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GENERALIZED FIBONACCI NUMBERS AND DIFFERENCE 

OPERATORS 

 

1.1 INTRODUCTION 

 This chapter deals with the Fibonacci and Lucas sequences [5,6]. 

To consider all the sequences [7,8] of this type under one heading we are 

introducing generalized Fibonacci sequence {Gn}, which is defined by [3] – 

 Gn = Gn-1 + Gn-2,  n > 3                    (1.1.1) 

 G1 = a ,  G2 = b 

where, a and b are constants. 

 But this generalization does not include Pell sequence, associated 

Pell sequence, and other sequences which can be similarly defined. To 

discuss all such sequences under one heading we consider the sequence 

{Sn}, defined by – 

  Sn+1 = k Sn + Sn-1           (1.1.2)
  

where, So and S1 are arbitrary constants and k is any number. 

 We shall also introduce the two companion sequences {Hn} and {Vn} 

defined by [4] – 

  Hn+1 = k Hn + Hn-1 (n > 1), Ho = 0, H1 = 1       (1.1.3) 

  Vn+1 = k Vn + Vn-1 (n > 1), Vo = 2, V1 = k        (1.1.4) 

 Thus the sequence {Hn} and {Vn} are particular cases of the 

sequences {Sn}. The sequence {Hn} reduces to Fibonacci or Pell sequence 

according as k = 1 or 2. Similarly the sequence {Vn} reduce to Lucas or 

associated Pell sequence according as k = 1 or 2. 
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1.2 DIFFERENCE OPERATORS E AND  

 In this section we shall derive some new identities for the 

generalized Fibonacci numbers Gn, with the help of finite difference 

operators E and . These operators are defined by [1] – 

  E Gn = Gn+1                 (1.2.1) 

   Gn = Gn+1 – Gn, and     (1.2.2) 

      E – 1       (1.2.3) 

 Also, it is known that, 

   (An Bm) = (E An) ( Bm) + Bm ( An)   (1.2.4) 

 Since, 

 Gn+1 – Gn   =   Gn-1  

Therefore, we obtain 

   Gn = Gn-1 

and in general, 

  m Gn = Gn-m       (1.2.5) 

 Using the operators we obtain the following identities : 

  Gn-m = 


m

0p

(-1)p 








p

m
 Gn+m-p    (1.2.6) 

  Gn+m = 


m

0p









p

m
 Gn-p     (1.2.7) 
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  


m

0p









p

m
 Gn+p = 



m

0p









p

m
 2m-p Gn-p   (1.2.8) 

  G2
n+1 – Gn

2 = Gn+1 Gn-1 + Gn Gn-1    (1.2.9) 

Proof 

(1) From equations (1.2.5), (1.2.3) and (1.2.1), we obtain 

 Gn-m  = m Gn 

  = (E – 1)m Gn 

  = 


m

0p

(-1)p Gn+m-p 

 which is the result of eqn. (1.2.6). 

(2) We have 

 Gn+m  = Em Gn 

  = (1 + )m Gn 

  = 


m

0p

 








p

m
 Gn-p 

 which is the result of eqn. (1.2.7). 

(3) We have,  

  (1 + E)m Gn = 


m

0p









p

m
 Gn+p 

 Now, 

 L.H.S. = (2 + )m Gn 

  = 


m

0p









p

m
 2m-p Gn-p 

 which is the result of eqn. (1.2.8). 
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(4) Setting An = Bm = Gn in eqn. (5.2.4), we get 

  (Gn Gn) = (E Gn) ( Gn) + Gn ( Gn) 

 which leads to the result of eqn. (1.2.9). 

1.3 EXPLICIT EXPRESSIONS FOR Sn, Hn and Vn 

 An explicit expression for the numbers Sn, may be derived by the 

usual method for solving difference equations. By this method we deduce 

that [2] – 

  Sn = X n + Y n                (1.3.1) 

where,  and  are the roots of the equation. 

  t2 – kt – 1 = 0      (1.3.2) 

and X and Y are suitably chosen constants depending on S0 and S1. 

 From eqn. (1.3.2) we get, 

  = ½ [k + (k2 + 4)1/2 ] 

  = ½ [k - (k2 + 4)1/2 ] 

giving, 

   +  = k, 

    = -1, 

   -  = (k2 + 4)1/2         (1.3.3) 

 It follows that – 

 X = 
βα

βSS 01




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  Y = 
βα

αSS 01




           (5.3.4) 

 From eqns. (1.3.1) and (1.3.4), we obtain 

  Sn = 
βα

S)βα(S)βα( 0
1n1n

1
nn



 

         (1.3.5) 

 Taking S0 = 0 and S1 = 1, the sequence Sn reduces to Hn, and from 

eqn. (1.3.5) we obtain, 

  Hn = 
βα

βα nn




           (1.3.6) 

 Taking, S0 = 2 and S1 = k, the sequence {Sn} is reduces to {Vn} and 

using eqn. (5.3.3), we obtain, 

  Vn = n + n            (1.3.7) 

 From eqns. (1.3.5) and (1.3.6), we have 

  Sn = Hn S1 + Hn-1 S0                              (1.3.8) 

 Now we shall derive some identities involving these numbers. 

