GENERALIZED FIBONACCI NUMBERS AND DIFFERENCE
OPERATORS

1.1 INTRODUCTION

This chapter deals with the Fibonacci and Lucas sequences [5,6].
To consider all the sequences [7,8] of this type under one heading we are

introducing generalized Fibonacci sequence {G,}, which is defined by [3] —
Gn = Gn.]_ + Gn.z, n 2 3 (lll)
Gi=a , G, = b

where, a and b are constants.

But this generalization does not include Pell sequence, associated
Pell sequence, and other sequences which can be similarly defined. To
discuss all such sequences under one heading we consider the sequence
{S.}, defined by —

Sn+1 = k Sn + Sn.l (1.1.2)

where, S, and S; are arbitrary constants and k is any number.

We shall also introduce the two companion sequences {H,} and {V,.}
defined by [4] —

Hnei = KHp + Hpg (n > l), Ho=0,H;=1 (113)
Visr =kVp+ Va1 (n>1), V=2,V =k (1.1.4)

Thus the sequence {H,} and {V,} are particular cases of the
sequences {Sn}. The sequence {H.} reduces to Fibonacci or Pell sequence
according as k = 1 or 2. Similarly the sequence {V,} reduce to Lucas or

associated Pell sequence according as k=1 or 2.



1.2 DIFFERENCE OPERATORS E AND A

In this section we shall derive some new identities for the
generalized Fibonacci numbers G,, with the help of finite difference

operators E and A. These operators are defined by [1] —

E Gn = Gna (1.2.1)
A Gn = Gn+l - Gn, and (122)
A=E-1 (1.2.3)

Also, it is known that,
A (AnBm) = (EAn) (ABm) +Bm (A Ay) (1.2.4)
Since,
Gni1—Gn = Gpa
Therefore, we obtain
A Gp=Gng
and in general,
A" Gp = Gnm (1.2.5)

Using the operators we obtain the following identities :

m m
Gn_m = ('1)p ( j Gn+m_p (1.2.6)
p=0 p

m (m
Gn+m = z ( j Gn_p (1.2.7)
p=0 \ P



g (mj Grep = E (mj 2™P Gy (1.2.8)
p=0 \ P p=0 \ P

G211 — G2 = Gpa1 Gpy + G Gt (1.2.9)
Proof
(1) From equations (1.2.5), (1.2.3) and (1.2.1), we obtain
Gnm =A"G,
=(E-1)"G,

m
= 2 (1) Gnmop
p=0

which is the result of egn. (1.2.6).

(2) We have
Gn+m = Em Gn
=21+A)"G,

5 ()
p=0 \ P

which is the result of egn. (1.2.7).

(3) We have,

L+E)"G,= ¥ Fjemp
p=0 \ P

Now,

LH.S. = (2 +A)" G,

p=0 \ P

which is the result of egn. (1.2.8).
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(4)  Setting An =B =Gy inegn. (5.2.4), we get
A (Gnh Gp) = (E Gp) (AGp) + G (A Gp)
which leads to the result of eqn. (1.2.9).
1.3 EXPLICIT EXPRESSIONS FOR S,, H, and V,

An explicit expression for the numbers S,, may be derived by the
usual method for solving difference equations. By this method we deduce
that [2] —

Sp=Xa"+Yp" (1.3.1)
where, o and 3 are the roots of the equation.

t?—kt—1=0 (1.3.2)
and X and Y are suitably chosen constants depending on Sp and S;.

From eqgn. (1.3.2) we get,
o =% [k+ (k? + 4)Y2]
B="5[k- (k2 +4)*2]

giving,
o+ B =Kk,
of=-1, >
a- B =(k?+4)Y2 (1.3.3)

J

It follows that —

S1-SoB

X= o B



_ Sl —So(]

Y 5.3.4
p— (53.9)
From eqgns. (1.3.1) and (1.3.4), we obtain
n n n-1 n-1
Sn — (G _B )Sl +(G _B )SO (135)

a-B

Taking Sp = 0 and S; = 1, the sequence S, reduces to H,, and from
eqn. (1.3.5) we obtain,

(1.3.6)

Taking, So = 2 and S; = k, the sequence {S,} is reduces to {V,} and
using eqgn. (5.3.3), we obtain,

