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ABSTRACT: Chemical reactions play the important role for understanding the problems of Science and 

Engineering such as radioactive decay; photosynthesis; nuclear reactor; heat mass transfer and photon emission. The 

main objective of this chapter is to make use of Lap lace-Carson transform in order to determine the concentrations 

of the reactants of first order consecutive chemical reaction. This chapter has a great practical importance due to 

achieve maximum production by eliminating waste or useless products in the transitional phase of chemical 

reaction. Results indicate that Laplace-Carson transform is an efficient analytical tool for obtaining the 

concentrations of the reactants of first order consecutive chemical react ion. Results of the chapter also demonstrate 

that Laplace-Carson transform provide exact results  without doing intricate computational work.  

KEYWORDS: Lap lace-Carson Transform; Inverse Laplace-Carson Transform; Cramer Rule; Chemical Reaction; 

Concentration; Reactant.  

MATHEMATICS S UBJECT CLASSIFICATION: 35A 22;  44A05; 34A30; 65L05; 80A30 

1.INTRODUCTION: In the recant years, integral transform methods  are the first preference of the scholars for 

handling the problem of Science and Engineering such as  growth of the species [1-12]; decay problem of rad ioactive 

substance [1-10]; Abel’s problem of mechanics [13-20]; heat transfer problem [21]; circu it problems of electronics 

communicat ion [22];  problem of infected cells during infection  of HIV-1 [23];  concentration problem of drug 

during intravenous injection of drug [24-25] and vibrat ion problem of string [21-22] because integral transform 

methods provide the exact solutions of these problems. Scholars are also very interested for developing new integral 

transform methods [26-27] nowadays due to their high-yielding characteristic of providing results of the problems 

with good accuracy. 

Recently scholars [28-35] developed the duality relation among the various integral transforms and 

successfully utilized these relat ions for developing new properties and theories of integral transforms. Higazy and 

Aggarwal [36] applied Sawi transform on the mathematical model of the chemical reaction in series and estimated 

the concentration of chemical substances. Murphy [37] analyzed the consecutive chemical reactions of first and 

second orders. Lin [38] analyzed the consecutive reactions (homogeneous) performed in an annular reactor with non 

Newtonian flow.  

Chrastil [39] obtained the value of rate constants of consecutive chemical reaction of first order by the aid 

of final product. The mathematical models of the consecutive reactions were suggested by Westman and DeLury 

[40]. Erdogdn and Sahmurat [41] obtained the kinetic constants of first -order consecutive chemical react ions.  

The main interest of this chapter is to determine the concentrations  of the reactants of first order 

consecutive chemical reaction by using Laplace-Carson transform.  
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2. NOMENCLATURE OF S YMBOLS 

ℱ, family of p iecewise continuous and exponential order function; 

ℒ, Laplace-Carson transform operator; 

ℒ−1, inverse Laplace-Carson transform operator;  

∈, belongs to; 

!, the usual factorial notation; 

Γ, the classical Gamma function; 

𝑁, the set of natural numbers; 

𝑅, the set of reals; 

𝜃1
 𝑡 , concentration of a chemical reactant 𝑋 at any time 𝑡; 

𝜃2
 𝑡 , concentration of a chemical reactant 𝑌 at any time 𝑡; 

𝜃3
 𝑡 , concentration of a chemical reactant 𝑍 at any time 𝑡; 

𝜃1
 0 = 𝜔, in itial concentration of a chemical reactant 𝑋; 

𝜃2
 0 , in itial concentration of a chemical reactant 𝑌; 

𝜃3
 0 , in itial concentration of a chemical reactant 𝑍; 

𝛽1 , 𝛽2 > 0, rate constants 

3. DEFINITION OF LAPLACE-CARSON TRANS FORM:  

If 𝐻(𝑡) ∈ ℱ,𝑡 ≥ 0 then the Laplace-Carson transform of 𝐻(𝑡) is defined as [20] 

ℒ{𝐻(𝑡)} = 𝑟  𝐻(𝑡)𝑒−𝑟𝑡 𝑑𝑡
∞

0 = ℎ 𝑟 , 𝑟 > 0                                             (1) 

4. INVERS E LAPLACE-CARSON TRANSFORM: 

The inverse Laplace-Carson transform of  ℎ 𝑟 ,  denoted by  ℒ−1 ℎ 𝑟  , is another function 𝐻 𝑡  having the 

characteristic that ℒ 𝐻 𝑡  = ℎ 𝑟 .  

