An Analysis of G+7 Irregular Building Using Non-Linear Static and Dynamic Analysis

Koyndrik Bhattacharjee
Department of Civil Engineering,
Dr. B. C. Roy Engineering College,
Durgapur, India
koyndrik.bhattacharjee@bcrec.ac.in

Arijit Kumar Banerji
Department of Civil Engineering,
Dr. B. C. Roy Engineering College, Durgapur, India
arijit.banerji@bcrec.ac.in

Chanchal Das
Department of Civil Engineering,
Dr. B. C. Roy Engineering College, Durgapur, India chanchal.das@bcrec.ac.in
Md. Hamjala Alam
Department of Civil Engineering,
Dr. B. C. Roy Engineering College
Durgapur, India
mdhamjala.alam@bcrec.ac.in

Satabdi Saha
Department of Civil Engineering, Elitte College of Engineering, Kolkata, India
satabdi.biet $@$,gmail.com

Abstract

Urbanization and industrialization have paved the way for the rise of towering multi-story buildings in uneven regions all over a developing country such as India because urbanization and industrialization have paved the way for the growth of towering multi-story structures. Due to their irregular and asymmetrical vertical and even plane architecture, structures formed in bumpy zones differ from those developed on level ground. These constructions are also far more susceptible to earthquake forces in uneven terrain. Thinking about how buildings behave on slanting terrain is the main objective of the current effort. Unlike buildings built on flat land, structures built on sloped terrain require special architectural considerations. The structures on slopes differ from those in fields. When affected by seismic earthquakes, they are torsional-linked, extremely unexpected, and asymmetrical in even and vertical planes. As a result, they are unable to separate injuries. This paper has made an effort to analyze how sporadic multi-story construction on an inclined ground of 60 degrees behaves while considering various earthquake zones, such as zone IV. The models are readied using STAAD Pro and REVIT. STAAD Pro offers advanced and adaptable analysis for specialized applications including gravity loads and earthquake analysis.

Keywords— skyscraper multi-story structures; unsymmetrical structure; STAAD Pro; REVIT

I. INTRODUCTION

The most awful and unpredictable act of nature is a seismic quake. When a structure is exposed to seismic pressures, it does not always endanger human life since the design damage causes the building to collapse, endangering the lives of its occupants and property. The continuous quakes' widespread devastation of both lowand high-rise buildings forces an evaluation, particularly in a developing nation like India. Design subjected to seismic/quake forces are always susceptible to damage, and if it happens on a skewed structure-such as an incline that tends to the ground-the chances of harm increase significantly because of extended sidelong powers on short segments on the extreme side, which encourages the use of plastic turns. Designs on slopes differ from those on fields because they are asymmetrical in both an upward and a level plane. India's northern and northeastern regions feature large slanting areas classified as seismic zones IV and V. The earthquakes in Nepal (2015), Doda (2013), and Sikkim (2011) all caused enormous damage. Due to the rapid urbanization, addition in financial turn of events, and consequent growth in population thickness, there is interest in the advancement of multi-story RC enclosed structures in this area. The progress of the buildings on the sloping ground is required due to the need for a plain region. The current work uses STAD Pro and REVIT to demonstrate a G+7-storeyed maintained design with a
tendency of 30° to the ground subject to sinusoidal ground development. When a design is exposed to seismic pressures, it does not immediately affect living things. However, the building damage causes the design to fail, affecting the people living there and their property. The recurrent earthquakes that cause massive harm to low and towering structures call for an examination, particularly in a developing nation like India. Design subject to seismic/quake forces is always at risk of injury, and if it happens on a skewed structure, such as an incline that is inclined to the ground, the chances of injury increase noticeably because of prolonged equal forces on small portions on the intense side, which encourages the development of plastic turns. STAAD Pro features a cuttingedge user interface, visualization tools, and strong analysis and design engines with advanced finite element and dynamic analysis capabilities. Designing low and high-rise buildings, culverts, petrochemical plants, tunnels, bridges, piles, and other structures out of steel, concrete, wood, aluminium, and cold-formed steel is possible using STAAD Pro, the professional's choice. This covers the development, evaluation, design, visualization, and outcome validation of models.

