Atmospheric Oxidation of Hydrochloroethers (HCEs) initiated by 'OH, Cl-atoms, and 'NO₃ :A Comprehensive Review

Udeshna Priya Kakati^a, Banani Bhattacharjee^a, Nand Kishor Gour^b and Subrata Paul^{a*} ^aDepartment of Chemistry, Assam University, Silchar-788011, Assam, India ^bDepartment of Chemical Sciences, Tezpur University, Tezpur-784028, Assam, India Email: <u>subrata.paul@aus.ac.in</u>

Abstract:

In this chapter, we explored the atmospheric insight of the oxidation of hydrochloroethers (HCEs) initiated by 'OH, Cl-atoms, and 'NO₃ species and explained how they influence the environment. In the modern era, HCEs have consistently attracted researcher, which is broadly employed in laboratories, industries, alkylating agents, and protecting groups. HCEs are being contemplated as the third-generation substitute for CFCs, HFCs, and HCFCs. Their appealing qualities, i.e. high reactivity towards tropospheric oxidants, shorter lifetime in the atmosphere, zero ozone depletion potentials (ODPs), and low global warming potentials (GWPs), may give a solution to the environmental concerns. They have been already utilized in some nations as possible substitutes for chemicals in labs, as well as solvents for fats and oils, cleansers, varnishes, and paints, and in the production of insecticides. However, one must gauge these compounds' atmospheric chemistry and impacts on the ecosystem before their widespread commercial application. This study systematically does a thorough evaluation of the existing literature concerning the kinetic studies on HCEs to show their reactivity towards oxidants and understand the possible degradation of oxidation product radicals formed. Moreover, understanding the findings of atmospheric implications like atmospheric lifetimes, and GWPs.

1. Introduction

The atmosphere consists of a variety of oxygenated organic compounds and has been found in the form of alcohols, ethers, ketones, aldehydes, esters, and so on [1, 2]. These compounds have been released into the troposphere, raising considerable worries about the growing hazards to human health [3]. Each year, large amounts of chemicals are released into the atmosphere from both natural and man-made sources. The atmospheric chemistry of organic oxygenates has piqued a lot of attention in recent years, particularly in relation to their roles in the degradation of indoor air quality, the generation of secondary organic aerosols, and the possible toxicity imposed by them [4-6]. The formation of photochemical smog and tropospheric ozone relies on the processes carried out by the oxygenated compounds. Hydrochloroethers (HCEs) are a well-known example of such anthropogenic organic compounds that are also generated by the oxidation of all hydrocarbons in the atmosphere.

In the modern era, HCEs have received a lot of heed. They have been widely employed in laboratories and industry as components of paints and varnishes, as solvents for fats and oils, cleaning agents for textiles, and so on [7-10]. Moreover, HCEs have been developed as the third-generation substitutes for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) in various applications [11-14]. Since, the ozone layer in the stratosphere is thought to be most vulnerable to CFCs, which are mostly utilized as refrigerants and cleaning agents. Hence, the Montreal Protocol and all of its subsequent amendments forbid the commercial production of these substances [15]. HFCs have little impact on ozone depletion since they don't contain any Cl or Br atoms. However, even though they were once thought to be a good replacement, their considerable C-F bond absorption in the atmospheric window zone (800-1200 cm⁻¹), would cause global warming. Thus, HCEs are marked as a conspicuous alternative refrigerant. An illustration of the timeline of alternative refrigerants is shown in Figure 1.

Figure 1: Evolution of alternatives to CFCs over different time horizon [16]

HCEs are degraded in the atmosphere by undergoing photolytic chemical reactions and interaction with atmospheric oxidants. The presence of ether linkage (–O–) in HCEs could cause them to become more reactive in the troposphere [17]. The chemical reactivity of HCEs in the troposphere is initiated by oxidants such as 'OH radical (during daylight), Cl-atoms (during daylight in coastal and marine environments), and 'NO₃ radical (during night time) [18]. For a specific HCE, its potential significance in the atmosphere relies on how it transforms in the atmosphere, what sorts of molecules are produced as a result of those changes, as well as the duration of each degradation product in the atmosphere [3, 19]. Additionally, as HCEs contain Cl atoms, the breakdown products formed from them might release Cl atoms into the atmosphere. This could have a severe influence on the environment by contributing to the depletion of the ozone layer and global warming. Therefore, it is imperative to study the kinetics and mechanistic pathways of degradation of HCEs in order to assess their atmospheric chemistry and understand how these molecules contribute to air pollution mostly in urban and rural areas. In order to evaluate the impacts of HCEs on the environment once they were emitted into the atmosphere, the necessary requirement is to first understand the atmospheric lifetimes of HCEs, as well as atmospheric hazard indices such as the global warming potentials (GWPs). The GWP is a metric that is used to evaluate the contribution of gaseous compounds to the greenhouse effect and is based on its anticipated lifetime in the atmosphere. Thereafter, further grasping the fate of the ensued oxidation products. The probable tropospheric transformation processes of HCEs are shown in Scheme 1 [20].

