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1. INTRODUCTION

Consider the nonlinear integrodifferential equation of the type:

b
:L'(t) = g(t) +/ f(ta S, (E(S), xl(s)v T 7x(n_1)(8)7x(a)7m/(a)v e 7x(n_1)(a)7x(b)a {E/(b), T 7x(n_1)(b)>d87 (1)

for t € I = [a,b]. Let R denote the set of real numbers, E = R x R x --- x R (n times) be the product space and
R = [0,00) be the given subset of R. We assume F € C(I? x E3R), G € C(I,R), and n > 1.

Several researchers have been introduced many iteration methods for certain classes of operators in the sense of their
convergence, equivalence of convergence and rate of convergence etc. (see 11, B 5] [8 9] [15] 16 17, 18], 19 20, 23], 24]
25]). The most of iterations devoted for both analytical and numerical approaches. The S— iteration method, due

to simplicity and fastness, has attracted the attention and hence, it is used in this chapter.

The sufficient literature exists dealing with the special and even more general version of the equation by using
different techniques [2, [6], 10}, [1T] 12} 13| 14, 2T, 22] and some of references cited therein. In recently, Yunus Atalan,
Faik Giirsoy and Abdul Rahim Khan [4] has studied the special version of equation for different qualitative

properties of solutions. Authors are motivated by the work of D. R. Sahu [23] and influenced by [4].

The main objective of this chapter is to use normal S—iteration method to establish the solution of the problem .

Also, we give a data dependence result for the integral equation with the help of normal S—iteration method.

2. EXISTENCE OF SOLUTION VIA S—ITERATION

For continuous functions ) : I - R (j =0,1,--- ,n — 1), we denote by

2(Ble = 3|9 (1),
=0

1
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for (z(t),'(t), -, = D(t)) € E, t € I. We define B =C""'(I) = C" (I,R), is a space of those functions z

which are (n — 1) times continuously differentiable on I endowed with norm

2]l 5 = max {J (1) £} (2)
It is easy to see that B with norm defined by is a Banach space.
By a solution of equation , we mean a continuous function z(t), ¢ € I which is (n — 1) times continuously
differentiable on I and satisfies the equation . It is easy to observe that the solution x(t) of the equation and

its derivatives satisfy the integral equations (see [7], p.318)
w(j)(t) - g(j)(t)

b 9i
+/a %f(ta Sax(s)axl(s)v"' ’m(nil)(s)’x(a)vx/(a)v"' ’w(nil)(a)ax(b)ax/(b)a"' 7x(n71)(b))dsa (3)

forteland0<j<n-1

We need the following pair of known results:

Theorem 1. (([23], p.194)) Let C' be a nonempty closed convex subset of a Banach space X and T : C — C a
contraction operator with contractivity factor k € [0,1) and fized point xx. Let o, and B, be two real sequences in
[0,1] such that « < a,, <1 and f < By, < 1 for alln € N and for some a, 8 > 0. For given uy = v; = wy € C, define

sequences Uy, vy, and w, i C as follows:
Unt1 = (1 — ap)Tuy + an Ty,
Yn = (1 = Bn)un + BnTun,n € N.
Picard iteration: Upt1 = Tvp,n € N.

S-iteration process:

Mann iteration process: Wpt1 = (1 = Bp)wy + BrTw,,n € N.
Then we have the following:
(2) lfunss — 2% < k" [1 = (L= k)] flur — 2*]|, for all n € N.
() |lvnt1 — || < k™||vr — z*||, for alln € N.
(©) lluwmsr — ¥l < [1—(1- k)ﬁ}"nwl —2*||, for alln € N.

Moreover, the S-iteration process is faster than the Picard and Mann iteration processes.

In particular, for o, = 1, n € N, the S-iteration process can be written as:

Uy € C,
Un+1 = Tyn7 (4)
Yn = (1 = Bp)un + BnTun, n € N.