II. LITERATURE REVIEW

B. Gireesh [1] used the Staad Pro program to study the structural and seismic analyses of the G+7 construction. He used IS 1893 (Part 1) - 2007 as an Indian standard code for design base shear. According to IS 1893:2002, multiple analytical criteria depending on the building's height, zone of location, and importance were stated for the earthquake-resistant criterion. Various loads were applied after the project was launched, including dead loads, live loads, wind loads, snow loads, and earthquake loads, for which the analysis will be performed. The structure was created for the Hyderabad region under Zone II. V. Varalakshmi [2] a multi-story G+5 skyscraper in Kukatpally, Hyderabad, India, and its design and analysis. The design and analysis of columns, beams, footings, and slabs were performed using the renowned civil engineering tool STAAD Pro. The soil's capacity for safe bearing was evaluated. P. Jayachandran [3] G+4 building design and analysis in Salem, Tamil Nadu, India. The research analyzes and designs footings, columns, beams, and slabs using the STAAD Pro and RCC Design Suit software. L.G. Karulkar [4] G +5 building design and analysis in an earthquake zone employing composite structures. Three-dimensional modeling and analysis of structures are done using the SAP 2000 application. When studying composite and RCC structures, equivalent static methodologies and response spectrum analysis approaches are used. The composite structure is shown to be more economical after comparing the results. Using the most cost-effective column technique, M. Mallikarjun (2016 [5] researched the study and design of a multistory residential structure with ung-2+G+10. It was discovered that because the research was conducted using the most cost-effective column approach, this was done by lowering the size of columns on top floors because the load was more significant at the bottom level. The dead and live loads were applied to various structural components, including slabs and beams. Columns were oriented in a greater span in a longer direction to save money by reducing the amount of bending and steel area needed to support them. According to Mohit Sharma (2015) [6], the building has a G+30-story conventional reinforced concrete frame. Multi-story buildings underwent dynamic analysis. A selected building's overall height, including the depth of the foundation, is 114 m . These structures have a plan area of 25 m by 45 m , a height of 3.6 m per story, and a foundation depth of 2.4 m . STAAD-Pro software was used for static and dynamic analysis on a computer using the design parameters specified in IS:1893-2002 Part-1 for zones 2 and 3. The Axial Force values were determined to be comparable to those from static and dynamic analysis.

III. OBJECTIVE OF PRESENT STUDY

The purpose of this research is to study P-Delta and Pushover analysis which are very important in the designing and Analysis of multi-storeyed buildings.

1) The building should survive significant earthquakes that could be anticipated during its service life with damage that is within acceptable bounds.
2) Study of P-Delta effect on building.
3) Study of Push over analysis of building.
4) Check for stability of building in a hilly slope.

IV. METHODOLOGY

Proposed Tool and Methodology

STAAD Pro will analyse and design a multi-story residential structure from various angles in this project. A thorough structural analysis is necessary for structural designing so that the structure may be designed. However, manual calculations are not always feasible, which is why the necessity for programming tools was discovered.

For this purpose, several tools were developed, the most popular of which is STAAD Pro, which enables structural and seismic analysis prior to construction. STAAD Pro may be used to compute loads and their combinations, analyse structures, and design structures based on the analysis for high-rise buildings.

A. P-Delta Effect on Building

The structure may undergo greater lateral displacements as a result of gravity loading when a building is subjected to seismic lateral stress that causes it to deflect. The second-order influence of vertical loads operating onto a laterally displaced structure is known as the $\mathrm{P}-\Delta$ effect, where P is the total vertical load and Δ is the lateral displacement with respect to the ground. The $\mathrm{P}-\Delta$ effect illustrates how the mass of a structure moves under the influence of a weight P through a displacement Δ, creating a moment at the base of the structure.

B. Pushover analysis on Building

Pushover analysis is a static method that uses a streamlined nonlinear approach to calculate seismic structural deformations. After an earthquake, structures reconstruct on their own. As individual ones lose way or fail, the dynamic forces acting on the structure are transmitted to other components.

V. P-DELTA ANALYSIS OF G+7 BUILDING BY USING STAAD PRO

1. Building Parameters

Table 1: Structural Data and Parameters Adopted for Model

Column	$400 \mathrm{~mm} \times 500 \mathrm{~mm}$
Beam	$500 \mathrm{~mm} \times 750 \mathrm{~mm}$
Material used	Reinforce cement concrete
Concrete Frame	SMRF
Main Wall	230 mm
Reinforcement used	HYSD
Slab thickness	150 mm
Unit weight of concrete	$25 \mathrm{KN} / \mathrm{CUM}$
Concrete grade	Fe500
Steel Grade	3.5 m
Floor to floor height	G+7
Number of floors	$220+142$
No. of beam + column	20 m
Length of plan in x-direction	18 m
Length of plan in z-direction	

2. Plan of Residential Building on AUTO CAD and REVIT

Fig. 1: Column layout of Structure

Fig. 2: Isometric view of the irregular building
3. Loads acting and their calculation
a) Dead Load

Table 2: Dead Load Parameter

Dead load of different components	Load
Slab	$3.75 \mathrm{KN} / \mathrm{m}^{2}$
Floor finish	$1.575 \mathrm{KN} / \mathrm{m}^{2}$
Celling Plaster	$0.168 \mathrm{KN} / \mathrm{m}^{2}$
Wall	$13.248 \mathrm{KN} / \mathrm{m}$
Both side plaster wall	$1.96 \mathrm{KN} / \mathrm{m}$
Parapet wall	$2.286 \mathrm{KN} / \mathrm{m}$