1.1 List of HCEs and Their Applications

HCEs are used in a variety of sectors including laboratories and industries. Among them, 1,1-Dichlorodimethylether (DCDME) has been employed in the synthesis of commercial insecticides, phenalenyl-fused compounds, and also some of these compounds act as a model complex for anesthetics like enflurane or isoflurane [21, 22]. Another HCE compound, Chloromethyl Ethyl Ether (CMEE, CH₂ClOCH₂CH₃) has been utilized in the production of HIV-1 reverse transcriptase inhibitors obtained from TNK-651 [23]. Moreover, employed in the lithiation of lithiomethyl ethyl ether by a DTBB-catalysed process [24]. Bis (2-chloroethyl) ether, also known as BCEE (ClCH₂CH₂OCH₂CH₂Cl), is another well-known example of HCE. It is extensively used in agriculture and industry as a cleaning agent for textiles, a component of varnishes and paints, a solvent for fats and oils, and in the creation of pesticides. Another application of it was, as a chemical intermediary in the manufacture of a commercial fungicide [25]. CH₃CH₂OCH₂CH₂Cl (CEEE) is utilized in the separation of protein and saccharides and as

sulphur dioxide absorbers in order to prepare ether-functionalized ionic liquids, where it acts as a reagent. Likewise, CH₃OCH₂CH₂Cl (CEME) has been employed in the synthesis of acyclic nucleosides of thieno[2,3-d] pyrimidine derivatives, while CH₃OCH₂Cl (CMME) is employed as an industrial solvent and alkylating medium in order to prepare water repellents, ion exchange resins, and polymers, to manufacture detergent dodecylbenzyl chloride. In some variations of the Blanc chloromethylation, CMME is also utilized as a chloromethylating agent. Due to its role in introducing the methoxymethyl (MOM) protecting group during chemical synthesis, this substance is frequently referred to as MOM chloride [26]. Because of the extensive industrial applications, these compounds will release into the atmosphere during the processes of synthesis, usage, and storage. Therefore, it is crucial to understand the tropospheric oxidation and influence of these compounds in the environment.

2. Literature Review on the oxidation of HCEs

In literature, there have been numerous theoretical and experimental studies on the oxidation of HCEs by 'OH, Cl-atoms, and 'NO₃. The kinetic investigation of HCE reactions will reveal information about their tropospheric reactivity and help to elucidate how they degrade in the atmosphere. In the following section, we provide an overview of some HCEs that we found in the literature.

2.1. Oxidation of 1,1-Dichlorodimethylether (DCDME)

Firstly, the oxidation reaction of CH₃OCHCl₂ (DCDME) initiated by Cl-atom was studied by Dalmasso *et al.* [27]. They estimated the reaction rate constant using the relative rate technique. An experiment using nitrogen as the bath gas was conducted at 298 ± 2 K and atmospheric pressure. The rate constant for the reaction of a Cl-atom with CH₃OCHCl₂ was determined to be $(1.04 \pm 0.30) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. In another experiment, Dalmasso *et al.* [28] used synthetic air as the bath gas and evaluated the rate constant for the same reaction at 296 ± 2 K and atmospheric pressure. They estimated the rate constant as $(1.05 \pm 0.11) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. Thereafter, Mishra *et al.* [29] carried out the oxidation of the same compound with Cl-atom using DFT and couple cluster techniques. Using the canonical transition state theory (CTST) with tunneling correction, they calculated the rate constant as 1.204×10^{-12} cm³ molecule⁻¹ s⁻¹ at 298 K, and this value is in good accord with the experimentally measured ones. Similarly, they also calculated the rate constant of the CH₃OCHCl₂ (DCDME) oxidation process with 'OH using quantum chemical method. They estimated the rate constants using CTST, and reported the rate constant value of 2.03×10^{-13} cm³ molecule ⁻¹ s⁻¹ at 298 K [30].