Lemma 1. (([25], p.4)) Let {8,}5>, be a nonnegative sequence for which one assumes there exists ng € N, such

that for all n > ng one has satisfied the inequality

ﬁn—&-l < (1 - Un)ﬁn + lnVn, (5)

where p1,, € (0,1), for all m € N, Y 1, = 00 and 7, > 0, ¥n € N. Then the following inequality holds

n=0

0 <lim sup B, <lim sup v,. (6)

n—o0 n—oo
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We list the following hypotheses for our convenience:

(H1) The function F in equation and its derivatives with respect t satisfy the condition

%F(t, S,l‘(t)’x’(t)’ . 755(7171) (t), z(a)7I/(a)7 - 7I(n71)(a),$(b),$/(b), . 7x(n71) (b))
o7

- @J: i, s,y(s),y’(s), T ’y(n—l)(s)’ y(a’)vyl(a)’ T 7y(n—1)<a)’ y(b)vyl(b)7 e 7y(n_1)(b))|

/N

1

<pi(t9)[a Y 19 () =46 + 8 169(0) 4D (@) +7 3 k) — 5O 0.
: =0 =0

=

3
|

(=)

for j =0,1,--- ,n— 1, where p;(¢,s) € C(I*,Ry) and a, B, > 0.
(Hz) Mr(a+B+7)b-a)<1,
where Mz denotes a positive constant such that for all t,s € T

Mz = max{nz:lpj(hs) 1 (t,s) € 12}.

Jj=0

Now, we are able to state and prove the following theorem which deals with the existence of solutions of the equation

(2

Theorem 2. Assume that hypotheses (H1)— (H2) hold. Let {&;}72, be a real sequence in [0,1] satisfying Z & = 0.
k=0
Then the equation has a unique solution x € B and normal S—iterative method ( with u; = xo) converges to
x € B with the following estimate:
k+1
[Mr(a+6+7)0-a)

|zo — || (7)
[1—Mf<a+ﬁ+w)(bfa>} Yo

|2k41 — 2|5 <

e
Proof. Let x(t) € B and define the operator
(Tz)(t) = G(t)
b
+/ F(tsw(),0/(s), -+, V(s), a(a), @' (@), -+, V(@) (b), 7' (0), -+ 2"V (b) s, (8)
fort € I =la,b].
Differentiating both sides of (8) with respect to ¢ (see [7], p. 318), we have
(Tz) 9 (t) = Y (¢)
b aj
* / @.F(t, 5, Z‘(S), QL‘/(S), T 71'(”71)(8)7 x(a), .IZI(CL), e 7x(n71)(a)’ .Z‘(b), x/(b)a e ’x(nil)(b))ds’ (9)
forteland 0<j<n-1.
Let {xr}3p2, and {.13](3)}1?;0, (j=1,---,n—1) be iterative sequences generated by normal S—iteration method
for the operators given in (8) and (9)) respectively.
We will show that x, — x as k — oo.

From iteration and equations , @ and hypotheses, we obtain

|zk+1(t) — 2(t)|E
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—Z\ka (t) =2 (t)]

n—1

DTy () = (Tx) D (2)]

J=0

_ S ‘g(j)@

=0

b aj
+/ @}"G 5,y (8), Uk (), T (8), wi (@), i (@), -y ™Y (@), yr (D), yi' (B), - - ,yk(n_l)(b))ds
_g(a)( t)

‘/a gt F(ts,0(5),0'(s), 2 D(s), 2(a), ' (@), -+ 2" (@), w(b), ' (0), -+ 2D (b)) ds|

7-F(t7 s,yk(s), y}c(s), e 7yk(n71)(8)7yk(a)vyk/(a)’ e ayk(nil)(a)vyk(b)aykl(b)a e 7yk(n71)(b)>

B % (t s,(s),2/(s), 2" V(s),x(a), 2’ (a),- -, 2"V (a), z(b), 2/ (), - 7;3("—1)(1;))‘(13

n—1 n—1 n—1
<z / pi(t.9) o Y 1) V() ~ 2] + 8 3 1) @) — 20(@)| 47 3 1) ) — 2 (0)]] s
=0 i=0 i=0

< Mr/a {a ; ()@ (s) =P (s)| + 8 Zé ()@ (@) — 2 (a)| + ’yt}; ()@ (b) — 2 (b)l} ds. (10)
Similarly, we have
|y (t) — 2(t)|
-3 ) (t) = 29 (1))
=0

>~ [ @)l (1) 2D )] + &l (T (1) — (L) 1)

Il
o

(1-¢) i 2e0(0) =29 (0] + & 3 (T2 (0) — (T) 1)

Jj=0

Il
l_\ .