5. PROPERTIES OF LAPLACE-CARSON TRANS FORM: In this part, we will describe the properties of 

Laplace-Carson transform that will be used in later section of this chapter. 

5.1 Linearity [20]: If 𝐻𝑗
 𝑡 ∈ ℱ, 𝑡 ≥ 0, 𝑗 = 1, 2, 3, … … . , 𝑛  with ℒ 𝐻𝑗

 𝑡  = ℎ𝑗
 𝑟 , 𝑗 = 1,2, 3, … … 𝑛 then 

ℒ  ℓ𝑗𝐻𝑗
 𝑡 𝑛

𝑗 =1  =  ℓ𝑗
𝑛
𝑗 =1 ℒ 𝐻𝑗

 𝑡  =  ℓ𝑗
𝑛
𝑗 =1 ℎ𝑗

 𝑟 , where ℓ𝑗  are arbitrary constants. 

5.2 Change of Scale [20]: If 𝐻(𝑡) ∈ ℱ, 𝑡 ≥ 0 with ℒ 𝐻(𝑡) = ℎ 𝑟  then ℒ 𝐻(ℓ𝑡) =  ℎ 
𝑟

ℓ
  , where ℓ  is arbitrary 

constant. 

5.3 Translation [20]: If 𝐻(𝑡) ∈ ℱ,𝑡 ≥ 0 with ℒ 𝐻(𝑡) = ℎ 𝑟  then 

ℒ 𝑒ℓ𝑡 𝐻 𝑡  =  
𝑟

𝑟 −ℓ 
 ℎ 𝑟 − ℓ  , where ℓ is arbitrary constant. 

6. LAPLACE-CARSON (MAHGOUB) TRANS FORMS OF THE DERIVATIVES  OF A FUNCTION [3]: If 

𝐻(𝑡) ∈ ℱ, 𝑡 ≥ 0 with ℒ 𝐻(𝑡) = ℎ 𝑟  then  

a) ℒ 𝐻 ′  𝑡  = 𝑟ℎ 𝑟 − 𝑟𝐻 0 . 

b) ℒ{𝐻 ′′  𝑡 } = 𝑟2ℎ 𝑟 − 𝑟2𝐻 0 − 𝑟𝐻′  0 . 

c) ℒ 𝐻 ′′′  𝑡  = 𝑟3ℎ 𝑟 − 𝑟3𝐻 0 − 𝑟2𝐻′  0 − 𝑟𝐻′′  0 . 



Remark 1: Tables 1-2 visualized the Lap lace-Carson transforms and inverse Laplace-Carson transforms of 

fundamental functions respectively.  

Table-1: Laplace-Carson transforms of fundamental functions [20] 

S.N. 𝐻 𝑡 ∈ ℱ, 𝑡 > 0  ℒ{𝐻(𝑡)} = ℎ 𝑟  

1 1 1 

2 𝑒ℓ𝑡   
𝑟

𝑟 − ℓ
  

3 𝑡𝜆 , 𝜆 ∈ 𝑁 𝜆!

𝑟𝜆
 

4 𝑡𝜆 , 𝜆 > −1, 𝜆 ∈ 𝑅  Γ 𝜆 + 1 

𝑟𝜆
 

5 𝑠𝑖𝑛 ℓ𝑡  
 

ℓ𝑟

𝑟2 + ℓ 2
  

6 𝑐𝑜𝑠 ℓ𝑡  
 

𝑟2

𝑟2 + ℓ 2
  

7 𝑠𝑖𝑛ℎ  ℓ𝑡  
 

ℓ𝑟

𝑟2 − ℓ 2
  

8 𝑐𝑜𝑠ℎ ℓ𝑡  
 

𝑟2

𝑟2 − ℓ 2
  

 

Table-2: Inverse Lap lace-Carson transforms of fundamental functions [20] 

S.N. ℎ 𝑟   𝐻(𝑡) = ℒ−1 ℎ 𝑟   

1 1 1 

2  
𝑟

𝑟 − ℓ
  𝑒ℓ𝑡  

3 1

𝑟𝜆
, 𝜆 ∈ 𝑁 

𝑡𝜆

𝜆!
 