The two main mechanisms that have been taken into account for the oxidation reaction of DCDME by 'OH, Cl-atom, and 'NO₃ are given by Eq. 1 and 2 [29, 30] as shown below.

$$CH_{3}OCHCl_{2} + X \rightarrow CH_{3}OC^{\bullet}Cl_{2} + HX$$
(1)

$$CH_3OCHCl_2 + X \rightarrow C^{\bullet}H_2OCHCl_2 + HX$$
(2)

Where X = OH, Cl-atom, and NO_3

Moreover, Mishra *et al.* [30] estimated the branching ratios for the reaction of CH₃OCHCl₂ with 'OH and ascertained that the hydrogen abstraction reaction from the –CHCl₂ group of CH₃OCHCl₂ is considered to be predominate than –CH₃ group, and this is validated with the percentage ratios obtained as 96.0% and 4.0% respectively [27]. The thermodynamic viability is also noted by Mishra *et al.* [29] for the reaction of CH₃OCHCl₂ + Cl-atom. Both reaction channels (Eq. 1 and 2) are found to be exergonic ($\Delta G < 0$) based upon free energy calculations, for which the reaction enthalpies ($\Delta_r H^\circ$) were estimated to be -8.65 and -5.22 kcal mol⁻¹, respectively. This clearly suggests that reaction in Eq. 1 is thermodynamically more preferable than reaction in Eq. 2 [29]. Similarly, Gour *et al.* [31] theoretically explored the oxidation reaction of CH₃OCHCl₂ initiated by 'NO₃ at the BHandHLYP/6-311++G(d,p) level. The estimated rate constant of this reaction is found to be 8.15 × 10⁻¹⁷at 298 K. Further, they also explored the fate of alkoxy radical (CH₃OC'Cl₂) generated from the aforementioned reaction. The degradation routes of CH₃OCHCl₂ by 'NO₃ were depicted in scheme 2 [31].

Scheme 2: The degradation mechanism of CH₃OCHCl₂ initiated by 'NO₃ in the troposphere [31].

2.2. Oxidation of bis (2-chloroethyl) ether (BCEE)

Dalmasso *et al.* [7] carried out an experiment at 298 ±2 K and atmospheric pressure to determine the rate constant of the ClCH₂CH₂OCH₂CH₂Cl (BCEE) reaction with 'OH using synthetic air as bath gas. The rate constant was derived using the reference substances n-pentane and n-heptane, and was estimated to be $(7.6 \pm 1.9) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. Thereafter, Paul *et al.* [32] conducted a theoretical analysis of the same reaction. They employed the M06-2X method with basis 6-31+G(d,p) set to explore this reaction. The rate constant was determined to be 6.27 × 10⁻¹² cm³ molecule⁻¹ s⁻¹. This is quite in agreement with the experimentally determined rate constant value by Dalmasso *et al.* [7].

Similarly, Dalmasso *et al.* [33] used the relative rate method to determine the rate constant in relation to those of n-pentane and n-heptane for the Cl-atom induced oxidation of BCEE. The measured value was found to be $(1.0 \pm 0.3) \times 10^{-10}$ cm³ molecule⁻¹s⁻¹ at (298 ± 2) K and atmospheric pressure. This result agrees with the theoretically calculated value of 1.33×10^{-10} cm³ molecule⁻¹s⁻¹), studied by Paul *et al.* [32]. Moreover, Paul *et al.* [32] also studied the oxidation of BCEE (ClCH₂CH₂OCH₂CH₂Cl) with 'NO₃. The estimated rate constant was found to be 4.07×10^{-15} cm³ molecule⁻¹ s⁻¹.

2.3. Oxidation of 2-chloroethyl ethyl ether (CEEE)

The oxidation reaction of CH₃CH₂OCH₂CH₂Cl (CEEE) with 'OH was studied by Dalmasso et al. [7] experimentally utilizing the relative rate technique. They carried out the reaction at (298 ± 2) K and atmospheric pressure using n-pentane and n-heptane as reference compounds, and the rate constant was determined to be $(8.3 \pm 1.9) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. The same reaction was investigated theoretically by Ye et al. [34] by using an ab initio approach and canonical variational transition-state dynamic computations with the small-curvature tunneling correction. The rate constant was estimated to be 6.28×10^{-12} cm³ molecule⁻¹ s⁻¹ at 298 K, which agreed well with the experimental one. Again, Dalmasso et al. [33] studied the Cl-atom initiated oxidation of CH₃CH₂OCH₂CH₂Cl (CEEE). The rate constant at (298 ± 2) K and atmospheric pressure was observed as $(1.7 \pm 0.5) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹. Thereafter, theoretically, Ye *et al.* [34] studied the (CH₃CH₂OCH₂CH₂Cl + Cl) reaction and at 298 K rate constant was estimated as 8.09×10^{-11} cm³ molecule⁻¹ s⁻¹. In the same manner, Gour *et al.* [35] carried out quantum chemical computations to determine the rate constant of the 'NO3 induced oxidation of CH3CH2OCH2CH2Cl (CEEE). The rate constants were calculated using the CTST for the temperature range of 250-350 K, and the total rate constant at 298 K and 1 atm pressure was reported as 2.78×10^{-16} cm³ molecule⁻¹ s⁻¹.