[1_§k Zm(]) t) — 2@ ()]

n—1 n—1
et [ o S 196 06+ 83 )@ - 0@+ 3 (@) O0) - O ds.
a i=0 i=0 i=0
Now, by taking supremum in the above inequalities, we obtain
b
fonss —ln < Mz [ [at 5 +9] I — lads
= My[a+8+1] (b - a)ly - allz, (12)
and
b
o = ol < [(1 = )l ~ ol + &M [ (ot 5+7) o~ olads]

= [ = &llax = wllp + &M (a+ B+7) (b= )llow — ] ]
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[(1 &)+ ngf(a +B+ 7) b a)} [
= [1-&(1- Mz(a+5+) 0 - )]z - 2|3,

respectively.

Therefore, using in , we have
[T (Mf(oz +B+7)(b— a)) [1 - gk(1 — Mr(a+B+7)(b- a))} ok — 2 5.

Thus, by induction, we get
k

g = alls < (Mr(a+8+7)(b- a))kH [T[-&(1-Mr(atB+7)0-a)]|leo-2ls

§=0
Since & € [0,1] for all k € N, the assumption (Hs) yields

& <1 and Mf<a+,8+’y)(b—a)<1
ékof(a+5+”Y)(b—a) <&k

:gk{l—Mf(a—f—ﬂ—i-’y)(b—a)} <1, VkeN.

From the classical analysis, we know that

2 LL'3

l—z<e” :1_x+§_§

o zeo,1).
Hence by utilizing this fact with in (15), we obtain

k+1 — (17M}‘ (a+ﬁ+'v) (b*a)) S0

ok = ollp < (Mr(a+B+7)(b-a)) e o — |5

This is . Since ka = 00,
k=0

—\|1-Mrla b—a k_ &
e ( 7 (o) ))ZJ_OQ%O as k — oo,

which implies klim |zx+1 — x|/ p = 0. This gives z — x as k — oo.
— 00

(16)

(17)

(18)

O

Remark: It is an interesting to note that the inequality gives the bounds in terms of known functions, which

majorizes the iterations for solutions of the equation as well as its derivatives x(j)(t), (j=12,---,n—1) for

tel.

3. CLOSENESS OF SOLUTION VIA S—ITERATION

We study the continuous dependence of solutions of on the function involved therein.

Now, we consider the problem and the corresponding problem

b
f(t) = H(t) + / E(ta S,f(s)ﬂf/(s)v T 7f(n71)(5)7f(a)’j/(a), T 73(”71)(a),f(b),f’(b), e aj(nil)(b))dsa

for t € I = [a,b], where £ € C(I? x E3,R), H € C(I,R), and n > 1 is an arbitrary integer.
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By a solution of equation , we mean a continuous function Z(t), ¢ € I which is (n — 1) times continuously
differentiable on I and satisfies the equation . It is easy to observe that the solution Z(t) of the equation

and its derivatives satisfy the integral equations (see [7], p.318)
E(j)(t) = H(j)(t)
b aj
- / @E(t’ S’E(S)7EI(S)7 e 75(71_1)(8)75(@)75/(@)7 T 75(71_1)(0')75(17)’5/(17)’ e 75(”_1)(19))(18, (20)

fortelTand0<j<n-1

Let Z(t) € B and following steps from the proof of Theorem [2| define the operator for the equation
(Tz)(t) = H(t)
b
+ / £(ts,3(5),. 7 (5), -+ 370 (5),3(0), 7 (), -+ 7"V (@), 5(0), T (1), -, TV s, (21)

fort € I =la,b)].
Differentiating both sides of with respect to t (see [7], p. 318), we have

T)9(t) = HO(1)
forteland 0<j<n-—1.

The next theorem deals with the closeness of solutions of the problems and .

Theorem 3. Consider the sequences {x}rey and {Tr}7o, generated normal S— iterative method associated with
operators T in (9) and T in (22)), respectively with the real sequence {&,}32 in [0, 1] satisfying 3 < &, for all k € N.