b) Live load -

For floor UDL $=3 \mathrm{KN} / \mathrm{m}^{2}$
For roof UDL $=2.8 \mathrm{KN} / \mathrm{m}^{2}$
Point load $=1.8 \mathrm{KN}$
c) Wind load -
$\mathrm{P}_{\mathrm{z}}=0.6 \mathrm{~V}_{\mathrm{z}}{ }^{2}$
$\mathrm{V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{b}} \times \mathrm{k}_{1} \times \mathrm{k}_{2} \times \mathrm{k}_{3} \times \mathrm{k}_{4}$
$\mathrm{V}_{\mathrm{b}}=47 \mathrm{~m} / \mathrm{s}$ (Darjeeling)
$\mathrm{K}_{1}=$ Risk coefficient $=1$
$\mathrm{K}_{2}=$ terrain coefficient $=0.93$
$\mathrm{K}_{3}=$ topo coefficient $=1$
$\mathrm{K}_{4}=1$
$\mathrm{V}_{\mathrm{z}}=43.71 \mathrm{~m} / \mathrm{s}$
$\mathrm{P}_{\mathrm{z}}=1.14633 \mathrm{KN} / \mathrm{m}^{2}$
Table 3: Wind loads at different height

height (m)	K_{1}	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	$\mathrm{~K}_{4}$	$\mathrm{~V}_{\mathrm{b}}$	$\mathrm{P}_{\mathrm{z}}\left(\mathrm{KN} / \mathrm{m}^{2}\right)$
10	1	0.91	1	1	47	1.097
15	1	0.97	1	1	47	1.247
20	1	1.01	1	1	47	1.352
30	1	1.06	1	1	47	1.489
50	1	1.12	1	1	47	1.662
100	1	1.20	1	1	47	1.908
150	1	1.24	1	1	47	2.037

4. The P-Delta Analysis is carried out for the proposed unsymmetrical building resting on a hill slope.

Fig. 3: 3-D rendering view
5. Results obtained from P-Delta Analysis

Table 4: Deflection obtained on Column

Ground floor	0.756 mm
$1^{\text {st }}$ floor	1.489 mm
$2^{\text {nd }}$ floor	2.131 mm
$3^{\text {rd }}$ floor	2.709 mm
$4^{\text {th }}$ floor	3.218 mm

$5^{\text {th }}$ floor	3.661 mm
$6^{\text {th }}$ floor	4.040 mm
$7^{\text {th }}$ floor	4.360 mm
$8^{\text {th }}$ floor	4.627 mm

Table 5: Deflection obtained on Beams

Beam 1	2
Beam 2	2
Beam 3	1

VI. PUSHOVER ANALYSIS OF G+7 BUILDING BY USING STAAD PRO

Using the static-nonlinear analytical technique known as "pushover," a structure is subjected to gravity loading and a monotonic displacement-controlled lateral load pattern. The load is continuously increased through both elastic and inelastic behavior until an ultimate state is reached. Indicating the range of base shear brought on by earthquake loading, the configuration of the lateral load may be proportionate to the distribution of mass along the building height, mode forms, or another practical technique.

A structure with constant vertical loads and growing lateral loads is the subject of a static non-linear pushover analysis. The forces brought on by earthquakes are represented by equivalent static lateral loads. This method displays any early failure or weakness by plotting a structure's total base shear vs. top displacement. It is able to determine the collapse load and ductility capability because the study was conducted until failure. On a building frame, plastic rotation is observed, and analytically calculated lateral inelastic forces versus displacement. Finding structural faults is made possible by this type of research. It is possible to decide to retrofit after conducting such studies. There are two steps in the seismic design process. Developing an effective structural system is the first and frequently most important phase. It must be constructed carefully taking into account all significant seismic performance requirements, ranging from serviceability challenges. The seismic engineering process is currently complete. The general guidelines for the strength and stiffness objectives should be adequate to design and roughly size an effective structural system. These recommendations are predicated on a fundamental comprehension of ground motion and the features of elastic and inelastic dynamic response. Only when a structural framework has been created is it possible to build complex mathematical/physical models. It is necessary to use these models when evaluating the seismic performance of an existing system and when modifying component behavior parameters (strength, stiffness, and deformation capacity) in order to improve performance.

In the Pushover analysis, the strength and deformation demands of design earthquakes are identified using static inelastic analysis and compared to the available capacities at the desired performance levels. Through static inelastic analysis, structural systems are assessed to determine the anticipated performance levels. The assessment of key performance parameters, including global drift, inter-story drift, inelastic element deformations (either absolute or normalized concerning a yield value), deformations between elements, and element connection forces (for elements and connections that cannot sustain inelastic deformations), form the foundation of the evaluation. The inelastic static pushover analysis can be viewed as a tool for predicting seismic force and deformation needs after earthquakes based on analysing crucial performance. The pushover is expected to show a number of reaction qualities that cannot be discovered through an elastic static or dynamic analysis.

These are some instances of such response characteristics: Axial force requirements for columns, force requirements for brace connections, and moment requirements for possibly brittle parts are examples of realistic force requirements.
$>$ Beam-to-column connections, shear force requirements for deep reinforced concrete spandrel beams, and shear force requirements for unreinforced masonry wall piers, among others.
$>$ Estimates of the deformations ask for components that must take an elastic form to release the energy applied to the structure.
$>$ How the behaviour of the structural system is affected by the weakening of specific parts.
$>$ It determines the crucial areas that must be the centre of attention via detailing and where significant deformation demands are anticipated.
\rightarrow The dynamic characteristics of the elastic range will change depending on how strong the discontinuities are in the plan elevation.
$>$ Understory drift can be estimated by considering strength discontinuities or stiffness discontinuities in order to reduce damages and assess P-Delta impacts.