2.4. Oxidation of Chloromethyl ethyl ether (CMEE)

To study the oxidation reaction of CH₂ClOCH₂CH₃ (CMEE) with 'OH and Cl-atom, Dalmasso *et al.* [36] used *ab* initio G3B3 level of theory to calculate the vertical ionization potentials and C-H bond dissociation energies and analyzed the kinetics of the reactions. At room temperature, the observed rate constants were found to be 2.33×10^{-12} cm³ molecule⁻¹ s⁻¹ and 4.485 $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ respectively. Thereafter, Paul *et al.* [37] computed the rate constant for 'OH initiated oxidation of CH₂ClOCH₂CH₃ (CMEE). The rate constants were calculated using the CTST between 250 and 450 K at 1 atm. and at 298 K. The overall rate constant value was estimated as 6.45×10^{-12} cm³ molecule⁻¹ s⁻¹. Moreover, in this study, they had provide the detailed mechanism of the formation of CH₂ClOCH(O')CH₃ radical by the degradation of CH₂ClOCH₂CH₃ (CMEE) initiated by 'OH and is shown in scheme 3 [37].

Scheme 3: Formation $CH_2ClOCH(O^{\bullet})CH_3$ radical by the $(CH_2ClOCH_2CH_3 + {}^{\bullet}OH)$ degradation reaction [37].

Thereafter, Paul *et al.* [37] also studied the fate of this haloalkoxy radical, CH₂ClOCH(O[•])CH₃ in the atmosphere, that lead to the following mechanism as:-

$CH_2ClOCH(O^{\bullet})CH_3 \rightarrow CH_2ClO^{\bullet} + CH_3CHO$	(4)
$CH_2ClOCH(O^{\bullet})CH_3 \rightarrow CH_2ClOCHO + {}^{\bullet}CH_3$	(5)
$CH_2ClOCH(O^{\bullet})CH_3 \rightarrow CH_2ClOCOCH_3 + {}^{\bullet}H$	(6)

This study revealed that the C–C bond breaking of the CH₂ClOCH(O[•])CH₃ radical is more dominant and is also validated through thermodynamic calculations with $\Delta_r G^\circ$ value of -7.71 for the reaction (5) – (CH₂ClOCH(O[•])CH₃ \rightarrow CH₂ClOCHO + [•]CH₃). The reaction enthalpy and Gibb's free energy of the reaction channels (4-6) in kcal mol⁻¹ are shown in Table 1 [37].

Decomposition Reactions	M06-2X level		CCSD(T)//M06-2X level	
	$\Delta_r H^\circ$	$\Delta_r G^\circ$	$\Delta_{\mathbf{r}}\mathbf{H}^{\circ}$	$\Delta_r G^\circ$
CO Scission CH₂ClOCH(O')CH₃ → CH₂ClO' + CH₃CHO	13.8	1.3	10.3	-2.2
CC Scission CH ₂ ClOCH(O [•])CH ₃ → CH ₂ ClOCHO + [•] CH ₃	3.0	-7.7	-0.6	-11.3
CH Scission CH ₂ ClOCH(O')CH ₃ → CH ₂ ClOCOCH ₃ + 'H	5.4	-2.5	3.2	-4.7

Table 1: Reaction enthalpy and Gibb's Free energy (in kcal mol⁻¹) at M06-2Xand CCSD(T)//M06-2X levels along with 6-311++G(d,p) basis set for the reaction channels (4-6) [37]

No prior investigations on the oxidation reaction of $CH_2ClOCH_2CH_3$ (CMEE) with 'NO₃ have been found yet, to the best of our knowledge.