Assume that

(i) all conditions of Theorem[d hold, and x(t) and T(t) are solutions of and respectively.

ii) there exist non negative constants €; and €; such that
J J
Gt —HD )| <e¢, VeI, (j=0,1,---,n—1), (23)
and

‘%f(t, S7$(t),x’(t)’ - 7x(n—1) (t),{E(a,)vx/(a)7 R ,w("*l)(a),x(b), x’(b), . 7x(n71) (b))

J
_ %ﬁ(t,s,x(t),x’(t)7... ,x("_l)(t),x(a),x/(a),--- ,x(n_l)(a),x(b),x’(b)7.-. ,x("_l)(b))‘
<pjt,s)ej, Vtel, (j=0,1,--- ,n—1). =

If the sequence {Tr}3>, converges to T, then we have

B 3[Mr (6 - a))e+ €]
[z — |5 < ;
1—Mz(a+B+7)(b—a)

(25)

n—1 n—1
where € = E €; and € = E €.
=0 =0
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Proof. Suppose the sequences {xy}re and {Zy } 5~ generated normal S— iterative method associated with operators

T in @Dand T in , respectively with the real sequence {&x}7— in [0, 1] satisfying % < ¢ for all k € N. From
iteration and equations with @; with and hypotheses, we obtain

|Zk+1(t) — Trra(t)| 2

= Z 219 (1) = B (8)]
j=0

= ST 9 (1) — (TR O 1)
j=0

S0 @),y (0), 0), D (B)) ds

?ﬁ(t, 5, 76(8), 7 (8), T I(8), Tk(@), T (@), -+, T T (@), T (0), Ty (), - - ,yk(nfl)(b))ds’

n—1
< Z €
j=0
n—1 b a]
* / at]F(t s yk( ) y/ (8)5"' ayk(nil)(s)ayk(a’):yk/(a%'" ayk(nil)(a%yk(b)ayk/(b)a"' 7yk(n71)(b))
j=0"¢
o7

- %‘C(tas Te(8), 7 (5)s 7" (9), 9 (0), T (@), -+, T " (), T (0), T (D), - a?k(nfl)(b)ﬂds

8;}'@ 5, u(8),9k(8), - eV (), (@) e (@), -y (@), (0), k' (D), -

I0)

- %I_(tv sv?k(s)vgk/(s)v T 7?k(n_1)(8)ﬂyk(a)ﬂyk/(a)7 e vyk(n_l)(a)vyk(b)ﬂyk/(b)7 e »yk(n_l)(b)> ’d‘s

b aj _ B
5> / 55 (157,56, TV (9. 7@, T (@), T (@, 7). 5 0), - TV 0)
j=0"a
o e
= o £ (5T T ) ),

n—1 b
< ZEJ'—G—M]:Z/ €;ds

n—1 1

*Z/pﬂts 21606 -7 |+ﬁZ w0 @) 5O+ Y 1606 700 ds
=0 i=0
§€+M}‘€(b— )
b n_l n—1
+Mf/ DRCE |+BZ| ) (@) = 7D (@)] + 7 1) (0) — 7O (0)] ] ds. (26)
¢ =0 i=0

Similarly, we have

[y (t) — U, (t)| e
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|
-

n

= lu () -5 @)

j=0
= 3 [ - @m0 - mO @) + &l @) O 0) - Tz )
j=0
n—1 n—1
= |- &) Y 5D = 3D @) + & D (Ta) D (1) = (Ta) V(1)
§=0 §=0
n—1
<A-&)> 1w -z ()] + & [6 + Mze(b— a)}
Jj=0

n—1

b n—1 n—1
+ &M / [0 @) () =D ()] + 83 @)D (@) = 7D (@) +7 D 1) ) =) | ds. (27)
a i=0 =0

i=0
Now, by taking supremum in the above inequalities, we obtain
b
ks = Tasallo < e+ Mre(b— )+ Mo [ [+ 53] I~ Bl
a

= e+ Mye(b—a) + Mr o+ 8 +] (b = 0)llys — Tuls,

and
o = Tl < (1= €0)llek = Tull + & e + Myre(b — a) + My /ab (a+B+7) lan — 7l pds]
=1 —&)llzx — TrllB + & [6 + Mze(b—a) + Mf(a + 6+ 7)(5 —a)llzk — kaB}
=&k (6 + Mre(b - a)) + [(1 — &)+ kof(Oé + B+ 7) (b— a))] llzr — Zk|lB
— ¢, (e + Mre(b— a)) n [1 - gk(1 — Mr(a+B+7)(b— a))] (AT
respectively.