Vo= o+ p" (1.3.7)
From egns. (1.3.5) and (1.3.6), we have

Sh=Hn S1 + Hn1 So (1.3.8)
Now we shall derive some identities involving these numbers.
Since a is a root of the equation (1.3.2), we have

a®=1+ka (1.3.9)

therefore,
n (n
o= ¥ ( j kP o (1.3.10)
p
Similarly, we get

n_ & (N
=¥ kP oP (1.3.11)
p=0 \P



Hence, from egns. (1.3.1), (1.3.10) and (1.3.11), we obtain the identity —

Sm= m K S, (1.3.12)
p=0 \P

Denoting (So? + k So S1 — S12) by §, and using eqns. (1.3.1), (1.3.3)

and (5.3.6), the following identities have been obtained :

Si?— Sp1 St = ((1)" 5 (1.3.13)
Sm Snip — Smep Sn = (-1)™ & Hp Hom (1.3.14)
Smentt = Smet Hnet + Sm Hy (1.3.15)
Smer Hier + (1) S Hn = Smensr Hr (1.3.16)
Hn Huem — Hs Hiemes = (-1)™° Hs Hsom (1.3.17)
Hn = (-1)™! H, (1.3.18)
S2..1— S%n1 = S5 San — So Sancz (1.3.19)
Hn Vi = Han (1.3.20)

Similar results can be obtained for other sequences by suitably

choosing the constants.
1.4 GEOMETRICAL PROPERTIES OF {S»} AND {H.}
Theorem 1

Area of the triangle having vertices at the points with rectangular
Cartesian coordinates (Sn, Sn+), (Sn+a, Sn+a+r), (Sn+b, Sn+b+r) IS independent

of n.



Proof

Twice the area of the specified triangle is equal to the absolute value

of the determinant.

Sn Snr
A = Sn+a  Snia+r
Sn+b  Snib+r

Using (1.3.15) for the second column the determinant can be written

as —
Sn Sh+r Sn Snr
Hi1 |Snia Snia +H Shya Snia-z
Sn+b  Sn+b Sn+b  Sn+b-1

The first determinant is obviously zero; in the second on alternately
subtracting the second and first columns from each other, the suffixes can

be reduced and finally we get —

S; S
A=1H|Sa;1 Sa 1,
Spi1 Sp

according as nis odd or even.
On expanding the determinant along the third column we obtain,
A=+ H; [ (Sas1 Sb— Sa Sb+1) — (S1 Sp — So Sp+1)
+ (S1 Sa— So Sa+),
which on using (1.3.14), reduces to —

A =+ H; [Ho— Ha— (-1)2 Hp.a] & (1.4.1)



Thus the area of the specified triangle is independent of n.
Particular Case

Taking T,=0,T; =1, k=1and e = h, a = 2h, b = 4h, we find that
the area of the triangle whose vertices are (Fn, Fn+), (Fns2n, Fnean), (Fnsan,

Fnssn) is equal to —
Y2 Fn (Fin — 2F2n) (1.4.2)
Duncan has proved that the area of this triangle is,
Yo [Fn(Fan — Fan) — (Fsh Fan—Fan Fsn) 1,
which on using (5.3.17) simplifies to the expression given in (1.4.2).
Theorem 2

Lines drawn through the origin with direction ratios Tn, Tn+a, Tn+bs

where, a and b are any integers are always co-planar for every value of n.
Proof

Direction ratios of any three such lines are Se, Seta; Se+b, Sty St+a

Stby Sg, Sgrar Sg+b. these will be coplanar if

Se Se+a Se+b
St Stia St4p| =0 (1.4.3)

Sg Sg+a Sg+b

On using the relation (1.3.15) the left-hand side of (1.4.3) can be
written as the sum of four determinants each of which is zero. Hence, the

theorem is proved.



Theorem 3

The points having Cartesian coordinates (Sn, Sn+a, Sn+b), Where, a
and b are any integers and n = 1,2,3,....., are always co-planar and the

plane through these points passes through the origin, and its equation is
independent of n.

Proof

Equation to the plane passing through any three such points is —
X y z
Se Seta Setb

=0 (1.4.4)
St Stra  Stib

Sg Sg+a Sg+b
where, e, f and g are particular values of n.
Here the coefficient of x is
= [ (St+a Sg+b — St+pSg+a) — (Se+a Sgb — Serb Sg+a)
+ (Se+a St+b — Se+b Sg+a)]
= (-1)* [Ho-a(-1)" Hg:t = (-1)° Hge + (-1)° Hr.e) 3

The coefficient of y is obtained on putting a = 0 in the coefficient of
X; the coefficient of z is obtained from the coefficient of y on replacing b by

a; the constant term is zero as is already proved in (1.4.3).
Thus the equation to the plane simplifies to -
(-1)?Hp-aX—Hyy+Haz=0 (1.4.5)

This equation is independent of n. Also it does not depend on the
initial values T, and T;.