2.5. Oxidation of 2-chloroethyl methyl ether (CEME)

To investigate the kinetics of CH₃OCH₂CH₂Cl (CEME), McLoughlin *et al.* [38] evaluate the rate constants for the reaction of CH₃OCH₂CH₂Cl with 'OH and Cl-atom using a relative rate method. The rate constants value were estimated as $(4.92 \pm 1.09) \times 10^{-12}$, and $(1.44 \pm 0.5) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ respectively at (300 ± 3) K and total pressure of 1 atmosphere. Similarly, Dalmasso *et al.* [28] used the relative rate technique to examine the same compound with Cl-atom. At (296 ± 2) K and atmospheric pressure, the rate constant value was computed to be (1.14 ± 0.10) $\times 10^{-10}$ cm³ molecule⁻¹ s⁻¹. Furthermore, for the 'OH initiated reaction with the same compound, Dalmasso *et al.* [7] studied the reaction kinetics and the rate constant value was found to be (5.2 ± $1.2) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at (298 ± 2) K and atmospheric pressure. Thus, from this study, we have observed that the rate constant values are in agreement for all the studies both for the 'OH and Cl-atom initiated oxidation reaction. Thereafter, theoretical studies on the oxidation of this compound was studied by Ye *et al.* [34] for the reaction with 'OH and Cl-atom. Utilizing the *ab* initio approach and canonical variational transition-state dynamic calculations with the smallcurvature tunneling correction, they investigated the reaction kinetics. The rate constant at 298 K was measured to be 4.01×10^{-12} cm³ molecule⁻¹ s⁻¹ and 6.13×10^{-11} cm³ molecule⁻¹ s⁻¹, respectively for the 'OH and Cl-atom initiated reaction. Similarly, Gour *et al.* [39] conduct a gas-phase reaction of CH₃OCH₂CH₂Cl with 'NO₃ employing quantum chemical methods. They computed rate constants using CTST at M06-2X/6-31+G(d,p) level of theory and refining energy even farther at CCSD (T)/6-311++G(d,p) level of theory. The total rate constant computed for the reaction was obtained as 4.88×10^{-17} cm³ molecule⁻¹ s⁻¹ at 298 K and 1 atm pressure. As far as our knowledge, no experimental studies have been found for this compound with 'NO₃.

2.6. Oxidation of 1-chloromethyl methyl ether (CMME)

The oxidation reaction of CH₃OCH₂Cl (CMME) initiated by 'OH and Cl-atom was also investigated by Dalmasso *et al.* [36], and measured the rate constants by relating the roomtemperature rate constant values with both the C-H bond dissociation energies and the vertical ionization potentials of CH₃OCH₂Cl, at the G3B3 level of theory. The computed rate constant values for the 'OH and Cl-atom initiated reaction were observed as 1.27×10^{-12} cm³ molecule⁻¹ s⁻¹ and 2.91×10^{-11} cm³ molecule⁻¹ s⁻¹ respectively. The kinetics for the reaction of Cl-atom with CH₃OCH₂Cl was also examined by Jenkin *et al.* [40], and the rate constant was reported as $(2.9 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and agrees well with the reported value given by Dalmasso *et al.* [36]. To the best concern of our study, this compound has not yet been the subject of any investigations on the kinetics of CH₃OCH₂Cl with 'NO₃.

2.7. Oxidation of 1,1,1-Trichlorodimethyl ether (TCDME)

Dalmasso *et al.* [36] studied the kinetics for this HCE reacting with 'OH and Cl-atom. The reaction CH₃OCCl₃ (TCDME) + 'OH, Cl-atom was investigated using the same method as discussed above for the compound (CMME). The reported rate constants were observed as 2.86×10^{-13} cm³ molecule⁻¹ s⁻¹ and 2.86×10^{-12} cm³ molecule⁻¹ s⁻¹ respectively for the 'OH and Cl-atom initiated reaction. Further, no studies have been found on the kinetics of CH₃OCCl₃ (TCDME) with 'NO₃.

2.8. Oxidation of 2,2-Dichloroethylmethylether (DCEME)

The reaction rate investigation of this compound with 'OH and Cl-atom was studied by McLoughlin *et al.* [38] with the help of the relative rate method. The rate constant of the oxidation reaction of CH₃OCH₂CHCl₂ (DCEME) with 'OH was estimated as $(2.37 \pm 0.50) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ by using the values of k(OH + pentane) = $(3.94 \pm 0.98) \times 10^{-12}$ and k(OH + diethyl

ether) = $(13.6 \pm 2.26) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. The rate constant for the Cl-atom-initiated reaction with CH₃OCH₂CHCl₂ was calculated as $(4.4 \pm 1.6) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ on the basis of the values of k(Cl + ethane) = $(5.84 \pm 0.88) \times 10^{-11}$ and k(Cl +diethyl ether) = $(25.4 \pm 8.05) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. No further information on the kinetic studies of this compound is available for the oxidation reaction with 'NO₃.

The estimated rate constant values that have been reported for the oxidation reaction of HCEs with 'OH, Cl-atom, and 'NO₃ in the literature to date are summarized and listed in Table 2.