Check the load path's accuracy and completeness while considering all the structural system's components, linkages, stiff non-structural elements, and foundation system.

Results of Pushover Analysis

Table 6: Displacement on floors (mm)

	U_{x}	U_{y}	U_{z}
Ground Floor	-0.789	-32.495	-0.016
$1^{\text {st }}$ Floor	-1.451	-58.913	-0.155
$2^{\text {nd }}$ Floor	-2.032	-81.277	-0.353
$3^{\text {rd }}$ Floor	-2.569	-100.415	-0.593
$4^{\text {th }}$ Floor	-2.946	-99.323	2.020
$5^{\text {th }}$ Floor	-3.476	-114.945	1.283
$6^{\text {th }}$ Floor	-3.856	-140.092	-1.315
$7^{\text {th }}$ Floor	-4.178	-147.587	-1.476
$8^{\text {th }}$ Floor	-4.686	-152.250	-1.559

VII. RESULTS AND CONCLUSION

The P-Delta and Pushover Analysis has been carried out for a G +7 multistorey building and the following results have been found out using STAAD. Pro software. It has been observed that the maximum and minimum deflection in beam is 2.713 mm and 1.728 mm respectively. For the columns, the maximum and minimum deflection is 4.627 mm and 0.756 mm respectively. The maximum and minimum displacement is observed in pushover analysis with 152.250 mm and 0.789 mm the respective values.

REFERENCES

[1] Chung B.T., "Dynamic Behaviour of Multi-storey Buildings" Engineering Report, University of Auckland, No. 492, 1991.
[2] CSI Analysis Reference Manual for SAP2000, ETABS, SAFE, CSI Bridge.
[3] Dinar Yousuf, Karim Samiul, Barua Ayan, Uddin Ashraf, "P-Delta Effect in Reinforced Concrete structures of Rigid Joint",ISOR Journal of Mechanical and Civil Engineering, Vol. 10, December 2013.
[4] Dubey S. K., Sangamnerkar Prakash, Soni Deepak, "Dynamic Behavior of Reinforced Concrete Framed Buildings"
[5] E. L. Wilson and A. Habibullah, "Static and Dynamic Analysis of Multi-Story Buildings Including P-Delta Effects", 1987.
[6] Konapure C. G., Dhanshetti P. V., "Effect of P-Delta Action on Multi-Storey Buildings", International Journal of Engineering
[7] Research \& Technology (IJERT), Vol. 4, January 2015. D.N. Shinde, Nair Veena V, Pudale Yojana M , " PUSHOVER ANALYSIS
OF MULTY STORY BUILDING International Journal of Research in Engineering and Technology eISSN: 2319-1163.

APPENDIX

Proprietary Program of Bentley Systems, Inc.