Particular Case

From (1.4.5) we obtain that the points (Fe, Fes2, Fess), € = 1,2,3,...;
(Lt, Lts2, Lss), F=1,2,3,...; (Gg, Gg+2, Gg+5), 9 = 1,2,3,...; all lie on the plane
2x—-5y+z=0.

Theorem 4
The planes —
SnX + Sn+ay + Sn+bZ + Sn+r = 0:

where, a, b, r are any integers and n = 1,2,3,...; all intersect in a given line

whose equation is independent of n.

Proof
Let two such planes be —
Se X + Setay + Tesp Z + Sewr = 0, (1.4.6)
St X+ Stsay + Stip 2 + S = 0.

The equations to the line of intersection of the parallel planes

through the origin are

X B y _ Z
Se+an+b _Se+bsf+a SeSf+b _Se+be SeSf+b _Se+be

On using (5.3.14) and preceding as in (5.4.5) we obtain the equation of the

line of intersection of the parallel planes through the origin as —

X -y_z
(-D%Hp_a Hb Ha

The line of intersection of the planes given by (5.4.6) meets the

plane z = 0, at the point given by —



S
(-)%H;_a Hr Ha

Thus the equation to the line of intersection of the planes given by
(1.4.6) becomes

(-DPHax—Hy_a _Hay+Hr _ 2z

—, (1.4.7)
Hb—a _Hb Ha

which is independent of n.

Particular case

The planes whose equations are —

FeX+Fer1y+FezZ+Fens = 0,e=1,2.3,.

LfX + I—f+ly + Lf+3 zZ+ Lf+4 = 01 f = 112131'

ng + Bg+1y+ Bg+3 Z+ Bg+4= O, g = 1,2,3,....,

all intersect in the line X2 _Y+3 _ 2

2 -1

15 A THIRD-ORDER DETERMINANT INVOLVING THE NUMBERS S,

From (1.4.3) it follows that

Sa Sa+m Sa+min
Sb Sb+m Sb+m+n| =0 (1.5.1)
S,

Sr+m Sr+m+n
for all integers a, b, r, mand n.

We shall now evaluate the determinant,

Sa+t€e Saim+€ Saiminte
A1=|Sp+€ Spim+€ Spiminte€
Sr+€ Srim+€ Srimsnte€
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where, e is an arbitrary constant and a, b, r, m and n are any integers.

On writing the determinant as the sum of eight determinants; using
the equation (1.5.1) and the property that a determinant vanishes if two

columns are identical, we obtain,
Sa Sa+m ©

A1 =|Sp Spim €[+|.|+|-
Sr Srim ©

Sa Sa—1
= eHn Sy Sp_g 1+..+...
Sr Sra
The first determinant by using (1.3.14) can be written as —
= deHn l(_l)r_le—r + (_1)a_1Hr—a + (_1)b_1H—b+a
Hence,
A1=389[(-1)® Hp — (-1)2 Hrp + (-1) Hp.a] [Hm — Hmsn + (-1)™ Hy] (5.5.2)
1.6 FOURTH-ORDER DETERMINANTS

We shall now evaluate the determinant,

Sn+3 Sn+2 Sn+1 Sn

A, = Sn+2 Sn+3 Sn Sn+1
2 — ]

Sn+1 Sn Sn+3 Sn+2
Sn Sn+1 Sn+2 Sn+3

Hence, we obtain,

Ay = [(Sn+3 + Sn+2)2 - (Sn+1+Sn)2] [(Sn+3 - Sn+2)2 - (Sn+1 - Sn)2]

2 2 2 2
= (Sn+4 - Sn+2)(5n+1 - Sn—1)

= (Sz Sonte — So Szn+4) (52 Son— So Szn-z) (1-6-1)
9



on using (1.3.19).
1.7 EVALUATION OF A CIRCULANT

We now evaluate the circulant

Sh Sn+g Sn+(m—1)g
_ Sn+(m—1)g Sn S'n+(m—2)g
Az =
Sn+g Sn+Zg Sh

Let w be any one of the m numbers,

wi=cos 2 +isin 2 (r=123..... m)
m m
so that,
wh—1=0

Therefore, Ti=wi+wo+wo+ ... +w, =0

To=wi. w2+ ...=0
...=0
Tm= Wi Wo WgWg ... Wy = (-1)™1
Hence,
lrqu()/—Wr2)=ym —zM
r=1