Sl	HCEs	k _{OH}	k _{Cl}	k _{NO3}
No.				
1	CH ₃ OCHCl ₂ (DCDME)	2.03×10^{-13} [30]	$(1.04 \pm 0.30) \times 10^{-12}$ [27]	$8.15 imes 10^{-17}$ [31]
		0.64×10 ⁻¹² [36]	$(1.05 \pm 0.11) \times 10^{-12}$ [28]	
			1.204×10^{-12} [29]	
			0.105×10^{-11} [36]	
2	ClCH ₂ CH ₂ OCH ₂ CH ₂ Cl	$(7.6 \pm 1.9) \times 10^{-12}$ [7]	$(1.0 \pm 0.3) \times 10^{-10}$ [33]	$4.07 imes 10^{-15}$ [32]
	(BCEE)	6.27×10^{-12} [35]	1.33×10^{-10} [32]	
3	CH ₃ CH ₂ OCH ₂ CH ₂ Cl	$(8.3 \pm 1.9) \times 10^{-12}$ [7]	$(1.7 \pm 0.5) \times 10^{-10}$ [33]	2.78×10^{-16} [35]
	(CEEE)	6.28×10^{-12} [34]	8.09 ×10 ⁻¹¹ [34]	
4	CH ₂ ClOCH ₂ CH ₃ (CMEE)	2.33×10^{-12} [36]	4.485×10^{-11} [36]	—
		$6.45 imes 10^{-12}$ [37]		
5	CH ₃ OCH ₂ CH ₂ Cl	$(4.92 \pm 1.09) \times 10^{-12}$ [38]	$(1.44 \pm 0.5) \times 10^{-10}$ [38]	4.88×10^{-17} [39]
	(CEME)	$(5.2 \pm 1.2) \times 10^{-12}$ [7]	$(1.14 \pm 0.10) \times 10^{-10}$ [28]	
		$4.01 imes 10^{-12}$ [34]	$6.13 imes 10^{-11}$ [35]	
6	CH ₃ OCH ₂ Cl (CMME)	1.27×10^{-12} [36]	2.91 × 10 ⁻¹¹ [36]	_
			$(2.9 \pm 0.2) \times 10^{-11}$ [40]	
7	CH ₃ OCCl ₃ (TCDME)	2.86×10^{-13} [36]	2.86×10^{-12} [36]	—
8	CH ₃ OCH ₂ CHCl ₂	(2.37±0.50)×10 ⁻¹² [38]	$(4.4 \pm 1.6) \times 10^{-11}$ [38]	_
	(DCEME)			
9	CH ₃ OCHClCH ₃ (CEME)	10.1×10 ⁻¹² [36]	24.91×10 ⁻¹¹ [36]	_

Table 2: Rate constants for the oxidation reactions of some HCEs initiated by 'OH, Cl-atom, and 'NO₃ (in the temperature range of 296-298K) [27-40]

From these kinetic studies, we can ascertain that HCEs are quite reactive with tropospheric oxidants.

2.8.1 Atmospheric implications

***** Atmospheric Lifetime:

The duration of time that a species remains in the atmosphere is referred to as its atmospheric lifetime. Primarily, the atmospheric lifetime of any HCEs may be evaluated by examining its eradication from the atmosphere through its reaction with tropospheric oxidants. Gases with a higher value of atmospheric lifetime impose a greater degree of warming than gases with a lower atmospheric lifetime value. The atmospheric lifetime of a particular molecule may be computed employing the total rate constant of the reactions discussed above via the relation given as [41]

$\tau_{X} = (k_{Total} \times [X])^{-1}$

Where, x = atmospheric oxidants like 'OH radical, Cl-atom, and 'NO₃.

k_{Total}= total rate constant for the reaction of x species with the specific compound