1. STAAD SPACE

2. START JOB INFORMATION
3. ENGINEER DATE 20-NOV-22
4. END JOB INFORMATION
5. INPUT WIDTH 79
6. UNIT METER KN
7. JOINT COORDINATES
8. 1000 ; 2006 ; 300 12; 400 18; 5500 ; $6506 ; 750$ 12; 85018
9. $91000 ; 101006 ; 1110012 ; 1210018 ; 131500 ; 141506$; 1515012
10. $1615018 ; 171900$; 181906 6; 19190 12; 20190 18; 2103.50
11. 2203.5 6; 2303.5 12; 2403.5 18; $2553.50 ; 2653.5$ 6; 2753.512
12. $2853.518 ; 29103.50 ; 30103.56 ; 31103.512 ; 32103.518 ; 33153.50$
13. $34153.56 ; 35153.512 ; 36153.518 ; 37193.50 ; 38193.56$
14. 39193.5 12; 40193.5 18; $41070 ; 42076$ 6; $430712 ; 440718 ; 45570$
15. $46576 ; 475712 ; 485718 ; 491070 ; 501076 ; 5110712 ; 5210718$
16. 53157 0; 54157 6; 55157 12; 56157 18; $571970 ; 58197$ 6; 5919712
17. $6019718 ; 61010.50 ; 62010.56 ; 63010.512 ; 64010.518 ; 65510.50$ 18. 66510.5 6; 67510.5 12; $68510.518 ; 691010.50 ; 701010.56$
18. $711010.512 ; 721010.518 ; 731510.50 ; 741510.56 ; 751510.512$
19. $761510.518 ; 771910.50 ; 781910.56 ; 791910.512 ; 801910.518$
20. $810140 ; 820146 ; 8301412 ; 8401418 ; 855140 ; 865146 ; 8751412$
21. $8851418 ; 8910140 ; 9010146 ; 91101412 ; 92101418 ; 9315140$
22. 941514 6; $95151412 ; 961514$ 18; $9719140 ; 9819146 ; 99191412$ 24. $100191418 ; 101017.50 ; 102017.56 ; 103017.512 ; 104017.518$ 25. $105517.50 ; 106517.56 ; 107517.512 ; 108517.518 ; 1091017.50$ 26. 1101017.5 6; $1111017.512 ; 1121017.518 ; 1131517.50 ; 1141517.56$ 27. $1151517.512 ; 1161517.518 ; 1171917.50 ; 1181917.56 ; 1191917.512$ 28. 1201917.5 18; 1210210 ; 122021 6; 123021 12; 124021 18; 1255210 29. 1265216 ; 127521 12; 128521 18; 12910210 ; 13010216 ; 131102112 30. $132102118 ; 13315210 ; 13415216 ; 135152112 ; 136152118$ 31. 1371921 0; 1381921 6; 1391921 12; 1401921 18; 141024.50 32. 142024.56 ; 143024.5 12; 144024.5 18; 145524.50 ; 146524.56 33. 147524.5 12; 148524.5 18; 1491024.50 ; 1501024.5 6; 1511024.512 34. $1521024.518 ; 1531524.50 ; 1541524.5$ 6; $1551524.512 ; 1561524.518$ 35. $1571924.50 ; 1581924.5$ 6; $1591924.512 ; 1601924.518 ; 1610280$ 36. 162028 6; 16302812 ; 164028 18; 1655280 ; 1665286 ; 16752812 37. 16852818 ; $16910280 ; 17010286 ; 171102812$; 172102818 ; 17315280 38. 1741528 6; 1751528 12; 1761528 18; 1771928 0; 17819286 39. 1791928 12; 1801928 18; $1810-3.5$ 6; $1820-3.512 ; 1830-3.518$ 40. 1845 -3.5 6; 1855 -3.5 12; $1865-3.518 ; 18710-3.56 ; 18810-3.512$ 41. $18910-3.518 ; 19015-3.56 ; 19115-3.512 ; 19215-3.518 ; 19319-3.5$ 42. 194 19-3.5 12; 195 19-3.5 18; $1960-7$ 12; $1970-7$ 18; 1985 -7 12 43. 1995 -7 18; 200 10 -7 12; 20110 -7 18; 20215 -7 12; 203 15 -7 18 44. $20419-7$ 12; $20519-7$ 18; 206 0-2.5 0; 2075-2.5 0; 20810 -2.5 0 45. 209 15-2.5 0; $21019-2.50 ; 2110-6$ 6; $2125-6$ 6; 21310 -6 6; $21415-66$ 46. 215 19-6 6; 2160 -9.5 12; 2170 -9.5 18; 2185 -9.5 12; 2195 -9.5 18 47. 22010 -9.5 12; 22110 -9.5 18; 22215 -9.5 12; 22315 -9.5 18; 22419 -9.5 12 48. 22519 -9.5 18
23. MEMBER INCIDENCES
24. $1161141 ; 2121141 ; 3121101 ; 481101 ; 58161 ; 66141 ; 74121 ; 8211$ 51. 91 206; 102 181; $11181211 ; 12182$ 196; $13196216 ; 14217197 ; 15197183$
25. $161834 ; 17424 ; 184424 ; 196444 ; 2084$ 64; $2110484 ; 22124104$ 53. 23144 124; 24164 144; 25162 142; 26142 122; 27122 102; 2882102 54. $298262 ; 306242 ; 314222 ; 32222 ; 33163143 ; 34143123 ; 35123103$ 55. 36103 83; 3783 63; 3863 43; 3943 23; 4023 3; 413 182; 42181182 56. 43196 197; 4412 2; 452 3; 4634 4; 47182 183; 4821 22; 4922 23; 502423 57. 5141 42; 5242 43; 5344 43; 5461 62; 5562 63; $566463 ; 578182 ; 588283$ 58. 5984 83; 60101 102; 61102 103; 62104 103; $63121122 ; 64122123$ 59. 65124 123; $66141142 ; 67142$ 143; 68144 143; 69161 162; 70162163 60. $71164163 ; 72165145 ; 73125145 ; 74125105 ; 7585$ 105; 76 $8565 ; 776545$ 61. 7845 25; 79255 ; 805 207; 816 184; 82184 212; 83185 198; 84198218 62. 85219 199; 86199 186; 871868 ; 888 28; 8948 28; 9068 48; 918868 63. 92108 88; 93128 108; 94148 128; 95168 148; 96166 146; 97146126 64. 98126 106; 9986 106; 10086 66; 10166 46; 10246 26; 10326 6; 104167147 65. 105147 127; 106127 107; 107107 87; 10887 67; $1096747 ; 1104727$ 66. 11127 7; 1127185 ; 113184 185; 114198 199; 1155 6; 11667 ; 11778 67. 118185 186; 11925 26; 12026 27; 1212827 ; 12245 46; 1234647 ; 1244847 68. 12565 66; 12666 67; 12768 67; 12885 86; 12986 87; 13088 87; 131105106 69. 132106 107; 133108 107; 134125 126; 135126 127; 136128 127; 137145146 70. 