(28)

(29)

Therefore, using in and using hypothesis (Hz), and % < & for all k € N, the resulting inequality become

lonss = Trsalls < [1= & (1= Mr(a+6+7) 06— a)] o — 75
+ & (e + Mye(b— a)) + 26, (e + Mye(h— a))
<[1-&(1- Mr(a+8+9)0-a)|lox -7l
3(e+ Mye(b— )

1—Mf(a+/3+7)(b—a))'

+§k<1—Mf(oz+ﬂ+7)(b—a))(

We denote

Br = llzr — Tkl B,
Ik =§k(1 —M;(a+ﬁ+’y)(b—a)) €(0,1),
3(e + Mre(b— a))

(I—M;(a—i—ﬂ-i-v)(b—a)) =0

Ve =
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o0
The assumption % < & for all k € N implies Z &, = 0o. Now, it can be easily see that satisfies all the conditions
k=0

of Lemma [I] and hence we have

0 <lim sup B < lim sup 7%

k—o0 k—o0

3(6+M]:E(bfa))
= 0 <lim sup ||zx — Tl < lim sup

3(6 + Mre(b— a))

= 0 <lim sup ||z — Tk|ls < . (31)
ko0 (1—M;(oz+5+’y)(b—a))
By (i), we have lim z; = x. Using this fact and the assumption lim Ty = T, we get from that
k—o0 k—o00
3 [M].-((b —a))e+ e}
o —Z|p < : (32)
1—Mr(a+B+7)0b—a)
|

Remark: The inequality relates the solutions of the problems and in the sense that if 7 and G are
close to £ and H respectively, then not only the solutions of the problems ([I]) and are close to each other (i.e.
|lx —Z||g — 0), but also depend continuously on the functions involved therein. Moreover, this inequality majores

derivatives of the solutions.

In the last, we study the continuous dependence of solutions on certain parameters.
b
x(t) = g(t) + / }—(tv S, :L'(S), :L'/(S), e 7x(n_1)(8)7 LE((L), x/(a)v o ’x(n—l)(a)’ ZL’(b), :L'/(b), e ,x(n—l)(b% Ml)dsv (33)

b
z(t) =G(t) + / f(t, s,xz(s),2'(s),- - 735(”—1)(3)795(@)7;15’(@), . ,m("_l)(a)7x(b),x’(b), ... ,x("_l)(b),/m)d& (34)

for t € I = [a,b]. The functions F, G are defined as in and pq, po are real parameters.

By a solution of equation 7 we mean a continuous function z(t), ¢t € I which is (n — 1) times continuously
differentiable on I and satisfies the equation . It is easy to observe that the solution x(¢) of the equation

and its derivatives satisfy the integral equations (see [7], p.318)
() = gY (1)
b 6‘7
+ / %F<t7 S, 1’(8)7 l'/(s), e 7x(n_1) (8)7 l’(a), x/(a), e 7x(n_1)(a)7 {E(b)7 x/(b)v e 7x(n_1)(b)7 /*Ll)dsv
forteland 0<j<n-1.
Let x(t) € B and following steps from the proof of Theorem [2] define the operator for the equation
(Tz)(t) = G()

b
+ / f(t, s,2(s),2'(s), -, 2" V(s),x(a), 2’ (a), - -, "V (a), z(b), 2’ (), -,z (b), /“)ds7 (36)
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fort € I = [a,b].
Differentiating both sides of with respect to ¢ (see [7], p. 318), we have

(T2)9(t) = 69 1)

b i
+/a %}"(t s,2(s),2'(s), -+, 2 V(s),z(a), ' (a), - ,a™ D (a), z(b), 2’ (b), - - ,x<n*1>(b),m)ds,

fortelTand 0<j<n-1.

Similarly we define for the equation
79 () = gl (1)
b aj
+ / @E(ta 5,5(8),5’(8)7 e 7f(n_1)(5)af(a)7§/(a)v e 75(71_1)(0‘)75({))’5/(())’ T 75(’”_1)({))’ /142>d37 (38)

forteland0<j<n-1

Let Z(t) € B and following steps from the proof of Theorem [2} define the operator for the equation
(Tz)(t) = G(t)
b
+ / ]:(t, s,f(s),fl(s)a . af(n_l)(s),f(a),f/(a), o af(n_l)(a),f(b),f(b% - ,E("—l)(b),/m)ds, (39)

fort € I =la,b)].
Differentiating both sides of with respect to ¢ (see [7], p. 318), we have

(Tf) () (t) = gl ()

b gi
+A %}—(t s :L’( ) T (8)7"' af(nil)(s)af(a)»f/(a)v'" ’T(nil)(a)ﬂf(b)vf/(b)v”' ’T(nil)(b) M2>d8

forteland 0<j<n-1.