[X] = average atmospheric concentration of the oxidant

The survey of an estimated lifetime of some HCEs found in the literature has shown that their lifetimes are short as of some hours/days. Using the rate constants for the compounds (as provided in Table 2), The estimated atmospheric lifetime values of studied HCEs are provided in Table 3. For example, Dalmasso et al. [7] estimated the lifetime for the reaction of ClCH₂CH₂OCH₂CH₂Cl (BCEE) with 'OH radical, Cl-atom using the average concentrations of 'OH and Cl-atom as [OH] $= 2 \times 10^6$ radicals cm⁻³ [42], [Cl] $= 1 \times 10^3$ atoms cm⁻³ [43]. The reported lifetime was found to be 18 hours (0.75 days) and 116 days respectively for reaction with 'OH and Cl-atom. Thereafter, Paul et al. [32] calculated the lifetime for the same compound with 'OH radical, Cl-atom, and 'NO₃. They have observed lifetimes of 0.9 days (22.1 h), 87 days, and 4.9 days respectively, where average concentrations of oxidants were taken as 2.0×10^6 molecule cm⁻³ [42], 1.0×10^3 molecule cm^{-3} [44], and 5.70 × 10⁸ molecule cm^{-3} [45], and, respectively for 'OH, Cl-atom, and 'NO₃. The atmospheric lifetime of CH₂ClOCH₂CH₃ (CMEE) was once more computed by Paul et al. [37] using the quantum chemical method and taking the concentration of 'OH as 1.0×10^6 molecules per cm³ [46] and rate constant k_{OH} as 6.45×10^{-12} cm³ molecule⁻¹ s⁻¹. The estimated lifetime was 1.79 days. This value is found to be slightly less than that reported by Dalmasso *et al.* [36] for the CMEE. Dalmasso et al. [36] estimated the lifetime value of CMEE as 5.0 days using the

concentration of 'OH as ([OH] = 1×10^6 radicals cm⁻³) and the total rate constant value as $2.33 \times$ 10⁻¹² cm³ molecule⁻¹ s⁻¹. Additionally, they have estimated the lifetime value for Cl-atom initiated reaction. With an average concentration of Cl-atom as ([Cl] = 1×10^4 atoms cm⁻³), the lifetime of CMEE was calculated as 25.8 days using a rate constant of 4.485×10^{-11} cm³ molecule⁻¹ s⁻¹ [36]. For 'NO₃ initiated reaction with CH₂ClOCH₂CH₃ (CMEE), as no kinetic studies are available in the literature, no reported lifetime was found yet. For the compound CH₃OCHCl₂ (DCDME), Dalmasso *et al.* [36] studied the lifetime for 'OH and Cl-atom. Taking rate constants of 0.64×10^{-10} 12 and 0.105×10^{-11} cm³ molecule⁻¹ s⁻¹ respectively for 'OH and Cl-atom, lifetime was estimated as 18.1 and 1102.3 days, respectively with $[OH] = 1 \times 10^6$ radicals cm⁻³, and $[Cl] = 1 \times 10^4$ atoms cm⁻³ ³. Since the lifetime for the reaction with Cl-atom of this compound was quite long, it is possible for this compound to degrade through other means, such as transfer into the stratosphere and thereby generating chlorine atoms as a result of photolysis [27]. According to Gour et al. [31], who used a rate constant of 8.15×10^{-17} cm³ molecule⁻¹ s⁻¹ and concentration as [NO₃] = 5×10^8 molecule cm⁻³, for the DCDME, the lifetime was estimated as 0.78 years (284.8 days). From these studied HCE compounds, we have observed that lifetimes were found to be quite short (in the order of days), which also implied a minimal contribution to global warming. The short lifetimes of these HCEs imply that they are quite reactive towards tropospheric oxidants. Due to their short atmospheric lives and low global warming potential (GWP), HCEs also prevented the movement of these chemicals into the stratosphere, contributing minimally to the ozone layer's depletion [31]. The following section of studies will provide an outline of the existing literature on the global warming potentials (GWPs) of some HCEs.

Sl No.	HCEs	тон	τсι	τ ΝΟ3
1	CH ₃ OCHCl ₂ (DCDME)	18.1 days [36]	1102.3 days [36]	0.78 years (284.8
				days) [31]
2	ClCH ₂ CH ₂ OCH ₂ CH ₂ Cl	0.9 days [32]	87 days [32]	4.9 days [32]
	(BCEE)			
3	CH ₃ CH ₂ OCH ₂ CH ₂ Cl	19 hours (0.79	142 days [34]	0.23 years (83.95
	(CEEE)	days) [34]		days) [35]

Table 3: Atmospheric lifetime of some HCEs with respect to the oxidants viz. 'OH, Cl-atom, and 'NO₃

4	CH ₂ ClOCH ₂ CH ₃ (CMEE)	1.79 days [37]		_
		5.0 days [36]	25.8 days [36]	
5	CH ₃ OCH ₂ CH ₂ Cl (CEME)	39 hours(1.625	188 days [34]	1.3 years(474.8
		days) [34]		days) [39]
6	CH ₃ OCH ₂ Cl (CMME)	9.1 days [36]	39.9 days [36]	_
7	CH ₃ OCCl ₃ (TCDME)	40.5 days [36]	404.7 days [36]	_
8	CH ₃ OCH ₂ CHCl ₂	_	26.3 days [27]	_
	(DCEME)			
9	CH ₃ OCHClCH ₃ (CEME)	1.1 days [36]	4.6 days [36]	_