138146 147; 139148 147; 140165 166; 141166 167; 142168 167; 143169149 71. 144129 149; 145129 109; 14689 109; 14789 69; 14869 49; 1494929 72. 15029 9; 1519 208; 15210 187; 153187 213; 154188 200; 155200220 73. 156221 201; 157201 189; 158189 12; 15912 32; 16052 32; 1617252 74. 16292 72; 163112 92; 164132 112; 165152 132; 166172 152; 167170150 75. 168150 130; $169130110 ; 17090110 ; 1719070 ; 1727050 ; 1735030$ 76. 17430 10; 175171 151; 176151 131; 177131 111; 178111 91; 1799171 77. 1807151 ; 1815131 ; 1823111 ; 18311 188; 184187 188; 185200201 78. 1869 10; 18710 11; 18811 12; 189188 189; 19029 30; 19130 31; 1923231 79. 19349 50; 19450 51; 19552 51; 19669 70; $1977071 ; 19872$ 71; 1998990 80. 20090 91; 20192 91; 202109 110; 203110 111; 204112 111; 205129130 81. 206130 131; 207132 131; 208149 150; 209150 151; 210152 151; 211169170 82. $212170171 ; 213172171 ; 214173153 ; 215133153 ; 216133113 ; 21793113$ 83. 21893 73; 21973 53; 22053 33; 22133 13; 22213 209; 22314190 84. 224190 214; 225191 202; 226202 222; 227223 203; 228203 192; 22919216 85. 23016 36; 23156 36; $2327656 ; 23396$ 76; 234116 96; 235136116 86. 236156 136; 237176 156; 238174 154; 239154 134; 240134 114; 24194114 87. 24294 74; 24374 54; 24454 34; 24534 14; 246175 155; 247155135 88. 248135 115; 249115 95; $2509575 ; 25175$ 55; 25255 35; 2533515 89. 25415 191; 255190 191; 256202 203; 25713 14; 25814 15; 2591516 90. 260191 192; 26133 34; 26234 35; $2633635 ; 26453$ 54; 26554 55; 2665655
26. 26773 74; $2687475 ; 2697675 ; 27093$ 94; 27194 95; $2729695 ; 273113114$ 92. 274114 115; 275116 115; 276133 134; 277134 135; 278136 135; 279153154 93. 280154 155; 281156 155; 282173 174; 283174 175; 284176 175; 285177157 94. 286137 157; 287137 117; 28897 117; 28997 77; 29077 57; 2915737 95. 29237 17; 29317 210; 29418 193; 295 193 215; 296194 204; 297204224 96. 298225 205; 299205 195; 300195 20; 30120 40; $3026040 ; 3038060$ 97. $30410080 ; 305120100 ; 306140$ 120; $307160140 ; 308180160 ; 309178158$ 98. 310158 138; $311138118 ; 31298$ 118; $3139878 ; 31478$ 58; 3155838 99. 31638 18; $317179159 ; 318159$ 139; $319139119 ; 32011999 ; 3219979$ 100. 32279 59; 32359 39; 32439 19; 32519 194; 326193 194; 327204205 101. 32817 18; 32918 19; 33019 20; 331194 195; 33237 38; $3333839 ; 3344039$ 102. $3355758 ; 3365859 ; 3376059 ; 3387778 ; 3397879 ; 3408079 ; 3419798$ 103. $3429899 ; 34310099 ; 344117$ 118; $345118119 ; 346120119 ; 347137138$ 104. $348138139 ; 349140139 ; 350157158 ; 351158159 ; 352160159 ; 353177178$ 105. $354178179 ; 355180179 ; 35615 ; 35759 ; 358913 ; 3591713 ; 36026$ 106. 3616 10; $3621014 ; 3631418 ; 36437 ; 365117$; $3661115 ; 3671519$ 107. 36848 8; 3698 12; 37012 16; $3711620 ; 37221$ 25; $3732529 ; 3742933$ 108. 37537 33; 37622 26; 37726 30; $3783034 ; 37934$ 38; 3802327 ; 3813127 109. 38231 35; 38335 39; 38424 28; 38528 32; 38632 36; $3873640 ; 3884145$ 110. 38945 49; 39049 53; 39157 53; 39242 46; $3934650 ; 3945054 ; 3955458$ 111. 39643 47; $3975147 ; 3985155 ; 39955$ 59; 40044 48; 40148 52; 4025256 112. 40356 60; 40461 65; 40565 69; $4066973 ; 4077773 ; 4086266 ; 4096670$ 113. $4107074 ; 4117478 ; 41263$ 67; 41371 67; $4147175 ; 4157579 ; 4166468$ 114. $4176872 ; 4187276 ; 41976$ 80; 42081 85; 42185 89; 422 89 93; 4239793 115. 42482 86; 42586 90; 42690 94; 42794 98; 42883 87; 42991 87; 4309195 116. $4319599 ; 4328488 ; 4338892 ; 4349296 ; 43596$ 100; 436101105 117. $437105109 ; 438109113 ; 439117113 ; 440102$ 106; $441106110 ; 442110114$ 118. $443114118 ; 444103107 ; 445111107 ; 446111115 ; 447115119 ; 448104108$ 119. 449108 112; 450112 116; 451116 120; 452121 125; 453125 129; 454129133 120.455 137 133; 456122 126; 457126 130; 458130 134; 459 134 138; 460123127 121. $461131127 ; 462131135 ; 463135139 ; 464124128 ; 465128132 ; 466132136$ 122. $467136140 ; 468141145 ; 469145149 ; 470149153 ; 471157153 ; 472142146$ 123. 473146 150; $474150154 ; 475154$ 158; $476143147 ; 477151$ 147; 478151155 124. $479155159 ; 480144148 ; 481148$ 152; 482152 156; 483156 160; 484161165 125. 485165 169; $486169173 ; 487177173 ; 488162$ 166; $489166170 ; 490170174$ 126. 491174 178; 492163 167; 493171 167; 494171 175; 495175 179; 496164168 127. 497168 172; 498172 176; 499176 180; 500197 199; 501199 201; 502201203 128. 503203 205; 504196 198; 505198 200; 506200 202; 507202 204; 508181184 129. 509184 187; 510187 190; 511190 193; 512182 185; 513188 185; 514188191 130. 515191 194; 624183 186; 625186 189; 626189 192; 627192195 131. ELEMENT INCIDENCES SHELL