 Since  is a root of the equation (1.3.2), we have  

  2 = 1 + k         (1.3.9) 

therefore, 

  2n = 


n

0p









p

n
 kp p      (1.3.10) 

Similarly, we get 

  2n = 


n

0p









p

n
 kp p      (1.3.11) 
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Hence, from eqns. (1.3.1), (1.3.10) and (1.3.11), we obtain the identity – 

  S2n = 


n

0p









p

n
 kp Sp           (1.3.12) 

 Denoting (S0
2 + k S0 S1 – S1

2) by , and using eqns. (1.3.1), (1.3.3) 

and (5.3.6), the following identities have been obtained : 

  Sn
2 – Sn-1 Sn+1 = (-1)n         (1.3.13) 

  Sm Sn+p – Sm+p Sn = (-1)m  Hp Hn-m      (1.3.14) 

  Sm+n+1 = Sm+1 Hn+1 + Sm Hn                           (1.3.15) 

  Sm+r Hn+r + (-1)r+1 Sm Hn = Sm+n+r Hr      (1.3.16) 

  Hn Hn+m – Hn-s Hn+m+s = (-1)n-s Hs Hs+m      (1.3.17) 

 H-n = (-1)n-1 Hn                   (1.3.18) 

S2
n+1 – S2

n-1 = S2 S2n – S0 S2n-2                 (1.3.19) 

Hn Vn = H2n                    (1.3.20) 

  Similar results can be obtained for other sequences by suitably 

choosing the constants. 

1.4 GEOMETRICAL PROPERTIES OF {Sn} AND {Hn} 

Theorem 1 

 Area of the triangle having vertices at the points with rectangular 

Cartesian coordinates (Sn, Sn+r), (Sn+a, Sn+a+r), (Sn+b, Sn+b+r) is independent 

of n.  
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Proof 

 Twice the area of the specified triangle is equal to the absolute value 

of the determinant. 

    =  

1SS

1SS

1SS

rbnbn

ranan

rnn







 

 Using (1.3.15) for the second column the determinant can be written 

as – 

 Hr+1 

1SS

1SS

1SS

bnbn

anan

rnn







 + Hr 

1SS

1SS

1SS

1bnbn

1anan

rnn







 

 The first determinant is obviously zero; in the second on alternately 

subtracting the second and first columns from each other, the suffixes can 

be reduced and finally we get – 

  = + Hr 

1SS

1SS

1SS

b1b

a1a

01



 , 

according as n is odd or even. 

 On expanding the determinant along the third column we obtain, 

  = + Hr [ (Sa+1 Sb – Sa Sb+1) – (S1 Sb – S0 Sb+1)  

         + (S1 Sa – S0 Sa+1), 

which on using (1.3.14), reduces to – 

  = + Hr [Hb – Ha – (-1)a Hb-a]      (1.4.1) 
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 Thus the area of the specified triangle is independent of n. 

Particular Case 

 Taking To = 0, T1 = 1, k = 1 and e = h, a = 2h, b = 4h, we find that 

the area of the triangle whose vertices are (Fn, Fn+h), (Fn+2h, Fn+3h), (Fn+4h, 

Fn+5h) is equal to – 

 ½ Fh (Frh – 2F2h)       (1.4.2) 

 Duncan has proved that the area of this triangle is, 

 ½ [Fh(F4h – F2h) – (F3h F4h – F2h F5h) ] , 

which on using (5.3.17) simplifies to the expression given in (1.4.2). 

Theorem 2 

 Lines drawn through the origin with direction ratios Tn, Tn+a, Tn+b, 

where, a and b are any integers are always co-planar for every value of n. 

Proof 

 Direction ratios of any three such lines are Se, Se+a, Se+b, Sf, Sf+a, 

Sf+b, Sg, Sg+a, Sg+b. these will be coplanar if  

 

bgagg

bfaff

beaee

SSS

SSS

SSS







 = 0      (1.4.3) 

 On using the relation (1.3.15) the left-hand side of (1.4.3) can be 

written as the sum of four determinants each of which is zero. Hence, the 

theorem is proved. 
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Theorem 3 

 The points having Cartesian coordinates (Sn, Sn+a, Sn+b), where, a 

and b are any integers and n = 1,2,3,….., are always co-planar and the 

plane through these points passes through the origin, and its equation is 

independent of n. 