Therefore, as discussed in -

10
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m‘{Ca”a— wi'a™)  DB"(1-wi"B™)

= II
r= 1-w,af 1-w,p¢

erI (Th = Thimg) — (-1)°%w, (Spx - Sht+(m-1g)
r= (1_Wrag)(1_Wng)

_ (S0 = Snem)™ = (D™ (Sn_g = Snvm-1g)"
(L-aM)@-pm)

_ (Sn — Sh+mk )m - (_1)mk (Sn—g - Sn+(m—1)g)m (1.7.2)

1+ (D™ —wpg

1.8 A THIRD-ORDER DETERMINANT WITH EACH ELEMENT
AS THE PRODUCTS OF TWO NUMBERS

We shall evaluate,

Hn-Sm+n Hn+a-Sm+n+a Hn+a+b-Sm+n+a+b
Ag= Hn+r-Sm+n+r Hn+r+a-Sm+n+r+a Hn+r+a+b-sm+n+r+a+b

Hn+s-Sm+n+s Hn+s+a-Sm+n+s+a Hn+s+a+b-sm+n+s+a+b

and shall show that A, is independent of n.
On using (1.3.16), we can write,
Hn+a Smin+a + (_1)a+1 Hn Smin = Ha Sm+2n+p

Hence, multiplying the first column by (-1)2*1, (-1)3"**! and adding to

the second and third columns respectively, we obtain,

Hn-Smin Smi2n+a Smi2n+atb
As= HaHawo Hnyr Sminir  Sme2ni2ria Smezni2rrath

Hn+s-Sm+n+s Sm+2n+23+b Sm+2n+25+a+b
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Hn-Smin Smi2n+a Smi2nt+a-1
As= HaHaw [Hnyr Sminsr  Smyznizrra Smezni2ria-t

Hn+s-Sm+n+s Sm+2n+25+a Sm+2n+25+a—1

on using (1.3.15),

Now alternately subtracting the third and second columns from one

another, we obtain,

Hn-Sman So S1
A= Ha Hp Hasp ('1)m+a Hn+r-Sm+n+r SZr S2r+1

Hn+s-Sm+n+s 523 S25+1
= Ha Hp Hasb (-1)™? [Hn Smen Hasor = Hier Smansr Has +
+ Hivs Smenss Har ] 6
on using (1.3.14)

Now with the help of equations (1.3.5), (1.3.6) and (1.3.7) we can

write,
Hn+s Sm+n+s H2r = [Sm+2n+25+2r - Sm+2n+25-2r + (_l)n+s (Sm-Zr - Sm+2r)] / (a'B)Z

Hence, we get,

(—1)m+n+aHaHbHa+b

A=
‘ Wy +2

[(Sm+2r—23 —Smt2s—2r )+

+ ('1)5 (Sm—2r - Sm+2r) - ('l)r (Sm—ZS - Sm+25) ] 8 (581)
which is independent of n.

1.9 A FOURTH-ORDER DETERMINANT WITH ELEMENTS AS
PRODUCTS OF TWO NUMBERS

We shall now show that,

12



HaSa+m
_[HbSb+m
HrSr+m
HsSs+m

5

Ha+oSa+m+o
Hb+oSb+m+o
Hr+oSr+m+o

HS+OSS+m+O

Ha+pSa+m+p
Hb+pr+m+p
|'|r+pSr+m+p
Hs+pss+m+p

Ha+an+m+q

Hb+qu+m+q =0 (1.9.1)
|'|r+qu+m+q

Hs+qss+m+q

For all integers p, g, r, s, m, 0, p and q.

Multiplying the first column by (-1)2*1, (-1)°*1, (-1)¢*! and adding to

the second, third and fourth columns respectively; using equation (1.3.16)

the determinant reduces to

HaSa+m
HbSh+m
HrSr+m
HSSS+m

S2a+m+o
S'2b+m+o
S2r+m+o

S23+m+0

S2a+m+p
S2b+m+p
S2r+m+p
S23+m+p

S2a+m+q
S2b+m+q
S2r+m+q
S23+m+q

Expanding along the first column and using the equation (1.5.1), we

find that the determinant vanishes. The result (1.9.1) can be extended for

the n" order determinants.

13
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