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Abstract: Many production activities and operating systems have a significant negative impact 

regarding global warming, carbon footprint, and environmental effects. These are mainly due to 

extremely high production temperatures. In this regard, it is imperative to conduct a comprehensive 

analysis of the current situation and to act immediately. Reducing cement consumption, replacing 

cement with alternative binders with less CO2 emission, substituting waste materials or bioresources 

instead of conventional raw materials, increasing the use of alternative fuels, boosting production 

efficiency, and integrating CO2 capture systems into production play significant roles in structural 

energy management. The primary topics in operational energy management are thermal insulation, 

renewable energy sources, and water and waste management. Future trends are created by keeping 

up with the development of technology and adapting to the innovations in materials science. 

Therefore, emphasis must be placed on materials and their reactions, nanomaterials and their 

modifications, structural and functional materials, the development of high-quality materials, the 

comprehension of self-healing materials, energy applications, and fuel cells. 
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1. Introduction 

The connection between human activity and climate change is undeniable. Observations indicate 

unequivocally that the climate is warming. The principal driver of the observed global warming during 

the past five decades may be attributed to the emissions of heat-trapping gases that are a direct result 

of human activities. Besides the combustion of fossil fuels such as coal, oil, and gas, the process of 

forest clearance, agricultural practices, and various other human activities also make substantial 

contributions to these emissions [1]. Regarding the life cycle usage of energy of urban constructions, 

operational energy (heating, cooling, ventilation, and hot water provision etc.) and structural energy 

(constructing, maintaining, renovating, and demolishing the constructed environment) can be 

distinguished [2]. Approximately 80% of the sum of all energy used by manmade structures is 

comprised of operating energy [1]. Operational energy analysis and its corresponding carbon emissions 

have served as guiding principles in the field of building energy research for an extended period. In 

recent years, there has been a growing emphasis on the significance of embodied energy and 

emissions. [3,4]. There are two reasons for this. It is expected that the proportion of operational energy 

and its corresponding carbon emissions would decline in the future as a result of the growing use of 

energy-efficient building technologies, advancements in insulating materials, and the usage of energy-

efficient equipment and gadgets. [4,5]. Furthermore, it should be noted that emissions originating 

from the incorporation phase constitute a significant majority, surpassing 90%, of the whole life cycle 

emissions associated with "abandoned" built environments, including but not limited to roads, bridges, 

and various forms of infrastructure. [6,7].  

Four air pollutants, namely SO2, NOX, CO, and CO2, and particles PM2.5 (Less than 2.5 millimeter in 

diameter particulates), PM10 (Less than 10 millimeter in diameter particulates), and TSP (utilised 

includes fragments) are emitted during cement production. Indirect emissions can also be attributed 

to the energy consumption involved in the manufacture and transportation of fundamental materials 

and end products. [8]. 

2. Sustainable Approaches for Structural Energy 

Studies are carried out on different approaches to reduce emissions from cement.  Approximately 7% 

of total CO2 emissions are attributed to the cement manufacturing [9]. The predominant contributors 

to carbon dioxide (CO2) emissions within the cement industry are the direct utilization of fossil fuels 

for burning purposes and the process of calcination, which involves converting limestone into calcium 

oxide. Indirect carbon dioxide (CO2) emissions arise as a consequence of the burning of fossil fuels for 

the purpose of power generation. Roughly 50% of carbon dioxide (CO2) emissions may be attributed 



to the burning of fossil fuels, whereas the remaining 50% arises from the calcination process involving 

limestone. [10,11]. 

2.1. Optimization of Cement Production 

Cement production component primarily consist of fly ash, blast furnace slags, pozzolan, and natural 

zeolites. Clinker consumption is reduced in cement production where these components are utilized 

[11]. 

2.2. Improving Aggregate Production 

Coarse aggregates, following cement, constitute the principal contributor to carbon dioxide (CO2) 

emissions within the context of concrete production, representing a range of 13 to 20% of the 

aggregate CO2 emissions. The preponderance of CO2 emissions in coarse aggregate production are 

attributed to blasting, excavation, and transport. The processes of grinding and sifting fine aggregates 

also contribute to the generated of CO2 emissions. It has been determined that the emission additives 

produced by the concrete additives are relatively insignificant. Mixing, transporting, and placing 

concrete are known to contribute a negligible ratio of carbon dioxide to total concrete emissions 

[12,13]. 