4 1

𝑟𝜆
, 𝜆 > −1, 𝜆 ∈ 𝑅 

𝑡𝜆

Γ 𝜆 + 1 
 

5  
𝑟

𝑟2 + ℓ 2
  

𝑠𝑖𝑛 ℓ𝑡 

ℓ
 

6 
 

𝑟2

𝑟2 + ℓ 2
  

𝑐𝑜𝑠 ℓ𝑡  

7  
𝑟

𝑟2 − ℓ 2
  

𝑠𝑖𝑛ℎ ℓ𝑡 

ℓ
 

8 
 

𝑟2

𝑟2 − ℓ 2
  

𝑐𝑜𝑠ℎ ℓ𝑡  

 



7. APPLICATION OF LAPLACE-CARSON TRANSFORM FOR DETERMINING THE 

CONCENTRATIONS OF THE REACTANTS OF FIRST ORDER CONS ECUTIVE CHEMICAL 

REACTION: 

The concentrations 𝜃1
 𝑡 , 𝜃2

 𝑡  and 𝜃3
 𝑡  of three chemical reactants 𝑋, 𝑌  and 𝑍 of first order consecutive chemical 

reaction  

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙  𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡   𝑋 − −−→ 𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙  𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡   𝑌 − −−→ 𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙  𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡    𝑍                  (2) 

at any time 𝑡 is determined by the following system of linear ordinary differential equations  as [36] 

 

𝑑𝜃1

𝑑𝑡
= −𝛽1𝜃1

𝑑𝜃2

𝑑𝑡
= 𝛽1𝜃1 − 𝛽2𝜃2

𝑑𝜃3

𝑑𝑡
= 𝛽2𝜃2  

 
 

 
 

                                                                                                                                 (3) 

with  𝜃1
 0 = 𝜔, 𝜃2

 0 = 0 and 𝜃3
 0 = 0                                                                                           (4) 

Performing Laplace-Carson transform on equation (3), we have 

 

ℒ  
𝑑𝜃1

𝑑𝑡
 = −ℒ 𝛽1𝜃1

 

ℒ  
𝑑𝜃2

𝑑𝑡
 = ℒ 𝛽1𝜃1 − 𝛽2𝜃2

 

ℒ  
𝑑𝜃3

𝑑𝑡
 = ℒ 𝛽2𝜃2

  
 
 

 
 

                                                                                                                     (5) 

Use of 5.1 in equation (5) g ives  

 

ℒ  
𝑑𝜃1

𝑑𝑡
 = −𝛽1ℒ 𝜃1

 

ℒ  
𝑑𝜃2

𝑑𝑡
 = 𝛽1ℒ 𝜃1

 − 𝛽2ℒ 𝜃2
 

ℒ  
𝑑𝜃3

𝑑𝑡
 = 𝛽2ℒ 𝜃2

  
 
 

 
 

                                                                                                               (6) 

Use of 6(a) in equation (6) g ives 

 
𝑟ℒ 𝜃1

 − 𝑟𝜃1
 0 = −𝛽1ℒ 𝜃1

 

𝑟ℒ 𝜃2
 − 𝑟𝜃2

 0 = 𝛽1ℒ 𝜃1
 − 𝛽2 ℒ 𝜃2

 

𝑟ℒ 𝜃3
 − 𝑟𝜃3

 0 = 𝛽2 ℒ 𝜃2
 

  

⇒  
 𝑟 + 𝛽1

 ℒ 𝜃1
 − 𝑟𝜃1

 0 = 0

−𝛽1ℒ 𝜃1
 +  𝑟 + 𝛽2

 ℒ 𝜃2
 − 𝑟𝜃2

 0 = 0

𝛽2ℒ 𝜃2
 + 𝑟ℒ 𝜃3

 − 𝑟𝜃3
 0 = 0

           (7) 

Use of equation (4) in equation (7) provides  

 
 𝑟 + 𝛽1

 ℒ 𝜃1
 − 𝑟𝜔 = 0

−𝛽1ℒ 𝜃1
 +  𝑟 + 𝛽2

 ℒ 𝜃2
 = 0

𝛽2ℒ 𝜃2
 + 𝑟ℒ 𝜃3

 = 0

  

⇒  
 𝑟 + 𝛽1

 ℒ 𝜃1
 = 𝑟𝜔

−𝛽1ℒ 𝜃1
 +  𝑟 + 𝛽2

 ℒ 𝜃2
 = 0

𝛽2ℒ 𝜃2
 + 𝑟ℒ 𝜃3

 = 0

           (8)  

Equation (8) represents a system of three non-homogeneous linear equations in ℒ 𝜃1
 , ℒ 𝜃2

  and ℒ 𝜃3
  unknowns. 

