
4.1. Local Search Algorithmsand Optimization Problems 

In many optimization problems, the path to the goal is irrelvant; the goal state itself is 

thesolution. The best state is identified from the objective function or heuristic cost 

function. Insuch cases, we can use local search algorithms (ie) keep only a single 

current state, try toimproveitinsteadofthewholesearchspaceexploredsofar. 

Alocalsearchalgorithmstartsfromasearchspaceandtheniterativelymovestoaneighbors

olution.Thisisonlypossibleifaneighborhoodrelationisdefinedonthesearchspace. 

Terminationoflocalsearchcanbebasedonatimebound.Anothercommonchoiceisto 

terminate when the best solution found by the algorithm has not been improved in a 

givennumberof steps.Local search algorithms are typically incomplete algorithms,as the 

searchmay stop even if the best solution found by the algorithm is optimal. This can 

happen even iftermination isdue to the impossibility ofimproving the solution,as the 

optimalsolution canliefarfromtheneighborhoodofthesolutionscrossedbythealgorithms. 

Thelocalsearchproblemisexplainedwiththestatespacelandscape.Alandscapehas: 

 location-definedbythestate 

      elevation - defined by the value of the heuristic costfunction or objective 

function.Ifelevationcorrespondstocostthenthelowestvalley(globalminimum)isa

chieved. If elevation corresponds to an objective function, then the highest 

peak(globalmaximum)isachieved. 

The informed and uninformed search expands the nodes systematically in two ways: 

 keeping different paths in the memory and 

 selecting the best suitable path, 

Which leads to a solution state required to reach the goal node. But beyond these “classical 

search algorithms,” we have some “local search algorithms” where the path cost does 

not matters, and only focus on solution-state needed to reach the goal node. 



A local search algorithm completes its task by traversing on a single current node rather 

than multiple paths and following the neighbors of that node generally. 

Although local search algorithms are not systematic, still they have the following two 

advantages: 

 Local search algorithms use a very little or constant amount of memory as they 

operate only on a single path. 

 Most often, they find a reasonable solution in large or infinite state spaces where 

the classical or systematic algorithms do not work. 

4.2. Working of a Local search algorithm 

Let’s understand the working of a local search algorithm with the help of an example:  

Consider the below state-space landscape having both: 

 Location: It is defined by the state. 

 Elevation: It is defined by the value of the objective function or heuristic cost 

function. 



 

The local search algorithm explores the above landscape by finding the following two 

points: 

 Global Minimum: If the elevation corresponds to the cost, then the task is to find 

the lowest valley, which is known as Global Minimum. 

 Global Maxima: If the elevation corresponds to an objective function, then it finds 

the highest peak which is called as Global Maxima. It is the highest point in the 

valley. 

4.3. Types  

 Hill-climbing Search 

 Simulated Annealing 

 Local Beam Search 

 

4.3.1. Hill Climbing Algorithm 



Hill climbing search is a local search problem. The purpose of the hill climbing search is to 

climb a hill and reach the topmost peak/point of that hill. It is based on the heuristic 

search technique where the person who is climbing up on the hill estimates the direction 

which will lead him to the highest peak. 

State-space Landscape of Hill climbing algorithm 

To understand the concept of hill climbing algorithm, consider the below landscape 

representing the goal state/peak and the current state of the climber. The topographical 

regions shown in the figure can be defined as: 

 Global Maximum: It is the highest point on the hill, which is the goal state. 

 Local Maximum: It is the peak higher than all other peaks but lower than the 

global maximum. 

 Flat local maximum: It is the flat area over the hill where it has no uphill or 

downhill. It is a saturated point of the hill. 

 Shoulder: It is also a flat area where the summit is possible. 

 Current state: It is the current position of the person. 



 

Types of Hill climbing search algorithm 

There are following types of hill-climbing search: 

1. Simple hill climbing 

2. Steepest-ascent hill climbing 

3. Stochastic hill climbing 

4. Random-restart hill climbing 



 

1. Simple hill climbing search 

Simple hill climbing is the simplest technique to climb a hill. The task is to reach the 

highest peak of the mountain. Here, the movement of the climber depends on his 

move/steps. If he finds his next step better than the previous one, he continues to move else 

remain in the same state. This search focus only on his previous and next step. 