The following theorem states the continuous dependency of solutions on parameters.

Theorem 4. Consider the sequences {xy}r—y and {Tx}iey generated normal S— iterative method associated with
operators T in BT and T in ([40)), respectively with the real sequence {&x}r in [0,1] satisfying & < & for all k € N.

Assume that

(i) the hypothesis (Hs) holds.

(ii) the function F satisfy the conditions:
jf(t’ s,x(t),a:’(t), e am(nil)(t%x(a)’x/(a)’ T 7x(n71)(a)’ .T(b),l‘/(b), o ax(nil)(b)vﬂl)
- 7';<t787y(8)7y’(8),--- "D (s),y(a), ¥ (@), -,y "D (@), y(b),y (b), - - ,y("_”(b)w)‘

n—1
< pi(ts { Z |x(2) y(i)(s)| +8 Z |x(i)(a) _ y(z) )+ Z ‘m(z (z) >|}7 (41)
=0

88; (t, s,x(t), ' (t),- ,a:("_l)(t),x(a),sc’(a), e ,x(”_l)(a), z(b), 2’ (b), - - ,m("_l)(b),ul)
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- %f<t7 va(t)axl(t)a T ,x(”fl)(t),x(a),x’(a), e 7$(n71)(a)7x(b)a {E/(b), T 7x(n 1)(b) /142) ’

< pj(t, s)|pr — pel, (42)
forj=0,1,--- ,n— 1, where p;(t,s) € C(I*,Ry) and a, 3,7 > 0.

Suppose x(t) and T(t) are solutions of and respectively and if the sequence {Ty}re, converges to T, then

we have

3[ Ml = pial (b~ o)
1—Mr(a+B8+7)(b—a)

lz =7 < (43)

Proof. Suppose the sequences {zy}72, and {ZTy }72, generated normal S— iterative method associated with operators
T in (37)and T in (40)), respectively with the real sequence {£;}72, in [0, 1] satisfying § < &, for all k € N. From
iteration and equations with ; with and hypotheses, we obtain

|Tk+1(t) — Tt (t)| B

- HZ:: w19 () — Tard D (2)]
_ Z (Ty) 9 (1) — (T5) 9 1)
- ié 99(1) - D)
+/ab gtjﬂ F (b5 () i) m" () r(@), (@), -+ w0 @), (0), 0 B)s -+ "D (B), 1 ) ds
_/a 68; (£330 (), 70 9), Tl@), 3 (@) -+ 7 @), 1), 5 (), -+, 5" (0), iz ) |
<Z/ ’%f(t,s,yk@),y;(s),m " (), ), e (@), e (@), (0), 0, I (B), g )

o - - — (n— - - — (n— - - -~ (n—
- %I<t7s7yk(s)7yk/(s)v'” 7yk( 1)(S)ﬂyk(a’)7yk,(a) Yk ( 1)( )7yk(b)ﬂyk/(b)7"' 7yk:( 1)(b)a,u2)‘d3

]
7]:(t, S7yk(8)a y;g(s)a U ayk(n_l)(s)ayk(a)ayk/(a)7 e ayk(n_l)(a)7yk<b)7 yk/<b)a o 7yk:(n_1) (b)7 ,U/l)

o / — (n=1)( o\ = — — =)\ = (1 = 1 — (n—1)
8t-7 (t s yk‘( ) yk (S)a Yk (S)ayk(a)ayk (a)7' Yk (a’)7yk(b)vyk (b)7 Yk (b)aUI) ’ds

t $,7k(8), T (), T (), Tk (@), T (@), -+, 7" (@), B (0), T (B), - ayk(nfl)(b)aﬂl)

a = = = (n— — = = (n— — — = (n—
- %f(ta&yk(s)vyk/(s)v'” 7yk( 1)(S)ayk(a)ayk/(a)7"‘ »yk( 1)<a)7yk(b)ayk/(b)7"‘ 7yk( 1)(b)aﬂ2)’ds

< M]—‘/ |1 — palds

- Z::O/a pj(t,s) {ag [(ye) P (s) = 5, ()] + B ; ()P (@) — 5,9 (a)] +72 () () —?k(i)(b)qu