Proof 

 Equation to the plane passing through any three such points is – 

 0

1SSS

1SSS

1SSS

1zyx

bgagg

bfaff

beaee







      (1.4.4) 

where, e, f and g are particular values of n. 

Here the coefficient of x is  

 = [ (Sf+a Sg+b – Sf+bSg+a) – (Se+a Sg+b – Se+b Sg+a)  

             + (Se+a Sf+b – Se+b Sg+a)] 

 = (-1)a [Hb-a(-1)f Hg-f – (-1)e Hg-e + (-1)e Hf-e)  

 The coefficient of y is obtained on putting a = 0 in the coefficient of 

x; the coefficient of z is obtained from the coefficient of y on replacing b by 

a; the constant term is zero as is already proved in (1.4.3). 

 Thus the equation to the plane simplifies to - 

 (-1)a Hb-a x – Hb y + Ha z = 0     (1.4.5) 

 This equation is independent of n. Also it does not depend on the 

initial values To and T1. 
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Particular Case 

 From (1.4.5) we obtain that the points (Fe, Fe+2, Fe+5), e = 1,2,3,…; 

(Lf, Lf+2, Lf+5), f = 1,2,3,…; (Gg, Gg+2, Gg+5), g = 1,2,3,…; all lie on the plane 

2x – 5y + z = 0. 

Theorem 4 

 The planes – 

 Snx + Sn+ay + Sn+bz + Sn+r = 0, 

where, a, b, r are any integers and n = 1,2,3,…; all intersect in a given line 

whose equation is independent of n. 

Proof 

 Let two such planes be – 

 Se x + Se+a y + Te+b z + Se+r = 0,                   (1.4.6) 

 Sf x + Sf+a y + Sf+b z + Sf+r = 0. 

 The equations to the line of intersection of the parallel planes 

through the origin are  

         
fbebfeafbebfae SSSS

y

SSSS

x

 



  

fbebfe SSSS

z

 
  

On using (5.3.14) and preceding as in (5.4.5) we obtain the equation of the 

line of intersection of the parallel planes through the origin as – 

 
abab

a H

z

H

y

H)1(

x





 

 

 The line of intersection of the planes given by (5.4.6) meets the 

plane z = 0, at the point given by – 
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arar

a H

1

H

y

H)1(

x





 

 

 Thus the equation to the line of intersection of the planes given by 

(1.4.6) becomes 

 
ab

ra

ab

ara
p

H

z

H

HyH

H

HxH)1(











 ,                  (1.4.7) 

which is independent of n. 

Particular case 

 The planes whose equations are – 

 Fe x + Fe+1 y + Fe+3 z + Fe+4 = 0, e = 1,2,3,…., 

 Lf x + Lf+1 y + Lf+3 z + Lf+4 = 0, f = 1,2,3,…., 

 Bg x + Bg+1 y + Bg+3 z + Bg+4 = 0, g = 1,2,3,…., 

all intersect in the line 
1

z

2

3y

1

2x








 

1.5 A THIRD-ORDER DETERMINANT INVOLVING THE NUMBERS Sn 

 From (1.4.3) it follows that  

 

nmrmrr

nmbmbb

nmamaa

SSS

SSS

SSS







 = 0                              (1.5.1) 

for all integers a, b, r, m and n. 

 We shall now evaluate the determinant,  

 

eSeSeS

eSeSeS

eSeSeS

nmrmrr

nmbmbb

nmamaa

1














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where, e is an arbitrary constant and a, b, r, m and n are any integers. 

 On writing the determinant as the sum of eight determinants; using 

the equation (1.5.1) and the property that a determinant vanishes if two 

columns are identical, we obtain, 

 

...

...

...

...

...

...

eSS

eSS

eSS

mrr

mbb

maa

1 







 

      =  e Hm .  ...  ... 

1SS

1SS

1SS

1rr

1bb

1aa









 

 The first determinant by using (1.3.14) can be written as – 

 =   ab
1b

ar
1a

rb
1r

m H)1(H)1(H)1(H e 






   

Hence, 

     1 =  g [ (-1)b Hr-b – (-1)a Hr-p + (-1)a Hb-a] [Hm – Hm+n + (-1)m Hn]  (5.5.2) 

1.6 FOURTH-ORDER DETERMINANTS 

 We shall now evaluate the determinant, 

 2 = 

3n2n1nn

2n3nn1n

1nn3n2n

n1n2n3n

SSSS

SSSS

SSSS

SSSS









 , 

Hence, we obtain, 

 2 = [(Sn+3 + Sn+2)
2 – (Sn+1+Sn)

2] [(Sn+3 – Sn+2)
2 – (Sn+1 – Sn)

2] 

     = )SS)(SS( 2
1n

2
1n

2
2n

2
4n    

     = (S2 S2n+6 – S0 S2n+4) (S2 S2n – S0 S2n-2)    (1.6.1) 
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on using (1.3.19). 