Simple hill climbing Algorithm 

1. Create a CURRENT node, NEIGHBOUR node, and a GOAL node. 

2. If the CURRENT node=GOAL node, return GOAL and terminate the search. 

3. Else  CURRENT node<= NEIGHBOUR node, move ahead. 

4. Loop until the goal is not reached or a point is not found. 

2. Steepest-ascent hill climbing 

Steepest-ascent hill climbing is different from simple hill climbing search. Unlike simple 

hill climbing search, It considers all the successive nodes, compares them, and choose the 

node which is closest to the solution. Steepest hill climbing search is similar to best-first 

search because it focuses on each node instead of one. 

Note: Both simple, as well as steepest-ascent hill climbing search, fails when there is no 

closer node. 



Steepest-ascent hill climbing algorithm 

1. Create a CURRENT node and a GOAL node. 

2. If the CURRENT node=GOAL node, return GOAL and terminate the search. 

3. Loop until a better node is not found to reach the solution. 

4. If there is any better successor node present, expand it. 

5. When the GOAL is attained, return GOAL and terminate. 

3. Stochastic hill climbing 

Stochastic hill climbing does not focus on all the nodes. It selects one node at random and 

decides whether it should be expanded or search for a better one. 

Random-restart hill climbing 

Random-restart algorithm is based on try and try strategy. It iteratively searches the node 

and selects the best one at each step until the goal is not found. The success depends most 

commonly on the shape of the hill. If there are few plateaus, local maxima, and ridges, it 

becomes easy to reach the destination. 

Limitations of Hill climbing algorithm 

Hill climbing algorithm is a fast and furious approach. It finds the solution state rapidly 

because it is quite easy to improve a bad state. But, there are following limitations of this 

search: 

 Local Maxima: It is that peak of the mountain which is highest than all its 

neighboring states but lower than the global maxima. It is not the goal peak 

because there is another peak higher than it. 



 

 Plateau: It is a flat surface area where no uphill exists. It becomes difficult for the 

climber to decide that in which direction he should move to reach the goal point. 

Sometimes, the person gets lost in the flat area. 

 

 Ridges: It is a challenging problem where the person finds two or more local 

maxima of the same height commonly. It becomes difficult for the person to 

navigate the right point and stuck to that point itself. 



 

4.3.2. Simulated Annealing 

Simulated annealing is similar to the hill climbing algorithm.  It works on the current 

situation. It picks a random move instead of picking the best move. If the move leads to 

the improvement of the current situation, it is always accepted as a step towards the 

solution state, else it accepts the move having a probability less than 1. This search 

technique was first used in 1980 to solve VLSI layout problems. It is also applied for 

factory scheduling and other large optimization tasks. 

4.3.3. Local Beam Search 

Local beam search is quite different from random-restart search. It keeps track of k states 

instead of just one. It selects k randomly generated states, and expand them at each step. If 

any state is a goal state, the search stops with success. Else it selects the best k successors 

from the complete list and repeats the same process. In random-restart search where each 

search process runs independently, but in local beam search, the necessary information is 

shared between the parallel search processes. 



Disadvantages of Local Beam search 

 This search can suffer from a lack of diversity among the k states. 

 It is an expensive version of hill climbing search. 

 

4.4. Constraint Satisfaction Problems 

constraint satisfaction problems, or CSPs for short, are a flexible approach to searching 

that have proven useful in many AI-style problems 

CSPs can be used to solve problems such as 

 graph-coloring: given a graph, the a coloring of the graph means assigning each of 

its vertices a color such that no pair of vertices connected by an edge have the same 

color 

o in general, this is a very hard problem, e.g. determining if a graph can be 

colored with 3 colors is NP-hard 

o many problems boil down to graph coloring, or related problems 

 job shop scheduling: e.g. suppose you need to complete a set of tasks, each of which 

have a duration, and constraints upon when they start and stop (e.g. task c can’t start 

until both task a and task b are finished) 

o CSPs are a natural way to express such problems 

 cryptarithmetic puzzles: e.g. suppose you are told that TWO + TWO = FOUR, and 

each of the letters corresponds to a different digit from 0 to 9, and that a number can’t 

start with 0 (so T and F are not 0); what, if any, are the possible values for the letters? 