Now use of Cramer’s ru le in equation (8) gives the values of unknowns ℒ 𝜃1
 , ℒ 𝜃2

  and ℒ 𝜃3
  as: 



ℒ 𝜃1
 =

 
𝑟𝜔 0 0
0  𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 

 

 𝑟 + 𝛽1
 0 0

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 

,  

 𝑟 + 𝛽1
 0 0

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 ≠ 0  

⇒ ℒ 𝜃1
 =  

𝜔𝑟

𝑟 +𝛽1

                (9) 

ℒ 𝜃2
 =

 
 𝑟 + 𝛽1

 𝑟𝜔 0
−𝛽1 0 0

0 0 𝑟

 

 

 𝑟 + 𝛽1
 0 0

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 

,  

 𝑟 + 𝛽1
 0 0

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 ≠ 0  

⇒ ℒ 𝜃2
 =  

𝜔𝛽1

𝛽2−𝛽1
  

𝑟

𝑟+𝛽1
−

𝑟

𝑟 +𝛽2
                    (10) 

ℒ 𝜃3
 =

 
 𝑟 + 𝛽1

 0 𝑟𝜔

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 0

 

 

 𝑟 + 𝛽1
 0 0

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 

,  

 𝑟 + 𝛽1
 0 0

−𝛽1
 𝑟 + 𝛽2

 0
0 𝛽2 𝑟

 ≠ 0  

⇒ ℒ 𝜃3
 = 𝜔  𝑟3 −  

𝛽2

𝛽2−𝛽1

  
𝑟

𝑟+𝛽1

 +  
𝛽1

𝛽2−𝛽1

  
𝑟

𝑟 +𝛽2

             (11)      

Performing  inverse Laplace-Carson transform on equations (9), (10) and (11) g ives the required  concentrations 

𝜃1
 𝑡 , 𝜃2

 𝑡  and 𝜃3
 𝑡  as: 

𝜃1 =  ℒ−1  
𝜔𝑟

𝑟 + 𝛽1

  

⇒ 𝜃1 = 𝜔ℒ−1  
𝑟

𝑟+𝛽1
 = 𝜔𝑒−𝛽1𝑡                     (12) 

𝜃2 =  ℒ−1   
𝜔𝛽1

𝛽2 − 𝛽1

  
𝑟

𝑟 + 𝛽1

−
𝑟

𝑟 + 𝛽2

   

⇒ 𝜃2 =  
𝜔𝛽1

𝛽2 − 𝛽1

  ℒ−1  
𝑟

𝑟 + 𝛽1

 − ℒ−1  
𝑟

𝑟 + 𝛽2

   

⇒ 𝜃2 =  
𝜔𝛽1

𝛽2−𝛽1
  𝑒−𝛽1𝑡 − 𝑒−𝛽2𝑡                       (13) 

𝜃3 =  ℒ−1  𝜔  𝑟3 −  
𝛽2

𝛽2 − 𝛽1

  
𝑟

𝑟 + 𝛽1

 +  
𝛽1

𝛽2 − 𝛽1

  
𝑟

𝑟 + 𝛽2

    

⇒ 𝜃3 = 𝜔  ℒ−1 𝑟3 −  
𝛽2

𝛽2 − 𝛽1

 ℒ−1  
𝑟

𝑟 + 𝛽1

 +  
𝛽1

𝛽2 − 𝛽1

 ℒ−1  
𝑟

𝑟 + 𝛽2

   

⇒ 𝜃3 = 𝜔  1 −  
𝛽2

𝛽2 −𝛽1

 𝑒−𝛽1𝑡 +  
𝛽1

𝛽2−𝛽1

 𝑒−𝛽2𝑡              (14) 

Remark 2: Results given by equations (12), (13) and (14) have perfect agreement with [36]. 

8. CONCLUS IONS: In this chapter, we have profitably determined the concentrations of the reactants of first order 

consecutive chemical reaction by using Lap lace-Carson transform. It  is observed that Laplace-Carson transform 

provide the exact  analytical primit ive of this problem with good accuracy. We can us e Laplace-Carson transform to 



study the problems of chemical engineering in  future that involve different order reversible and parallel chemical 

reactions.  
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