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ABSTRACT: Chemical reactions play the important role for understanding the problems of Science and

Engineering such as radioactive decay; photosynthesis; nuclear reactor; heat mass transfer and photon emission. The
main objective of this chapter is to make use of Laplace-Carson transform in order to determine the concentrations
of the reactants of first order consecutive chemical reaction. This chapter has a great practical importance due to
achieve maximum production by eliminating waste or useless products in the transitional phase of chemical
reaction. Results indicate that Laplace-Carson transform is an efficient analytical tool for obtaining the
concentrations of the reactants of first order consecutive chemical reaction. Results of the chapter also demonstrate
that Laplace-Carson transform provide exact results without doing intricate co mputational work.
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Concentration; Reactant.

MATHEMATICS SUBJECT CLASSIFICATION: 35A22; 44A05; 34A30; 65L05; 80A 30

1.INTRODUCTION: In the recant years, integral transform methods are the first preference of the scholars for
handling the problem of Science and Engineering such as growth of the species [1-12]; decay problem of rad ioactive
substance [1-10]; Abel’s problem of mechanics [13-20]; heat transfer problem [21]; circuit problems of electronics
communication [22]; problem of infected cells during infection of HIV-1 [23]; concentration problem of drug
during intravenous injection of drug [24-25] and vibration problem of string [21-22] because integral transform
methods provide the exact solutions of these problems. Scholars are also very interested for developing new integral
transform methods [26-27] nowadays due to their high-yielding characteristic of providing results of the problems
with good accuracy.

Recently scholars [28-35] developed the duality relation among the various integral transforms and
successfully utilized these relations for developing new properties and theories of integral transforms. Higazy and
Aggarwal [36] applied Sawi transform on the mathematical model of the chemical reaction in series and estimated
the concentration of chemical substances. Murphy [37] analyzed the consecutive chemical reactions of first and
second orders. Lin [38] analyzed the consecutive reactions (homogeneous) performed in an annular reactor with non
Newtonian flow.

Chrastil [39] obtained the value of rate constants of consecutive chemical reaction of first order by the aid
of final product. The mathematical models of the consecutive reactions were suggested by Westman and DelLury
[40]. Erdogdn and Sahmurat [41] obtained the kinetic constants of first-order consecutive chemical reactions.

The main interest of this chapter is to determine the concentrations of the reactants of first order

consecutive chemical reaction by using Laplace-Carson transform.
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2.NOMENCLATUREOF SYMBOLS

F, family of piecewise continuous and exponential order function;

L, Laplace-Carson transform operator;

L1, inverse Laplace-Carson transform operator;

€, belongs to;

I, the usual factorial notation;

T, the classical Gamma function;

N, the set of natural numbers;

R, the set of reals;

6, (t), concentration of a chemical reactant X at any time ¢;

6, (t), concentration of a chemical reactant Y at any time ¢;

6, (t), concentration of a chemical reactant Z at any time ¢;

6, (0) = w, initial concentration of a chemical reactant X;

6, (0), initial concentration of a chemical reactant Y;

6, (0), initial concentration of a chemical reactant Z;

B4, B, > 0, rate constants

3.DEFINITION OF LAPLACE-CARSON TRANSFORM:

If H(t) € F,t = 0 then the Laplace-Carson transformof H(t) is defined as [20]

LH@Y =71, H)e ™ dt = k@), r >0 )

4. INVERSE LAPLACE-CARSON TRANSFORM:

The inverse Laplace-Carson transform of h(r), denoted by £='{h(+)}, is another function H(t) having the
characteristic that L{H(®) } = h(r).

5. PROPERTIES OF LAPLACE-CARSON TRANSFORM: In this part, we will describe the properties of
Laplace-Carson transformthat will be used in later section of this chapter.

51 Linearity [20]: If H(®) €F, t 20,j=1,2,3 .....,n with L{H®)}=h0),j=1,2,3,....n then
L{Zr_ e H O} =20 ¢ L{H©} = Zr_, ¢ h; (), where ¢, are arbitrary constants.

5.2 Change of Scale [20]: If H(t) € F,t > 0 with L{H(£)} = h(r) then L{H(£6)} = h(%), where ¢ is arbitrary
constant.

5.3 Translation [20]: If H(t) € F,t = 0 with L{H (t)} = h(r) then

L{e"HB)} = (r;,) h(r — ¢), where ¢ is arbitrary constant.
6. LAPLACE-CARSON (MAHGOUB) TRANSFORMS OF THE DERIVATIVES OF A FUNCTION [3]: If
H(t) € F,t = 0 with L{H (t)} = h() then

a) L{H @®}=rnG) —rH(0).

by £L{H (®)}=1r?h(G) —r?H0) —rH (0).