2.3. Alternative Fuel Use in the Cement Industry 

Cement production can utilize electricity derived from renewable energy sources. Additionally, in some 

countries, the heat produced by the combustion of refuse materials is utilized in production. The 

United States cement industry annually burns 53 million used tires. In 2005, approximately 200 

kilotonnes (kt) of used tires, 450 kt of waste oil, 340 kt of sawdust, and 300 kt of waste plastic were 

burnt to produce cement in Japan [14]. 

2.4. Reducing the usage of cement 

Recent developments have been made in the utilization of graphene, pozzolanic additives, and reactive 

silica in product design processes to reduce the use of cement. Graphene oxide is a viable candidate 

for use as a nano-reinforcement in cement-based materials due to its strong water dispersibility, high 

aspect ratio, and exceptional mechanical properties. There are studies to enhance the mechanical 

properties of Portland cement paste using graphene oxide. Adding 0.05% by weight graphene oxide 

can increase the graphene oxide-cement composite's compressive and flexural strengths from 15 to 

33% and 41 to 59%, respectively [15,16]. 



It has been determined that micro and nano-sized pozzolanic additives can partially replace cement 

and increases the strength. It is known that particle size, fineness, and reactivity differences have the 

effect of accelerating the hydration reaction and slightly altering the reaction temperature. In the field 

of waste management, the use of pozzolans such as volcanic-derived pozzolans, fumed silica, and fly 

ash is also significant in terms of disposal convenience [17–19]. 

Various sustainable binders, such as calcium aluminate cements (CACs), super sulfated slag cements 

(SSCs), microbial cements (MCs), and geopolymer cements (GCs), can serve as viable substitutes for 

traditional Portland cement (PC). The use and acceptance of these alternative materials exhibit 

encouraging environmental efficacy, as they have the potential to reduce CO2 emissions by 5-90%. 

This reduction in CO2 release might potentially lead to a 7% decrease in world CO2 emissions when 

compared to the fabrication of traditional cement [20,21]. 

2.5. Use of Natural and Recycled Fiber 

The use of natural fibers and fibers obtained from waste materials instead of synthetic fibers is another 

approach for sustainability. There are published studies on the use of recycled plastic, metal, rubber, 

and glass fibers in the construction industry. 

Plastic fibers are produced from a variety of synthetic polymers, including PET (polyethylene 

terephthalate), PE (polyethylene), PP (polypropylene), nylon, polyester, and other similar materials. 

Microfibres or macrofibres are categorized based on their size. The use of microfibers in concrete has 

been seen to decrease plastic shrinkage while compromising mechanical and tensile characteristics. 

On the other hand, macrofibres provide an added advantage by mitigating the occurrence of drying 

shrinkage and improving the responsiveness after cracking. [22,23]. 

Steel fibers, which are readily accessible in a range of forms and diameters, are employed either alone 

or in conjunction with rubber or polymers. The use of steel fibers enhances the ductility and resilience 

of concrete to fatigue, impact, explosion, and abrasion. In addition, cracks are constrained in terms of 

their breadth. [22]. 

Rubber particles in the form of powder, crumbs, or fibers have the potential to be included into 

concrete mixtures, resulting in the development of rubberized concretes.  These rubbers are always 

obtained from a recycled origin, commonly sourced from used tires. Rubber provides high ductility and 

durability to concrete. The limited compressive strength of cement and rubber materials can be 

attributed to the relatively weak connection between their particles. To meet the criteria of shock 

resistance, particularly in seismic occurrences, and to provide sound insulation, this material is 



predominantly employed in non-load-bearing constructions such as highways, lightweight concrete 

walls, building facades, roofing tiles, and road traffic barriers [24,25]. 

Glass fibers, which are typically added in high doses, are frequently used in reinforced materials that 

provide desirable attributes such as hardness or ornamental value. However, the utilization of glass in 

construction materials has been restricted as a result of its susceptibility to alkaline environments 

created by cement, which causes it to become brittle and reduce its strength and durability. With the 

development of glass fibers that are resistant to alkalis, the use of glass fiber in construction is on the 

rise. The majority of recycled fibers from glass for reinforced concrete are derived from refuse 

polymers strengthened with glass fibers [26]. 