< Mzlpy — p2|(b—a)
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b n—1 n—1 n—1
+ My / [0 1)) = 7D )+ 8 1) @) =7 D@+ Y 1) O ®) - 7,0 0)]] ds.
a i=0 i=0 i=0

Similarly, we have

(1= &)l D (&) =3V ()] + &l (T2) D (1) — (Tz0) D (1)

n—1
= (1= &) D 1) =B W] + & Y [(Te) V(1) - (Ta) 9 (1)

Jj=0 Jj=0

n—1
<A-&)> 1m0 -z )] + & [M.le — piz| (b — a}
=0

b n—1 n—1 n—1
+atr [ oY @) -6+ 3 00 V0) - 70+ 3 @) 0) -7 0)] ds.

1=0

Now, by taking supremum in the above inequalities, we obtain

b
fonss ~ Tl < Ml al(b =)+ M [ [as 549l = 5 nds

= Myl — 2 (b= a) + Mo+ B+ 5] (b = )l — Tl s,

and

b
o~ Tl < (1= 0llon ~ Tullz + & (Mol = (b~ a) + Mr [ (@ 5+7) o = ]

a

= (1= &)llan — Fulls + & | Myl — izl (b — @) + Mr (a8 +7) (b= a)|os — ol
= & (Mrlin — pa|® = @) + [(1 = &) + &Mz (a + 8+7) 0 = ) |lax — Tl

= & (Morlms = piol(b = @)) + [1 = & (1 = Mr(a+ B+9) (b= a)) | lax — Tl (47)

respectively.
Therefore, using in and using hypothesis (Hz), and % < & for all k € N, the resulting inequality become
loxrs = Frsalls < |1 =& (1= Mr(a+B+7)0—a)]lax—7ullz

+ &k (M]-'|N1 — 2| (b — a)) + 28k <M.7~'|,Ul — p2l(b— a))

< [1 —fk(l - Mf(a+ﬁ+7)(b—a)ﬂ|\xk — Tkl s

ot o) )

1= Myp(a+8+9)b-a)
We denote

Br = ||lzr — Tkl B,

Ik :ék(l —M;(a+ﬂ+7)(bfa)) €(0,1),
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3( Ml — pal(b - )
Ve =
(1 — Mp(a+B+7)(b— a))

> 0.

o0

The assumption % < & for all k € N implies Z &, = 0o. Now, it can be easily see that satisfies all the conditions
k=0

of Lemma [I] and hence we have

0 <lim sup B < lim sup g

k—o0 k—oco

3(Mzlimn — 12l (b - a)

= 0 < lim sup |zx — Tkl|p < lim sup

k—o0 k—o0 (1 —M;(a+6+7)(b—a))
3( Ml = pal(b - )
= 0 <lim sup ||z — Tlls < . (49)
koo (1—Mf(a+ﬁ+7)(b—a))
By (i), we have lim x; = x. Using this fact and the assumption lim Ty = T, we get from that
k—o00 k—o0
3[ Ml = pial (b - 0)] .
r—7|p < .
| ||B_1—M}-(a—|—ﬁ+7)(b—a) (50)
O

Remark: The result dealing with the property of a solution called “dependence of solutions on parameters”. Here the
parameters are scalars. Notice that the initial conditions do not involve parameters. The dependence on parameters

are an important aspect in various physical problems.

4. EXAMPLE

We consider the following integral equation:

2(t) = t—|—3e_t N /01 3t ; 2s [8 — blI;(l‘(S)) N x(0) —i|))— x(l)]

ds, t €[0,1]. (51)

Comparing this equation with proposed equation for n =1, we get

Gec =[0,1R), §G(t)= t+3e‘t; FeO(I xIxR*R),
F(t, s, 2(s), 2(0), 2(1)) = 3t ; 2s [s - sinz(m(s))) N x(0) —;—x(l)}

Now, we have

F(t,s,2,2(0),2(1)) = F(t,5,y(s),y(0), y(l))‘
_ ‘St —2s [3 —sin(z(s))) N z(0) + x(l)] 3t —2s {s —sin(y(s)))  y(0) + y(l)} ’
5

2 3‘ 5 2 3
< ‘315 ; 2s ’ H s — 811121:(3))) s su;(y(s)) ’ n ‘x(O) —ii; z(1)  y(0) —ii))—y(l) H
<[22 5| sintats)) — siny(s))| + 5[2(0) ~ y(0)] + 1) 5 )] (52)