o while these are not directly useful problems, they are a simple test case for 

CSP solvers 

the basic idea is to have a set of variables that can be assigned values in a constrained way 

a CSP consists of three main components: 



 XX: a set of variables {X1,…,Xn}{X1,…,Xn} 

 DD: a set of domains {D1,…,Dn}{D1,…,Dn}, one domain per variable 

o i.e. the domain of XiXi is DiDi, which means that XiXi can only be assigned 

values from DiDi 

o we’re only going to consider finite domains; you can certainly have CSPs 

with infinite domains (e.g. real numbers), but we won’t consider such 

problems here 

 CC is a set of constraints that specify allowable assignments of values to variables 

o for example, a binary constraint consists of a pair of different 

variables, (Xi,Xj)(Xi,Xj), and a set of pairs of values that XiXi and XjXj can 

take on at the same time 

o we will usually only deal with binary constraints; constraints between three or 

more variables are possible (e.g. Xi,Xj,XkXi,Xj,Xk are all different), but they 

don’t occur too frequently, and can be decomposed into binary constraints 

example 1: suppose we have a CSP as follows: 

 three variables X1X1, X2X2, and X3X3 

 domains: D1={1,2,3,4}D1={1,2,3,4}, D2={2,3,4}D2={2,3,4}, D3={3,7}D3={3,7} 

o so X1X1 can only be assigned one of the values 1, 2, 3, or 4 

 constraints: no pair of variables have the same value, 

i.e. X1≠X2X1≠X2, X1≠X3X1≠X3, and X2≠X3X2≠X3; we can explicitly describe 

each of these constraints as a relation between the two variables where the pairs show 

the allowed values that the variables can be simultaneously assigned, i.e. 

o X1≠X2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,2),(3,4),(4,2),(4,3)}X1≠X2={(1,2),(

1,3),(1,4),(2,3),(2,4),(3,2),(3,4),(4,2),(4,3)} 

o X1≠X3={(1,3),(1,7),(2,3),(2,7),(3,7),(4,3),(4,7)}X1≠X3={(1,3),(1,7),(2,3),(

2,7),(3,7),(4,3),(4,7)} 

o X2≠X3={(2,3),(2,7),(3,7),(4,3),(4,7)}X2≠X3={(2,3),(2,7),(3,7),(4,3),(4,7)} 



these three constraints are each binary constraints because they each constrain 2 

variables 

example 2: suppose we have the same variables and domains as in the previous example, but 

now the constraints are X1<X2X1<X2 and X2+X3≤5X2+X3≤5 

 domains: D1={1,2,3,4}D1={1,2,3,4}, D2={2,3,4}D2={2,3,4}, D3={3,7}D3={3,7} 

 both of the constraints are binary constraints, because they each involve two variables 

 X1<X2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}X1<X2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,

4)} 

 X2+X3≤9={(2,3),(3,3)}X2+X3≤9={(2,3),(3,3)} 

by looking at the constraints for this problem, we note the following: 

 the only possible value for X3X3 is 3, because 3 is the only value for X3X3 in the 

constraint X2+X3≤9X2+X3≤9 

 we can also see the constraint X2+X3≤9X2+X3≤9 that X2X2 cannot be 4; so in the 

constraint X1<X2X1<X2 we can discard all pairs whose second value is 4, 

giving: X1<X2={(1,2),(1,3),(2,3)}X1<X2={(1,2),(1,3),(2,3)} 

 so the final solutions to this problem 

are: (X1=1,X2=1,X3=3)(X1=1,X2=1,X3=3), (X1=1,X2=3,X3=3)(X1=1,X2=3,X3=

3), (X1=2,X2=3,X3=3)(X1=2,X2=3,X3=3) 

example 3: suppose we have the same variables and domains as in the previous example, but 