Natural fibers are naturally occurring, biodegradable, and safe to consume, and their mechanical 

properties are more desirable than those of synthetic fibers. Their hydrophilic character, however, 

renders them vulnerable to high-volume transpiration of moisture, resulting in insufficient matrix 

wetting and a compromised fiber-matrix interface. Adapting the interface properties and enhancing 

the durability and mechanically behavior of cement and geopolymer-based composites requires 

adaptation and functionalization strategies for natural fibers. Recently, cellulose, hemicellulose, lignin, 

pectin, oils, lubricants, lipids, and fibers derived from animals have been utilized in the construction 

industry as natural fiber materials [27]. 

2.6. Replacing traditional raw materials with sustainable or waste materials 

There are efforts to replace the conventional production's raw materials with more environmentally 

favorable alternatives. Numerous academic studies have been conducted, and the construction sector 

is beginning to observe their effects. Construction debris can be used in concrete, asphalt, and 

composite materials [28,29]. While some countries make this approach legally compulsory, some 

countries encourage it without any legal obligation. In the US, Executive Order 13101, "Greening the 

Government Through Waste Prevention, Recycling and Federal Acquisition," prioritized biobased 

materials and increased federal government purchases to 50% over the next few decades. This rule 

covers construction materials, composites, adhesives for the housing industry, fiber, paper, and 

packaging, plastics, paints, and coatings [28]. Figure 1 presents the suggested minimum biobased 

content for certain items under the Construction Material Category. 



 
Figure 1. Natural/Bio-fibers for Bio composites for the Housing Industry in USA [28] 

 

In addition to the evaluation of waste materials, there are also studies in which some chemically 

synthesized raw materials are substituted with biobased alternatives [30]. Although this approach is 

uncommon in the business world, it is anticipated to become more popular in the future. 

2.7. Max yield/ low energy consuming production 

Despite the fact that the construction industry lies behind sectors such as aviation and automotive in 

adapting to evolving technology, it is also possible to observe that there is a perception towards 

adapting to today's technology. Adaptation of Internet of Things (IoT) technology to the construction 

industry is a prime example. Possible IoT applications include monitoring cement hydration, filling size, 

increasing production efficiency, surveillance of structural health, safety in the construction industry 

enhancement, optimization and simulation, image processing and monitoring certain pre-test 

requirements [31–35]. 

The precise measurement of the compressive strength in its original location has the potential to 

enhance critical construction procedures, including the timing for removing formwork, opening 

bridges, tensioning prestressed cables, and designing concrete mixes. The optimization of mix design 

has a significant impact on the efficient exploitation of raw resources, including cementitious materials 

and aggregates, as well as replacement components such chemical admixtures. The use of such a 

strategy has the possibility to yield significant financial advantages by mitigating CO2 emissions, 

reducing labor and project expenses, and expediting project completion within the designated timeline 

[32].  

In addition to the IoT, cloud computing and Industry 4.0 Technologies are used to increase production 

efficiency and provide energy savings [36,37].  



2.8. CO2 Capturing 

Excessive CO2 emissions into the atmosphere are identified as one of the primary causes of climate 

change and global warming [38,39]. For the upcoming years, decisions have been made to better living 

conditions and reduce CO2 emissions, the primary CO2 sources have been identified, and precautions 

have been taken regarding these sources. Technology for CO2 capture, storage, and utilization is a 

promising option for achieving significant reductions in anthropogenic CO2 emissions [40,41]. 

Important classes of solid materials have been evaluated as adsorbents for this purpose, including 

metal-organic frameworks (MOFs), silica-based materials, calcium-based materials, zeolite and carbon-

based materials. Carbon-based materials such as activated carbon, mesoporous carbon (CMK), carbon 

nanotubes, and graphene oxide are widely employed as solid adsorbents. [42–51]. 

3. Sustainable Approaches for Operational Energy Consumption 

In terms of Operational Energy, it is possible to implement measures during both the design and 

operate phases. 

