
4.1. Local Search Algorithmsand Optimization Problems

In many optimization problems, the path to the goal is irrelvant; the goal state itself is

thesolution. The best state is identified from the objective function or heuristic cost

function. Insuch cases, we can use local search algorithms (ie) keep only a single

current state, try toimproveitinsteadofthewholesearchspaceexploredsofar.

Alocalsearchalgorithmstartsfromasearchspaceandtheniterativelymovestoaneighbors

olution.Thisisonlypossibleifaneighborhoodrelationisdefinedonthesearchspace.

Terminationoflocalsearchcanbebasedonatimebound.Anothercommonchoiceisto

terminate when the best solution found by the algorithm has not been improved in a

givennumberof steps.Local search algorithms are typically incomplete algorithms,as the

searchmay stop even if the best solution found by the algorithm is optimal. This can

happen even iftermination isdue to the impossibility ofimproving the solution,as the

optimalsolution canliefarfromtheneighborhoodofthesolutionscrossedbythealgorithms.

Thelocalsearchproblemisexplainedwiththestatespacelandscape.Alandscapehas:

 location-definedbythestate

 elevation - defined by the value of the heuristic costfunction or objective

function.Ifelevationcorrespondstocostthenthelowestvalley(globalminimum)isa

chieved. If elevation corresponds to an objective function, then the highest

peak(globalmaximum)isachieved.

The informed and uninformed search expands the nodes systematically in two ways:

 keeping different paths in the memory and

 selecting the best suitable path,

Which leads to a solution state required to reach the goal node. But beyond these “classical

search algorithms,” we have some “local search algorithms” where the path cost does

not matters, and only focus on solution-state needed to reach the goal node.

A local search algorithm completes its task by traversing on a single current node rather

than multiple paths and following the neighbors of that node generally.

Although local search algorithms are not systematic, still they have the following two

advantages:

 Local search algorithms use a very little or constant amount of memory as they

operate only on a single path.

 Most often, they find a reasonable solution in large or infinite state spaces where

the classical or systematic algorithms do not work.

4.2. Working of a Local search algorithm

Let’s understand the working of a local search algorithm with the help of an example:

Consider the below state-space landscape having both:

 Location: It is defined by the state.

 Elevation: It is defined by the value of the objective function or heuristic cost

function.

The local search algorithm explores the above landscape by finding the following two

points:

 Global Minimum: If the elevation corresponds to the cost, then the task is to find

the lowest valley, which is known as Global Minimum.

 Global Maxima: If the elevation corresponds to an objective function, then it finds

the highest peak which is called as Global Maxima. It is the highest point in the

valley.

4.3. Types

 Hill-climbing Search

 Simulated Annealing

 Local Beam Search

4.3.1. Hill Climbing Algorithm

Hill climbing search is a local search problem. The purpose of the hill climbing search is to

climb a hill and reach the topmost peak/point of that hill. It is based on the heuristic

search technique where the person who is climbing up on the hill estimates the direction

which will lead him to the highest peak.

State-space Landscape of Hill climbing algorithm

To understand the concept of hill climbing algorithm, consider the below landscape

representing the goal state/peak and the current state of the climber. The topographical

regions shown in the figure can be defined as:

 Global Maximum: It is the highest point on the hill, which is the goal state.

 Local Maximum: It is the peak higher than all other peaks but lower than the

global maximum.

 Flat local maximum: It is the flat area over the hill where it has no uphill or

downhill. It is a saturated point of the hill.

 Shoulder: It is also a flat area where the summit is possible.

 Current state: It is the current position of the person.

Types of Hill climbing search algorithm

There are following types of hill-climbing search:

1. Simple hill climbing

2. Steepest-ascent hill climbing

3. Stochastic hill climbing

4. Random-restart hill climbing

1. Simple hill climbing search

Simple hill climbing is the simplest technique to climb a hill. The task is to reach the

highest peak of the mountain. Here, the movement of the climber depends on his

move/steps. If he finds his next step better than the previous one, he continues to move else

remain in the same state. This search focus only on his previous and next step.