Taking sup norm, we obtain

|7 5.2 20) 200) = 7t ,005), 000 v € s [P (54 54 ) |
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37
< Z(Z —_
<5(5) =]
= 1oll= -] (53
- 10 € y 9
3 1 1 1
where F 57 « 27 B 37 Y 3
Therefore, we the estimate
3,1 1 1 7 7
M b—a)==-(-4+-+=-)1-1)=—=x1=—<1. 54
Flatstr)-a=F(3+5+5)a-D=5x1=15< (54)
We define the operator T': B = C(I,R) - B = C(I,R) by
t+et 13t —2ss —si 1
(Ta)(t) = 2E€ +/ 5 -2 sin(z(s) | 2(0) + 2 )}ds,te[o,l]. (55)
3 s 5 2 3

Since all conditions of Theorem [2|are satisfied and so by its conclusion, the sequence {z} associated with the normal
S—iterative method (4] for the operator 7' in converges to a unique solution z € B.

Further, we also have for any zg € B

[Mf(a +B+7)(b— a)} o

[ze1 — 2|l < o = ]
. [17Mf(a+5+v)(bfa)} Yok
4]
10
< l|lzo — ||
{171—70} >SF &
e
(2)”
10
< |zo — ||
(&) oios
e
(2)"
10
< |zo — ||
(&) ios
e
< o 2l (56)

where we have chosen &; = 1%” € [0,1]. The estimate obtained in is called a bound for the error (due to

truncation of computation at the k—th iteration).

Next, we consider the perturbed integral equation:

t+ 2! L3t —2s1s —sin(Z(t))  Z(0) +z(1) 1
z(t) = — —|ds, t €10,1]. 57
() = S [ [ TR o Cas e ) (57)
Similarly, comparing it with the equation (19)) for n = 1, we have
b+ 2! o _ 3t —2s1s—sin(Z(t)) | T(0)+z(1) 1
) = ———, L‘(t, s,m(s),x(O),z(l)) === [ : e ?]

One can easily show on the same lines as above that the mapping T : B = C(I,R) — B = C(I,R) defined by
_t+ 2et N /1 3t —2s [s — sin(Z(t)) N z(0) + (1)
0

o)) =" . = T sy %}d& te0,1]. (58)
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In perturbed integral equation, all conditions of Theorem |2 are also satisfied and so by its conclusion, the sequence
{Z1} associated with the normal S—iterative method for the operator T in converges to a unique solution
T € DB.

Now, we have the following estimates:

gty | = | L 2 R el L i, ()
‘}"(t, s,x,x(0),x(1)) — L(t, s, z(s), x(O),x(l))‘
[ E{E ) 0] o) ),
=[5l -=
<i=w (60)

Consider the sequences {zy}5~, with i — = as k — oo and {Ty}7~, with Ty, — T as k — oo generated normal S—
iterative method associated with operators T in and T in , respectively with the real sequence {&;}3e in
[0, 1] satisfying £ < & for all k € N. Then we have from Theorem [3| that
B 3 [M;((b —a))e + 61}

le ==l < T e 50 =a)
o < 3[2(1-0)%+14]
PTIiGrE -0
3 44 10 88

Slz-Flp< B = x — = —. 61
This shows that the closeness of solutions and dependency of solutions on functions involved therein.
Finally, we shall prove the dependency of solutions on real parameters.
We consider the following integral equations involving real parameters:
t+et 13t —2s1s —si 0 1
o(t) = +e +/ 5{5 sm(x(s))Jra?( ) + a( )}d5+,u1, te[0,1] (62)
3 0 5 2 3
and
t+et '3t — 2515 —si 0 1
2(t) = *36 +/ - i [‘9 S”;(I(S)) V) ;z( )}ds ¥ o, te[0,1]. (63)
0

Hence by making similar arguments and from Theorem [4] one cam has

3[ Ml — pal (b — )]

r—
I ”B_l—M}-(a—Fﬁ—&—v)(b—a)
3[R - el - 0)
= |lz -z < 3
10
3 _
:>||x_f||BSM
10
B 32w —pel 910
= |z -7|p < 05— 3 =5X§|M1—M2|

10
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= |l —7||p < 6|1 — pol- (64)
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