27. $516161165166162 ; 517165169170$ 166; 518169173174170 133. $519173177178174 ; 520141145146142 ; 521145149150146$ 134. $522149153154150 ; 523153157158$ 154; 524121125126122 135. 525125129130 126; $526129133134130 ; 527133137138134$ 136. 528101105106 102; 529105109110 106; 530109113114110 137. $531113117118114 ; 53281858682 ; 533858990$ 86; 53489939490 138. 535939798 94; 536616566 62; 537656970 66; 53869737470 139. $53973777874 ; 540414546$ 42; $54145495046 ; 54249535450$ 140. 543535758 54; 544212526 22; 545252930 26; 54629333430 141. 547333738 34; 548267 3; 549610117 ; 55010141511 ; 55114181915 142. 552222627 23; 553263031 27; 554303435 31; 55534383935 143. 556424647 43; 557465051 47; 5585054 55 51; 55954585955 144. 560626667 63; 561667071 67; 562707475 71; 56374787975 145. $56482868783 ; 56586909187 ; 56690949591 ; 56794989995$ 146. $568102106107103 ; 569106110111$ 107; 570110114115111 147. $571114118119115 ; 572122126127$ 123; 573126130131127 148. 574130134135 131; 575134138139 135; 576142146147143 149. 577146150151 147; 578150154155 151; 579154158159155 150. $580162166167163 ; 581166170171$ 167; 582170174175171 151. $583174178179175 ; 584163167168$ 164; 585167171172168 152. $586171175176172 ; 587175179180$ 176; 588143147148144 153. $589147151152148 ; 590151155156$ 152; 591155159160156 154. $592123127128124 ; 593127131132$ 128; 594131135136132 155. $595135139140136 ; 596103107108104 ; 597107111112108$ 156. $598111115116112 ; 599115119120$ 116; $60083878884 ; 60187919288$ 157. $60291959692 ; 603959910096 ; 604636768$ 64; 60567717268 158. $60671757672 ; 60775798076 ; 60843474844 ; 60947515248$ 159. $61051555652 ; 61155596056 ; 61223272824 ; 61327313228$ 160. $61431353632 ; 61535394036 ; 6163784 ; 617711128 ; 61811151612$ 161. 619151920 16; 620182185186 183; 621185188189 186; 622188191192189 162. 623191194195192
28. ELEMENT PROPERTY
29. 516 TO 623 THICKNESS 0.15
30. DEFINE MATERIAL START
31. ISOTROPIC CONCRETE
32. E 2.17185E+007
33. POISSON 0.17
34. DENSITY 23.5616
35. ALPHA 1E-005
36. DAMP 0.05
37. TYPE CONCRETE
38. STRENGTH FCU 27579
39. END DEFINE MATERIAL
40. MEMBER PROPERTY AMERICAN
41. 1 TO 4172 TO 112143 TO 183214 TO 254285 TO 325 PRIS YD 0.5 ZD 0.4
42. 42 TO 71113 TO 142184 TO 213255 TO 284326 TO 515624 TO 626 -
43. 627 PRIS YD 0.75 ZD 0.5
44. CONSTANTS
45. MATERIAL CONCRETE ALL
46. SUPPORTS
47. 206 TO 225 FIXED
48. DEFINE WIND LOAD
*** NOTE: If any floor diaphragm is present in the model Wind Load definition should be defined after Floor Diaphragm definition.
Otherwise wind
load generation may be unsuccessful during analysis.
49. TYPE 1 WIND LOAD
50. INT 2.012 .142 .2312 .3412 .4742 .65 2.739 HEIG 1015203050100150
51. EXP 1 JOINT 1 TO 225
52. LOAD 1 LOADTYPE DEAD TITLE DL
53. SELFWEIGHT Y -1 LIST 1 TO 515624 TO 627
54. MEMBER LOAD
55. 42 TO 68113 TO 139184 TO 210255 TO 281326 TO 352356 TO 483500 TO 515 -
56. 624 TO 627 UNI GY - 15.21
57. FLOOR LOAD
58. YRANGE 3.528 FLOAD 5.5 XRANGE 0 19 ZRANGE 06 GY
NOTE about Floor/OneWay Loads/Weights.
Please note that depending on the shape of the floor you may
have to break up the FLOOR/ONEWAY LOAD into multiple commands. For details please refer to Technical Reference Manual
Section 5.32.4.2 Note d and/or "5.32.4.3 Note f.
59. YRANGE 028 FLOAD 5.5 XRANGE 019 ZRANGE 612 GY
60. YRANGE - 3.528 FLOAD 5.5 XRANGE 0 19 ZRANGE 1218 GY
61. LOAD 2 LOADTYPE LIVE TITLE LL
62. FLOOR LOAD
63. YRANGE 3.5 24.5 FLOAD 3 XRANGE 019 ZRANGE 06 GY
64. YRANGE 0 24.5 FLOAD 3 XRANGE 019 ZRANGE 612 GY
65. YRANGE -3.5 24.5 FLOAD 3 XRANGE 0 19 ZRANGE 1218 GY
66. LOAD 3 LOADTYPE WIND TITLE WL X+
67. WIND LOAD X 1 TYPE 1 XR 019 YR 028 ZR 06
68. WIND LOAD X 1 TYPE 1 XR 019 YR -3.5 28 ZR 612
69. WIND LOAD X 1 TYPE 1 XR 019 YR -7 28 ZR 1218
70. LOAD 4 LOADTYPE WIND TITLE WL X -
71. WIND LOAD X -1 TYPE 1 YR 028 ZR 06
72. WIND LOAD X -1 TYPE 1 YR 028 ZR 612
73. WIND LOAD X -1 TYPE 1 YR - 728 ZR 1218
74. LOAD 6 LOADTYPE WIND TITLE WL Z -
75. WIND LOAD Z -1 TYPE 1 XR 019 YR -7 28
76. LOAD 7 GENERATED INDIAN CODE GENRAL_STRUCTURES 1
77. REPEAT LOAD
78. 11.521 .5
79. LOAD 8 GENERATED INDIAN CODE GENRAL_STRUCTURES 2
80. REPEAT LOAD
81. 11.221 .231 .2
82. LOAD 9 GENERATED INDIAN CODE GENRAL_STRUCTURES 3
83. REPEAT LOAD
84. 11.221 .241 .2