1.7 EVALUATION OF A CIRCULANT 

 We now evaluate the circulant 

 3 = 

ng2ngn

g)2m(nng)1m(n

g)1m(ngnn

S...SS

............

S...SS

S...SS







 

 Let w be any one of the m numbers, 

 wr = cos 
m

r2 
 + i sin 

m

r2 
, (r = 1,2,3,…, m) 

so that, 

 wm – 1 = 0 

Therefore, T1 = w1 + w2 + w2 + … + wm  = 0 

  T2 = w1 . w2 + … = 0 

         …    …     …= 0   

  Tm = w1 w2 w3 w4 …  wm     = (-1)m+1 

Hence, 

   mm
r

m

1r
zyzwy 


      (1.7.1) 

Therefore, as discussed in - 

  g)1m(n
1m

rknrn

m

1r
3 Sw...SwS 





  
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      = 























 g

r

mgm
r

n

g
r

mgm
r

nm

1r w1

)w1(D

w1

)w1(C
 

      =  





















 )w1)(w1(

)SS(w)1()TT(

g
r

g
r

g)1m(nknr
g

mgnn
m

1r
 

      = 
)1)(1(

)SS()1()SS(

mgmg

m
g)1m(ngn

mkm
mknn



 
  

      =   

mg
mg

m
g)1m(ngn

mkm
mknn

w)1(1

)SS()1()SS(



 
  (1.7.2) 

1.8 A THIRD-ORDER DETERMINANT WITH EACH ELEMENT 

AS THE PRODUCTS OF TWO NUMBERS 

 We shall evaluate, 

4=

basnmbasnasnmasnsnmsn

barnmbarnarnmarnrnmrn

banmbananmannmn

S.HS.HS.H

S.HS.HS.H

S.HS.HS.H







 

and shall show that 4 is independent of n. 

 On using (1.3.16), we can write, 

 Hn+a Sm+n+a + (-1)a+1 Hn Sm+n = Ha Sm+2n+p 

 Hence, multiplying the first column by (-1)a+1, (-1)a+b+1 and adding to 

the second and third columns respectively, we obtain, 

4=  HaHa+b 

bas2n2mbs2n2msnmsn

bar2n2mar2n2mrnmrn

ban2man2mnmn

SSS.H

SSS.H

SSS.H






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4=  HaHa+b 

1as2n2mas2n2msnmsn

1ar2n2mar2n2mrnmrn

1an2man2mnmn

SSS.H

SSS.H

SSS.H







 

on using (1.3.15), 

 Now alternately subtracting the third and second columns from one 

another, we obtain, 

 4= Ha Hb Ha+b (-1)m+a 

1s2s2snmsn

1r2r2rnmrn

10nmn

SSS.H

SSS.H

SSS.H







  

    = Ha Hb Ha+b (-1)m+a [Hn Sm+n H2s-2r – Hn+r Sm+n+r H2s + 

     + Hn+s Sm+n+s H2r ]   

on using (1.3.14) 

 Now with the help of equations (1.3.5), (1.3.6) and (1.3.7) we can 

write, 

     Hn+s Sm+n+s H2r = [Sm+2n+2s+2r – Sm+2n+2s-2r + (-1)n+s (Sm-2r – Sm+2r)] / (-)2 

Hence, we get, 

 4=    








r2s2ms2r2m
2

baba
anm

SS
2w

HHH)1(
 

   +  (-1)s (Sm-2r - Sm+2r) – (-1)r (Sm-2s – Sm+2s) ]   (5.8.1) 

which is independent of n. 

1.9 A FOURTH-ORDER DETERMINANT WITH ELEMENTS AS 

PRODUCTS OF TWO NUMBERS 

 We shall now show that, 
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5=

qmsqspmspsomsosmss

qmrqrpmrpromrormrr

qmbqbpmbpbombobmbb

qmaqapmapaomaoamaa

SHSHSHSH

SHSHSHSH

SHSHSHSH

SHSHSHSH









 =  0 (1.9.1) 

For all integers p, q, r, s, m, o, p and q. 

 Multiplying the first column by (-1)a+1, (-1)b+1, (-1)c+1 and adding to 

the second, third and fourth columns respectively; using equation (1.3.16) 

the determinant reduces to  

 Ho Hp Hq = 

qms2pms2oms2mss

qmr2pmr2omr2mrr

qmb2pmb2omb2mbb

qma2pma2oma2maa

SSSSH

SSSSH

SSSSH

SSSSH









 

 Expanding along the first column and using the equation (1.5.1), we 

find that the determinant vanishes. The result (1.9.1) can be extended for 

the nth order determinants. 
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