now with the two constraints X1+X2=X3X1+X2=X3, and X1X1 is even 

 domains: D1={1,2,3,4}D1={1,2,3,4}, D2={2,3,4}D2={2,3,4}, D3={3,7}D3={3,7} 

 X1+X2=X3X1+X2=X3 is a ternary constraint, because it involves 3 variables 

 X1+X2=X3={(1,2,3),(3,4,7),(4,3,7)}X1+X2=X3={(1,2,3),(3,4,7),(4,3,7)} 

 X1X1 is even is a unary constraint, because it involves one variable 

 X1X1 is even ={2,4}={2,4} 



 looking at the triples in X1+X2=X3X1+X2=X3, the only one where X_1 is even 

is (4,3,7)(4,3,7), and so the only solution to his problem 

is (X1=4,X2=3,X3=7)(X1=4,X2=3,X3=7) 

4.4.1. Some Terminology and Basic Facts 

 variables can be assigned, or unassigned 

 if a CSP has some variables assigned, and those assignments don’t violate any 

constraints, we say the CSP is consistent, or that it is satisfied 

o that partial sets of CSP variable can be satisfied is an important part of many 

CSP algorithms that work by satisfying one variable at a time 

 if all the variables of a CSP are assigned a value, we call that a complete assignment 

 a solution to a CSP complete assignment that is consistent, i.e. a complete 

assignment that does not violate any constraints 

 depending on the constraints, a CSP may have 0, 1, or many solutions 

o a CSP with no solutions is sometimes referred to as over-constrained 

o a CSP with many solutions is sometimes referred to as under-constrained 

 depending upon the problem being solved and its application, we may want just 1 

solution, or we might want multiple solutions 

o for over-constrained CSPs, we may even be satisfied with a solution that 

violates the fewest constraints 

 if a domain is empty, then the CSP is no solution 

 if a domain has only one value, then that is the only possible value for the 

corresponding variable 

 the size of the search space for a CSP is |D1|⋅|D2|⋅…⋅|Dn||D1|⋅|D2|⋅…⋅|Dn| 

o this is the number of n-tuples that the CSP is searching through 

o this is often a quick and easy way to estimate the potential difficulty of a 

CSP: the bigger the search space, the harder the problem might be 

 this is just a rule of thumb: it’s quite possible that a problem with a 

large search space is easier than a problem with s small search space, 



perhaps because there are many more solutions to be found in the 

large search space 

4.4.2. Constraint Propagation: Arc Consistency 

as mentioned above, we are only considering CSPs with finite domains, and with binary 

constraints between variables 

it turns out that many such CSPs can be translated into a simpler CSP that is guaranteed to 

have the same solutions 

the idea we will consider here is arc consistency 

the CSP variable XiXi is said to be arc consistent with respect to variable XjXj if for every 

value in DiDi there is at least one corresponding value in DjDj that satisfies the binary 

constraint on XiXi and XjXj 

an entire CSP is said to be arc consistent if every variable is arc consistent with every other 

variable 

if a CSP is not arc consistent, then it turns out that there are relatively efficient algorithms 

that will make it arc consistent 

 and the resulting arc consistent CSP will have the same solutions as the original CSP, 

but often a smaller search space 

 for some problems, making a CSP arc consistent may be all that is necessary to solve 

it 

the most popular arc consistency algorithm as AC-3 

 on a CSP with cc constraints a maximum domain size of dd, AC-3 runs 

in O(cd3)O(cd3) time 

functionAC-3(csp) 



returns:falseisaninconsistencyisfound 

trueotherwise 

cspismodifiedtobearc-consistent 

input:CSPwithcomponents(X,D,C) 

localvariables:queueofarcs(edges)in 

theCSPgraph 

 

queue<--allarcsincsp 

whilequeueisnotemptydo 

(X_i,X_j)<--queue.pop_first() 

ifRevise(csp,X_i,X_j)then 

ifsize(D_i)==0thenreturnfalse 

foreachX_kinneighbors(X_i)-{X_j}do 

add(X_k,X_i)toqueue 

endfor 

endif 

endwhile 

returntrue 

 