Simple hill climbing Algorithm

1. Create a CURRENT node, NEIGHBOUR node, and a GOAL node.

2. If the CURRENT node=GOAL node, return GOAL and terminate the search.

3. Else CURRENT node<= NEIGHBOUR node, move ahead.

4. Loop until the goal is not reached or a point is not found.

2. Steepest-ascent hill climbing

Steepest-ascent hill climbing is different from simple hill climbing search. Unlike simple

hill climbing search, It considers all the successive nodes, compares them, and choose the

node which is closest to the solution. Steepest hill climbing search is similar to best-first

search because it focuses on each node instead of one.

Note: Both simple, as well as steepest-ascent hill climbing search, fails when there is no

closer node.

Steepest-ascent hill climbing algorithm

1. Create a CURRENT node and a GOAL node.

2. If the CURRENT node=GOAL node, return GOAL and terminate the search.

3. Loop until a better node is not found to reach the solution.

4. If there is any better successor node present, expand it.

5. When the GOAL is attained, return GOAL and terminate.

3. Stochastic hill climbing

Stochastic hill climbing does not focus on all the nodes. It selects one node at random and

decides whether it should be expanded or search for a better one.

Random-restart hill climbing

Random-restart algorithm is based on try and try strategy. It iteratively searches the node

and selects the best one at each step until the goal is not found. The success depends most

commonly on the shape of the hill. If there are few plateaus, local maxima, and ridges, it

becomes easy to reach the destination.

Limitations of Hill climbing algorithm

Hill climbing algorithm is a fast and furious approach. It finds the solution state rapidly

because it is quite easy to improve a bad state. But, there are following limitations of this

search:

 Local Maxima: It is that peak of the mountain which is highest than all its

neighboring states but lower than the global maxima. It is not the goal peak

because there is another peak higher than it.

 Plateau: It is a flat surface area where no uphill exists. It becomes difficult for the

climber to decide that in which direction he should move to reach the goal point.

Sometimes, the person gets lost in the flat area.

 Ridges: It is a challenging problem where the person finds two or more local

maxima of the same height commonly. It becomes difficult for the person to

navigate the right point and stuck to that point itself.

4.3.2. Simulated Annealing

Simulated annealing is similar to the hill climbing algorithm. It works on the current

situation. It picks a random move instead of picking the best move. If the move leads to

the improvement of the current situation, it is always accepted as a step towards the

solution state, else it accepts the move having a probability less than 1. This search

technique was first used in 1980 to solve VLSI layout problems. It is also applied for

factory scheduling and other large optimization tasks.

4.3.3. Local Beam Search

Local beam search is quite different from random-restart search. It keeps track of k states

instead of just one. It selects k randomly generated states, and expand them at each step. If

any state is a goal state, the search stops with success. Else it selects the best k successors

from the complete list and repeats the same process. In random-restart search where each

search process runs independently, but in local beam search, the necessary information is

shared between the parallel search processes.

Disadvantages of Local Beam search

 This search can suffer from a lack of diversity among the k states.

 It is an expensive version of hill climbing search.

4.4. Constraint Satisfaction Problems

constraint satisfaction problems, or CSPs for short, are a flexible approach to searching

that have proven useful in many AI-style problems

CSPs can be used to solve problems such as

 graph-coloring: given a graph, the a coloring of the graph means assigning each of

its vertices a color such that no pair of vertices connected by an edge have the same

color

o in general, this is a very hard problem, e.g. determining if a graph can be

colored with 3 colors is NP-hard

o many problems boil down to graph coloring, or related problems

 job shop scheduling: e.g. suppose you need to complete a set of tasks, each of which

have a duration, and constraints upon when they start and stop (e.g. task c can’t start

until both task a and task b are finished)

o CSPs are a natural way to express such problems

 cryptarithmetic puzzles: e.g. suppose you are told that TWO + TWO = FOUR, and

each of the letters corresponds to a different digit from 0 to 9, and that a number can’t

start with 0 (so T and F are not 0); what, if any, are the possible values for the letters?