¢) LH" ®}Y=r*nG) —r3HO) —r?H (0) —rH" (0).




Remark 1: Tables 1-2 visualized the Laplace-Carson transforms and inverse Laplace-Carson transforms of

fundamental functions respectively.

Table-1: Laplace-Carson transforms of fundamental functions [20]

S.N. H@) e F,t >0 L{H(t)} = h(r)
1 1
2 ott T
=)
3 thAEN Al
"
4 thA>—-1,1€R ra+1)
T‘A
5 sin(t) ( ir )
r2 4+ £2
6 cos (£t) ( r )
2 4+ £2
7 sinh (£t) or
7"2 ) 2
8 cosh(¢t) r
7"2 — 2
Table-2: Inverse Laplace-Carson transforms of fundamental functions [20]
SN. h(r) H(t) = L Hh()}
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2 T R
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7. APPLICATION OF LAPLACE-CARSON TRANSFORM FOR DETERMINING THE
CONCENTRATIONS OF THE REACTANTS OF FIRST ORDER CONSECUTIVE CHEMICAL
REACTION:

The concentrations 8, (¢), 6, (t) and 65 (¢) of three chemical reactants X, Y and Z of first order consecutive chemical
reaction

Chemical reactant X — ——— Chemical reactant Y ———— Chemical reactant Z (2)

atany time t is determined by the following system of linear ordinary differential equations as [36]

“o—pe

de

d_t2=ﬂ191 - B26, } 3)
dae
d_: = p26, }

with 6, (0) = w, 6,(0) = 0and 6;(0) = 0 4)

Performing Lap lace-Carson transformon equation (3), we have

L= g0} )

dt

c{¥) = rip,6, — ,8292}} ©)

dt
do
Use of 5.1 in equation (5) gives

o) =—p iy )

dt

L{#2}= g, 16} - ﬁzL{Gz}} (6)

dt

c{)=prie,} )

dt
Use of 6(a) in equation (6) gives
rL{0,} —r0,(0) = —p, £{6,}
rL{6,} —16,(0) = B, £{6,} — B, L{6,}
r£{6;} — r6;,(0) = pB,£{6,}
r+ppLiod—re,(0) =0
= —p,L{6,}+ r + B)Lie,} —16,(0) =0
B, L16,} + re{6;} —r6,(0) =0

(M

Use of equation (4) in equation (7) provides

r+pPLB}—r0=0
—B.L{6,} + O + B,)Li6,} =0
B, L{6,} +rL{f;} =0

+p)Lie} =rw
= —B,L{6,}+ @ +p,)L{6,}=0
B, L16,} +rL{6,} =0

(8)

Equation (8) represents a system of three non-homogeneous linear equations in £{6, }, £{6, } and £{6,} unknowns.

Now use of Cramer’s rule in equation (8) gives the values of unknowns £{6, }, £{6, } and £{6,} as:



Tw 0 0
0 (T' + ,82) 0 (T' + ﬁl) 0 0
oy =r———~Lr T | g Grp) of%0
o+ By) 0 0 0 B r
-8 @4+B) 0 ’
0 B r
= ,C{91} = (Ta':';) ()
r+p) ro 0
_(fl g 0 (T + ﬁl) 0 0
— r —
B Ty S R a—L 51 (r;ﬁz) 2 -
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Performing inverse Laplace-Carson transform on equations (9), (10) and (11) gives the required concentrations

6, (®), 6, (t) and 6 (t) as:

o= L]
! r+ ﬁl

=6, =a>£‘1{ .

r+f1

o {(ﬁzwflﬁl) Al

=6, = (ﬁ:)f}?l) [L_l {r—:ﬁl} - L7 {r -:,82}]

=6, = (ﬁwz_fél) [e~F1t — eFot] (13)

o () )+ () ()

=6, =w [Lil{rB}_ (ﬁzﬁ—zﬁl)l:l{r -:ﬁl} " <3z[;—131>1:1 {r-:_ﬁz}]

20, =w [1 — (ﬁf_zﬁl)e_ﬂlt + (ﬁzﬁ_lﬁl) e_ﬁzt] (14)

Remark 2: Results given by equations (12), (13) and (14) have perfect agree ment with [36].

b= we e (12)

N
I

&P
I

8. CONCLUSIONS: In this chapter, we have profitably determined the concentrations of the reactants of first order
consecutive chemical reaction by using Laplace-Carson transform. It is observed that Laplace-Carson transform

provide the exact analytical primitive of this problem with good accuracy. We can use Laplace-Carson transform to



study the problems of chemical engineering in future that involve different order reversible and parallel chemical

reactions.
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