PROBLEMSTATISTICS

NUMBER OF JOINTS 225 NUMBER OF MEMBERS 519
NUMBER OF PLATES 108 NUMBER OF SOLIDS 0
NUMBER OF SURFACES 0 NUMBER OF SUPPORTS 20
SOLVER USED IS THE OUT-OF-CORE BASIC SOLVER ORIGINAL/FINAL BAND-WIDTH= 205/27/168 DOF
TOTAL PRIMARY LOAD CASES $=25$, TOTAL DEGREES OF FREEDOM $=1230$
TOTAL LOAD COMBINATION CASES = 0 SO FAR.
SIZE OF STIFFNESS MATRIX = 207 DOUBLE KILO-WORDS REQRD/AVAIL. DISK SPACE $=16.4 / 165754.7 \mathrm{MB}$
MAXIMUM DISPLACEMENTS (CM /RADIANS) (LOADING 9) MAXIMUMS AT NODE
$X=-2.68762 \mathrm{E}+00180$
$\mathrm{Y}=-5.26466 \mathrm{E}-01164$
$\mathrm{Z}=5.69772 \mathrm{E}-01180$
$\mathrm{RX}=7.20523 \mathrm{E}-0417$
$R Y=-3.87175 \mathrm{E}-041$
$R Z=6.34454 \mathrm{E}-0443$
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 10 GENERATED INDIAN CODE GENRAL_STRUCTURES 4
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
$\mathrm{X}=0.994179849 \mathrm{E}+01$
$\mathrm{Y}=0.694526676 \mathrm{E}+01$
$\mathrm{Z}=0.952222938 \mathrm{E}+01$
** NOTE: MOMENT BALANCE DOES NOT CONSIDER SECONDARY EFFECTS OF P-Delta or Direct Analysis **
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 11
GENERATED INDIAN CODE GENRAL_STRUCTURES 5
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
$\mathrm{X}=0.994179849 \mathrm{E}+01$
$\mathrm{Y}=0.694526676 \mathrm{E}+01$
$\mathrm{Z}=0.952222938 \mathrm{E}+01$
CENTER OF FORCE BASED ON Z FORCES ONLY (METE).
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 12
GENERATED INDIAN CODE GENRAL_STRUCTURES 6
CENTER OF FORCE BASED ON X FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
$\mathrm{X}=0.000000000 \mathrm{E}+00$
$\mathrm{Y}=0.126780483 \mathrm{E}+02$
$Z=0.941554729 \mathrm{E}+01$
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
$\mathrm{X}=0.994179849 \mathrm{E}+01$
$\mathrm{Y}=0.694526676 \mathrm{E}+01$
$\mathrm{Z}=0.952222938 \mathrm{E}+01$