o while these are not directly useful problems, they are a simple test case for

CSP solvers

the basic idea is to have a set of variables that can be assigned values in a constrained way

a CSP consists of three main components:

 XX: a set of variables {X1,…,Xn}{X1,…,Xn}

 DD: a set of domains {D1,…,Dn}{D1,…,Dn}, one domain per variable

o i.e. the domain of XiXi is DiDi, which means that XiXi can only be assigned

values from DiDi

o we’re only going to consider finite domains; you can certainly have CSPs

with infinite domains (e.g. real numbers), but we won’t consider such

problems here

 CC is a set of constraints that specify allowable assignments of values to variables

o for example, a binary constraint consists of a pair of different

variables, (Xi,Xj)(Xi,Xj), and a set of pairs of values that XiXi and XjXj can

take on at the same time

o we will usually only deal with binary constraints; constraints between three or

more variables are possible (e.g. Xi,Xj,XkXi,Xj,Xk are all different), but they

don’t occur too frequently, and can be decomposed into binary constraints

example 1: suppose we have a CSP as follows:

 three variables X1X1, X2X2, and X3X3

 domains: D1={1,2,3,4}D1={1,2,3,4}, D2={2,3,4}D2={2,3,4}, D3={3,7}D3={3,7}

o so X1X1 can only be assigned one of the values 1, 2, 3, or 4

 constraints: no pair of variables have the same value,

i.e. X1≠X2X1≠X2, X1≠X3X1≠X3, and X2≠X3X2≠X3; we can explicitly describe

each of these constraints as a relation between the two variables where the pairs show

the allowed values that the variables can be simultaneously assigned, i.e.

o X1≠X2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,2),(3,4),(4,2),(4,3)}X1≠X2={(1,2),(

1,3),(1,4),(2,3),(2,4),(3,2),(3,4),(4,2),(4,3)}

o X1≠X3={(1,3),(1,7),(2,3),(2,7),(3,7),(4,3),(4,7)}X1≠X3={(1,3),(1,7),(2,3),(

2,7),(3,7),(4,3),(4,7)}

o X2≠X3={(2,3),(2,7),(3,7),(4,3),(4,7)}X2≠X3={(2,3),(2,7),(3,7),(4,3),(4,7)}

these three constraints are each binary constraints because they each constrain 2

variables

example 2: suppose we have the same variables and domains as in the previous example, but

now the constraints are X1<X2X1<X2 and X2+X3≤5X2+X3≤5

 domains: D1={1,2,3,4}D1={1,2,3,4}, D2={2,3,4}D2={2,3,4}, D3={3,7}D3={3,7}

 both of the constraints are binary constraints, because they each involve two variables

 X1<X2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}X1<X2={(1,2),(1,3),(1,4),(2,3),(2,4),(3,

4)}

 X2+X3≤9={(2,3),(3,3)}X2+X3≤9={(2,3),(3,3)}

by looking at the constraints for this problem, we note the following:

 the only possible value for X3X3 is 3, because 3 is the only value for X3X3 in the

constraint X2+X3≤9X2+X3≤9

 we can also see the constraint X2+X3≤9X2+X3≤9 that X2X2 cannot be 4; so in the

constraint X1<X2X1<X2 we can discard all pairs whose second value is 4,

giving: X1<X2={(1,2),(1,3),(2,3)}X1<X2={(1,2),(1,3),(2,3)}

 so the final solutions to this problem

are: (X1=1,X2=1,X3=3)(X1=1,X2=1,X3=3), (X1=1,X2=3,X3=3)(X1=1,X2=3,X3=

3), (X1=2,X2=3,X3=3)(X1=2,X2=3,X3=3)

example 3: suppose we have the same variables and domains as in the previous example, but

now with the two constraints X1+X2=X3X1+X2=X3, and X1X1 is even

 domains: D1={1,2,3,4}D1={1,2,3,4}, D2={2,3,4}D2={2,3,4}, D3={3,7}D3={3,7}

 X1+X2=X3X1+X2=X3 is a ternary constraint, because it involves 3 variables

 X1+X2=X3={(1,2,3),(3,4,7),(4,3,7)}X1+X2=X3={(1,2,3),(3,4,7),(4,3,7)}

 X1X1 is even is a unary constraint, because it involves one variable

 X1X1 is even ={2,4}={2,4}

 looking at the triples in X1+X2=X3X1+X2=X3, the only one where X_1 is even

is (4,3,7)(4,3,7), and so the only solution to his problem

is (X1=4,X2=3,X3=7)(X1=4,X2=3,X3=7)