 

functionRevise(csp,X_i,X_j) 

returnstrueiffdomainD_ihasbeenchanged 

 

revised<--false 

foreachxinD_ido 

ifnovalueyinD_jallows(x,y)tosatisfy 

theconstraintbetweenX_iandX_jthen 

deletexfromD_i 

revised<--true 



endfor 

returnrevised 

example. Consider the following CSP with variables A, B, C, and D, and: 

D_A = {1, 2, 3} D_B = {2, 4} D_C = {1, 3, 4} D_D = {1, 2} 

A < B A < D B = D B != C C != D 

it’s useful to draw the corresponding constraint graph, and then to apply AC-3 to that by 

hand to see how the domains changein this particular problem, AC-3 reduces 3 of the 3 

domains down to a single value 

Backtracking Search 

arc consistency can often reduce the size of the domains of a CSP, but it can’t always 

guarantee to find a solution 

so some kind of search is needed 

intuitively, the idea backtracking search is to repeat the following steps 

 pick an unassigned variable 

 assign it a value that doesn’t violate any constraints 

o if there is no such value, then backtrack to the previous step and choose a new 

variable 

a basic backtracking search is complete, i.e. it will find solutions if they exist, but in practice 

it is often very slow on large problems 

 keep in mind that, in general, solving CSPs is NP-hard, and so the best known 

general-purpose solving algorithms run in worst-case exponential time 

so various improvements are made to basic backtracking, such as: 



 rules for choosing the next variable to assigned 

o one rule is to always choose the variable with the minimum remaining 

values (MRV) in its domain 

 the intuition is that small domains have fewer choices and so will 

hopefully lead to failure more quickly than big domains 

 in practice, usually performs better than random or static variable 

choice, but it depends on the problem 

 rules for choosing what value to assign to the current variable 

o one rule is to choose the least-constraining value from the domain of the 

variable being assigned, i.e. the value that rules out the fewest choices for 

neighbor variables 

o in practice, can perform well, but depends on the problem 

 interleaving searching and inference: forward checking 

o after a variable is assigned in backtracking search, we can rule out all domain 

values for associated variables that are inconsistent with the assignment 

o forward-checking combined with the MRV variable selection heuristic is 

often a good combination 

 rules for choosing what variable to backtrack to 

o basic backtracking is sometimes called chronological backtracking because 

it always backtracks to the most recently assigned variable 

o but it’s possible to do better, e.g. conflict-directed backtracking 

an interesting fact about these improvements on backtracking search is that they are domain-

independent — they can be applies to and CSP 

 you can, of course, still use domain-specific heuristics if you have any 

it’s also worth pointing out that fast and memory-efficient implementations are a non-trivial 

engineering challenge, and require some thought to implement efficiently 



 plus, experiments with different combinations of heuristic rules are often needed to 

find the most efficient variation 

Local Search: Min-conflicts 

backtracking search solves a CSP by assigning one variable at a time 

another approach to solving a CSP is to assign all the variables, and then modify this 

assignment to make it better 

this is a kind of local search on CSPs, and for some problems it can be extremely effective 

example: 4-queens problem 

 place 4 queens randomly on a 4-by-4 board, one queen per column 

 pick a queen, and re-position it in its column so that it is attacking the fewest number 

of other queens; this is know as the min-conflicts heuristic 

 repeat the previous step until there are no possible moves that reduce conflicts; if the 

puzzle is solved, then you’re done; if it’s not solved, then re-start the entire process 

with a new initial random placement of queens 

local search using min-conflicts can be applied to any CSP as follows: 

functionMin-Conflicts(csp,max_steps) 

returns:solution,orfailure 

Inputs:csp,aconstraintsatisfactionproblem 

max_steps,numberofstepsallowedbeforegivingup 

 

current<--aninitialcompleteassignmentforCSP 

fori=1tomax_stepsdo 

ifcurrentisasolution,thenreturncurrent 

var<--randomlychosenconflictedvariablefromcsp.VARIABLES 

value<--thevaluevforvarthatminimizesCONFLICTS(var,v,current,csp) 



setvar=valueincurrent 

end 

the CONFLICTS functions returns the count of the number of variables in the rest of the 

assignment that violate a constraint when var=v 
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