3.1. Design phase approaches 

The design of buildings is optimized to take advantage of sunlight with maximum efficiency and to 

prevent heat loss caused by glass. During the architectural design process of a building, studies are 

conducted to determine the optimal glass width and distribution, with calculations taking into 

consideration the time and angle of the sun's position. The window-to-wall ratio is a crucial metric that, 

when properly constructed, may exert a substantial impact on the overall energy consumption of a 

structure. Numerous studies have been conducted to assess the effects of solar radiation and sunlight 

penetration into a structure via its exterior [52–54]. 

The implementation of thermal insulation in building walls has a notable influence on reduction of 

thermal energy consumption within structures, which leads to a decrease in CO2 emissions. The 

implementation of thermal insulation on the outer wall of a building can be regarded as a prudent 

economic investment. The cost of this investment encompasses the expenses is related to the 

purchase, transportation, and installation of the insulation, whereas the return is contingent upon the 

decrease in thermal energy consumption [55]. In the literature are also included studies involving 

construction scenarios that reduce operational carbon by enhancing thermal coating. There are 

numerous methods and programs for simultaneously estimating embodied and operational carbon 

over the lifetime of thermal coating categories for buildings [56]. Thermal coating can be applied during 

the construction phase of the building as well as it’s service time. 



3.2. Usage phase approches 

Within the context of European research projects, a novel lifecycle methodology has been devised to 

assess the lifecycle impacts of buildings at the earliest phases of design. The approach that has been 

suggested involves estimating the operational energy requirements of the building. Early design stages 

are anticipated to have a greater impact on the life cycle performance of the building, despite the 

limited availability of design data at these stages. In addition, the estimation of energy requirements is 

frequently based on a practice-based method that necessitates a comprehensive description of the 

building's design [57]. 

Energy performance may be categorized into three main components: operational energy, active 

structures that make use of renewable energy sources, and the handling of energy operation and 

management. Operational energy is the combination of energy elements such as energy use for 

heating, domestic hot water, air conditioning units, cooling, lighting, and appliances. Renewable 

energy-based active systems encompass a range of technologies, including water heaters powered by 

solar energy, heating and cooling pumps, photovoltaic systems, and heat recuperation mechanisms. 

The concept of energy operation and management encompasses the comprehensive regulation of 

lighting systems, occupancy sensors, and technological control of appliances. [58,59]. In this context, 

the management of water is another issue that can be evaluated. There are various approaches to 

water management, including reducing and modulating water flow, surface water hydrology, provision 

of safe drinking water, and filtration of wastewater. Waste Management, on the other hand, involves 

minimizing the residues generated by building operations. This study examines strategies for mitigating 

emissions arising from the construction, operation, and destruction of the structure, alongside steps 

aimed at decreasing the potential hazards associated with the facility's operation [59]. 

The achievement of sustainable energy performance through the utilization of combined  technologies 

and green energy systems continue to face significant obstacles in terms of crucial parameters such as 

cost, maintenance, and operation. Future eco-cities must be designed by designers, engineers, and 

creators in concert with the goal of creating greener and more intelligent environments [60]. 

4. Conclusion 

Taking into account all effects, such as energy consumption, carbon emissions, water footprint, and 

public and environmental health, it is evident that the current global situation must be improved 

immediately. All of the titles enumerated in the preceding section depict current and immediate 

developments. In light of these factors, the following subjects should be prioritized:  



• Understanding nanoscale phenomena (such as cement hydration)  

• Nano particulates, additives and admixtures  

• Materials with nanostructure modifications (e.g., steel, cement, composites)  

• New structural and functional materials  

• Engineering surface/interface assessment  

• Specialized paints, varnishes, and thin films  

• Integrated monitoring and diagnostic systems for structures  

• Self-healing and intelligent materials  

• Innovative thermal and insulating materials 

• Intelligent construction equipments, command and control systems  

• New fuel cells and solar cells for building energy applications  

• Biomimetic and hybrid materials 

Given that environmental changes manifest on a worldwide basis, it is imperative that recovery 

measures be implemented on a global scale as well. The most optimal approach to address 

improvement requirements globally is through the implementation of rules and legislation, ensuring 

the promotion of health and well-being. 
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