4.4.1. Some Terminology and Basic Facts

 variables can be assigned, or unassigned

 if a CSP has some variables assigned, and those assignments don’t violate any

constraints, we say the CSP is consistent, or that it is satisfied

o that partial sets of CSP variable can be satisfied is an important part of many

CSP algorithms that work by satisfying one variable at a time

 if all the variables of a CSP are assigned a value, we call that a complete assignment

 a solution to a CSP complete assignment that is consistent, i.e. a complete

assignment that does not violate any constraints

 depending on the constraints, a CSP may have 0, 1, or many solutions

o a CSP with no solutions is sometimes referred to as over-constrained

o a CSP with many solutions is sometimes referred to as under-constrained

 depending upon the problem being solved and its application, we may want just 1

solution, or we might want multiple solutions

o for over-constrained CSPs, we may even be satisfied with a solution that

violates the fewest constraints

 if a domain is empty, then the CSP is no solution

 if a domain has only one value, then that is the only possible value for the

corresponding variable

 the size of the search space for a CSP is |D1|⋅|D2|⋅…⋅|Dn||D1|⋅|D2|⋅…⋅|Dn|

o this is the number of n-tuples that the CSP is searching through

o this is often a quick and easy way to estimate the potential difficulty of a

CSP: the bigger the search space, the harder the problem might be

 this is just a rule of thumb: it’s quite possible that a problem with a

large search space is easier than a problem with s small search space,

perhaps because there are many more solutions to be found in the

large search space

4.4.2. Constraint Propagation: Arc Consistency

as mentioned above, we are only considering CSPs with finite domains, and with binary

constraints between variables

it turns out that many such CSPs can be translated into a simpler CSP that is guaranteed to

have the same solutions

the idea we will consider here is arc consistency

the CSP variable XiXi is said to be arc consistent with respect to variable XjXj if for every

value in DiDi there is at least one corresponding value in DjDj that satisfies the binary

constraint on XiXi and XjXj

an entire CSP is said to be arc consistent if every variable is arc consistent with every other

variable

if a CSP is not arc consistent, then it turns out that there are relatively efficient algorithms

that will make it arc consistent

 and the resulting arc consistent CSP will have the same solutions as the original CSP,

but often a smaller search space

 for some problems, making a CSP arc consistent may be all that is necessary to solve

it

the most popular arc consistency algorithm as AC-3

 on a CSP with cc constraints a maximum domain size of dd, AC-3 runs

in O(cd3)O(cd3) time

functionAC-3(csp)

returns:falseisaninconsistencyisfound

trueotherwise

cspismodifiedtobearc-consistent

input:CSPwithcomponents(X,D,C)

localvariables:queueofarcs(edges)in

theCSPgraph

queue<--allarcsincsp

whilequeueisnotemptydo

(X_i,X_j)<--queue.pop_first()

ifRevise(csp,X_i,X_j)then

ifsize(D_i)==0thenreturnfalse

foreachX_kinneighbors(X_i)-{X_j}do

add(X_k,X_i)toqueue

endfor

endif

endwhile

returntrue

functionRevise(csp,X_i,X_j)

returnstrueiffdomainD_ihasbeenchanged

revised<--false

foreachxinD_ido

ifnovalueyinD_jallows(x,y)tosatisfy

theconstraintbetweenX_iandX_jthen

deletexfromD_i

revised<--true

endfor

returnrevised

example. Consider the following CSP with variables A, B, C, and D, and:

