.7548 -412.666 48.70475 0 

0.261644 -207.228 163.5346 -100.006 1 

0.533944 476.4872 -393.262 69.36015 1 

0.18805 -114.21 196.6741 -121.668 1 

0.558244 357.5287 -423.106 46.91436 1 

0.143834 28.34095 192.7953 -144.893 1 

0.557052 193.1078 -381.217 22.91489 1 

 
In this study, the preprocessed, Relief-f with DLNN-analyzed loaded data contains 81,802 instances classified as 

stable or unstable. Relief-F is used to preprocess the loaded data, and the Python LSTM is then given the specified 

feature. The DLNN is made up of input layers, hidden layers, and LSTM-based output layers. The model confusion 

matrix utilized to determine the evaluation performance of the developed model, including accuracy, sensitivity, and 

precision using the LSTM, is shown in Figure 5. After 31 epochs, the system converges, and the model accuracy for 

TSA hits 90.16 percent. Table 2 displays the model evaluation performance of the method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Confusion Matrix for the TSA Developed Model. TP=14335; TN=275; FP=225; FN=1526 

 

Table 2: Evaluation Performance for TSA 

Measure Evaluation (%) Derivations 

Sensitivity 90.38 TRP=TP/(TP+FN) 

Precision 98.45 PPV=TP/(TP+FP) 

Accuracy 90.16 AC=(TP+TN)/(P+N) 

 

The Target value of TSA acquired on DIgSILENT is displayed in Table 3 and is subsequently placed into a Long 

Short Term Memory (LSTM). To obtain a projected value for TSA, the LSTM is trained. Whether TSA is stable or 

unstable can be determined by the projected value that was attained. When the rotor angle is between 0 and 120 

degrees, as predicted, the system is stable; however, when the rotor angle exceeds 120 degrees, the system is 

unstable. 

.  

Table 3: Target and Predicted values for TSA  

S/N          Target for TSA          Predicted value\n", 

"16345            0                          0.0\n", 

"16346            0                          0.0\n", 

"16347            0                          0.0\n", 

"16350            0                          0.0\n", 

"16351            0                          0.0\n", 

"16352            0                          0.0\n", 

"16353            0                          0.0\n", 

"16354            0                          0.0\n", 

"16355            0                          0.0\n", 

"16356            0                          0.0\n", 

"16357            0                          0.0\n", 

"16358            1                          0.0\n", 

"16359            0                          1.0\n", 

"16360            1                          1.0\n" 

 



 

A. Compare Results of  IEEE 9-bus test system 

This portion, as shown in Figure 5, depicts the modeling of the IEEE 9 bus system in the DIgSILENT power 

factory, which is used to confirm the accuracy of the TSA evaluation results. According to where the load and 

generator were located, the bus bars were either modelled as PV or PQ when it came to the transmission lines. The 

loads were PQ data-based lumped loads. The generators were accurately modeled using the appropriate data and 

synchronous generator characteristics. For these systems, time-domain simulations are performed using DIgSILENT. 

The input comprises the generator's rotor angle, the magnitude of the voltage, as well as the active and reactive power 

at each bus. Additionally, these simulations are run for 10 seconds at a temporal offset of 0.3 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Modelling of IEEE 9 Bus System in DIgSILENT 

Table 4 displays the loaded data for the IEEE 9 bus system developed and utilized for training and testing, consisting 

of 62,500 target values. This is because neural networks need a lot of data to be trained. With appropriate goal values, 

the IEEE 9-Bus system recovered 18,750 testing samples and 43,750 training samples.  

 

 

 

 

 



 

Table 4: Loaded data for IEEE 9 bus system 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 displays the TSA model confusion matrix that was utilized to compute the evaluation performance of the 

developed model, such as accuracy, sensitivity, and precision, using the DLNN technique. TP=2300, TN=5900, 

FP=4000, and FN=370 are the outcomes of the confusion matrix TSA created model. After 82 epochs, the system 

converges, and for TSA, the model accuracy is 65%. 

 

 

 

 

 

 

 
 

 

 

    

V(p.u) P(KW) Q 

(KVAr) 
(ϴ) TSA 

Target 

0.17958 -123.513 171.9536 -121.034 0 

0.541271 191.1149 -377.243 26.03689 0 

0.21862 312.9513 61.45572 172.7484 0 

0.437684 -202.49 -101.296 -40.9198 0 

0.441616 528.1544 -257.218 105.0707 0 

0.210953 -162.216 160.9706 -109.329 0 

0.542129 238.5471 -392.568 35.91947 0 

0.194307 277.8757 75.5049 -179.199 0 

0.459572 -195.994 -154.359 -34.6968 0 

0.428978 542.6657 -250.911 109.4685 0 

0.228289 -186.864 148.0511 -106.753 0 

0.534469 254.3771 -375.392 36.6825 0 

0.198982 272.5964 83.33363 179.7563 0 

0.441242 -197.513 -114.59 -37.5489 0 

0.445292 530.6067 -272.797 104.8101 0 

0.194562 -150.778 160.4638 -113.223 0 

0.542532 191.7196 -392.29 28.39765 0 

0.227462 338.5404 33.06602 169.661 1 

0.418274 -235.976 -78.9364 -49.4565 1 

0.468614 509.4048 -308.579 91.10054 1 



             Figure 6: Confusion matrix    for the TSA IEEE 9 bus system 

Table 5: Evaluation Performance for TSA of IEEE 9 bus system 

Measure  Evaluation (%) Derivations 

Sensitivity  94 TPR=TP/(TP+FN) 

Precious 86 PPV=TP/(TP+FP) 

Accuracy  65 ACC=(TP+TN)/(P+N) 

 

The results were compared with other works on TSA using various machine learning techniques. Table 6 compares 

the effectiveness of several techniques for predicting TSA. Accuracy, sensitivity, and precision are the main 

comparison criteria. The TSA's accuracy, sensitivity, and precision in the created LSTM for the 28 bus system in 

Nigeria have excellent evaluation performance. The low accuracy in TSA is due to the input data acquired, which 

included so many floats. Meanwhile, utilizing the IEEE 9 bus system, the evaluation performance for accuracy was 

65%. In this scenario, random hyperparameter adjustment can be used to increase TSA accuracy, but a longer training 

period is necessary. 

 

Table 6: Comparison of  performance with TSA methods 

Related works on TSA Method 
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Nigeria 28 Bus System 

(proposed work) 

LSTM 90.16 90.8 

 

98.45 
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(proposed work) 

 

LSTM 
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(Baoqin et., al 2020) 
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(Zhou et.,al 2016) 

 

SVM 

 

97.31 

 

_ 

 

_ 

 



                                                 IV.   CONCLUSION 

The integration of power electronics technology with renewable energy sources has made it easier to turn the 

current power systems into a new generation of power systems with a high penetration of renewable energy and power 

electronics. It is quite challenging to evaluate the transient stability of electricity networks because of this change. In 

contrast to conventional time domain simulation and energy function methods, data driven TSA methods establish a 

relationship between system operational parameters and stability status prior to determining stability results without 

requiring a power system's physical model or parameter information. Understanding transient stability is crucial for 

the dependable and secure operation of electricity networks. In this research, feature-based deep learning algorithms 

(LSTM) are presented for the evaluation of transient stability. By giving them a better grasp of the current level of 

research in the domains of power system transient stability assessment, the study's findings will be helpful to 

researchers interested in the topic. 
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