D_A = {1, 2, 3} D_B = {2, 4} D_C = {1, 3, 4} D_D = {1, 2}

A < B A < D B = D B != C C != D

it’s useful to draw the corresponding constraint graph, and then to apply AC-3 to that by

hand to see how the domains changein this particular problem, AC-3 reduces 3 of the 3

domains down to a single value

Backtracking Search

arc consistency can often reduce the size of the domains of a CSP, but it can’t always

guarantee to find a solution

so some kind of search is needed

intuitively, the idea backtracking search is to repeat the following steps

 pick an unassigned variable

 assign it a value that doesn’t violate any constraints

o if there is no such value, then backtrack to the previous step and choose a new

variable

a basic backtracking search is complete, i.e. it will find solutions if they exist, but in practice

it is often very slow on large problems

 keep in mind that, in general, solving CSPs is NP-hard, and so the best known

general-purpose solving algorithms run in worst-case exponential time

so various improvements are made to basic backtracking, such as:

 rules for choosing the next variable to assigned

o one rule is to always choose the variable with the minimum remaining

values (MRV) in its domain

 the intuition is that small domains have fewer choices and so will

hopefully lead to failure more quickly than big domains

 in practice, usually performs better than random or static variable

choice, but it depends on the problem

 rules for choosing what value to assign to the current variable

o one rule is to choose the least-constraining value from the domain of the

variable being assigned, i.e. the value that rules out the fewest choices for

neighbor variables

o in practice, can perform well, but depends on the problem

 interleaving searching and inference: forward checking

o after a variable is assigned in backtracking search, we can rule out all domain

values for associated variables that are inconsistent with the assignment

o forward-checking combined with the MRV variable selection heuristic is

often a good combination

 rules for choosing what variable to backtrack to

o basic backtracking is sometimes called chronological backtracking because

it always backtracks to the most recently assigned variable

o but it’s possible to do better, e.g. conflict-directed backtracking

an interesting fact about these improvements on backtracking search is that they are domain-

independent — they can be applies to and CSP

 you can, of course, still use domain-specific heuristics if you have any

it’s also worth pointing out that fast and memory-efficient implementations are a non-trivial

engineering challenge, and require some thought to implement efficiently

 plus, experiments with different combinations of heuristic rules are often needed to

find the most efficient variation

Local Search: Min-conflicts

backtracking search solves a CSP by assigning one variable at a time

another approach to solving a CSP is to assign all the variables, and then modify this

assignment to make it better

this is a kind of local search on CSPs, and for some problems it can be extremely effective

example: 4-queens problem

 place 4 queens randomly on a 4-by-4 board, one queen per column

 pick a queen, and re-position it in its column so that it is attacking the fewest number

of other queens; this is know as the min-conflicts heuristic

 repeat the previous step until there are no possible moves that reduce conflicts; if the

puzzle is solved, then you’re done; if it’s not solved, then re-start the entire process

with a new initial random placement of queens

local search using min-conflicts can be applied to any CSP as follows:

functionMin-Conflicts(csp,max_steps)

returns:solution,orfailure

Inputs:csp,aconstraintsatisfactionproblem

max_steps,numberofstepsallowedbeforegivingup

current<--aninitialcompleteassignmentforCSP

fori=1tomax_stepsdo

ifcurrentisasolution,thenreturncurrent

var<--randomlychosenconflictedvariablefromcsp.VARIABLES

value<--thevaluevforvarthatminimizesCONFLICTS(var,v,current,csp)

setvar=valueincurrent

end

the CONFLICTS functions returns the count of the number of variables in the rest of the

assignment that violate a constraint when var=v

	4.1. Local Search Algorithmsand Optimization Problems
	4.2. Working of a Local search algorithm
	State-space Landscape of Hill climbing algorithm
	1. Simple hill climbing search
	Steepest-ascent hill climbing algorithm
	Limitations of Hill climbing algorithm
	4.3.2. Simulated Annealing
	4.3.3. Local Beam Search
	Disadvantages of Local Beam search
	4.4. Constraint Satisfaction Problems
	4.4.1. Some Terminology and Basic Facts
	4.4.2. Constraint Propagation: Arc Consistency
	Backtracking Search
	Local Search: Min-conflicts