✤ Global Warming Potentials (GWPs)

Global Warming Potential can be defined as the measure of the amount of heat trapped by a greenhouse gas in the atmosphere relative to CO_2 [47]. The expression for estimating global warming potential (GWP) given by Hodnebrog *et al.* [48] is given below.

$$GWP(H) = \frac{AGWP_i(H)}{AGWP_{CO_2}(H)} = \frac{A\tau(1 - \exp\left(\frac{H}{\tau}\right))}{AGWP_{CO_2}(H)}$$

Here, A is the instantaneous radiative efficiency (IRE) (unit: $Wm^{-2}ppb^{-1}$), and τ refers to lifetime. $AGWPCO_2(H)$ implies the absolute global warming potential for CO₂ (reference compound) for the various time horizons (H), the AGWPi is the absolute global warming potential for a calculated molecule.

The study of GWPs for HCEs is found very scant in the literature for the reaction with tropospheric oxidants. A few of them have been investigated by Gour *et al.* [31], [35], [39], and Dalmasso *et al.* [33]. First, Dalmasso *et al.* [33] estimated GWPs for the studied HCEs viz. CH₃CH₂OCH₂CH₂Cl(CEEE) and ClCH₂CH₂OCH₂CH₂Cl(BCEE) reacting with Cl-atoms. The radiative efficiency (RE) of these compounds are found to be 0.078 and 0.062 Wm⁻²ppbv⁻¹ respectively. For the 20 and 100-year time periods, GWPs were found to be 0.34, and 0.10 for CEEE; 0.20, and 0.06 for BCEE respectively. Again, Gour *et al.* [35] estimated the GWPs of CEEE for the reaction with 'NO₃. The GWPs for the time period of 20, 100, and 500 years are 0.13, 0.04, and 0.01, respectively with a RE (A_i) value of 0.024 Wm⁻²ppbv⁻¹. In another study, Ye

et al. [34], studied the GWPs of CH₃CH₂OCH₂CH₂Cl(CEE) for the 'OH and Cl-atom initiated reaction. For the time horizons of 20, 100, and 500 years, they have found GWPs of 0.34, 0.10, and 0.03, respectively. These values are comparable to those reported by Dalmasso *et al.* [34], which were estimated as 0.34 and 0.10 over time horizons of 20, and 100 years, respectively. In addition, Ye *et al.* [34] calculated the GWPs of CH₃OCH₂CH₂Cl(CEME) for the reaction with 'OH and Cl-atom. The estimated values are 0.69, 0.15, and 0.05, respectively, at 20, 100, and 500 years. [34]. Further, Gour *et al.* [39] determined the GWPs of CEME for the reaction with 'NO₃ and 20, 100, and 500 years of time period, the estimated values are found to be 0.66, 0.19, and 0.05 respectively. Moreover, for the reaction of CH₃OCHCl₂ (DCDME) with 'NO₃, Gour *et al.* [31] evaluate the GWPs at 20, 100, and 500 years and its value is found to be 0.49, 0.14, and 0.04 respectively, with RE(A_i) value of 0.12 Wm⁻²ppbv⁻¹. The GWP values obtained from the studied HCEs are listed in Table 4.

Sl	COMPOUNDS	GLOBAL WARMING POTENTIAL (GWP)			
No.		TH = 20 years	TH = 100 years	TH = 500 years	
1.	CH ₃ OCHCl ₂ (DCDME)	0.49 [31]	0.14 [31]	0.04 [31]	
2	ClCH ₂ CH ₂ OCH ₂ CH ₂ Cl (BCEE)	0.20 [33]	0.06 [33]	-	
3	CH ₃ CH ₂ OCH ₂ CH ₂ Cl (CEEE)	0.34 [34] 0.13 [35]	0.10 [34] 0.04 [35]	0.03 [34] 0.01 [35]	
4	CH ₃ OCH ₂ CH ₂ Cl (CEME)	0.69 [34] 0.66 [39]	0.15 [34] 0.19 [39]	0.05 [34] 0.05 [39]	

Table 4: GWPs of some hydrochloroethers (HCEs) calculated for the specific time horizons

Thus, from the overviews of the GWP values of some HCEs, it is observed that they generally have quite low GWP. Additionally, neither the stratospheric ozone nor the radiative forcing of climate change will be significantly impacted by these compounds.

3. CONCLUSION

In concisely, here the primary interest refers to the degradation of hydrochloroethers (HCEs) initiated by 'OH, Cl-atoms, and 'NO₃ in the atmosphere. Understanding the kinetics of the

reaction of HCEs with tropospheric oxidants requires the calculation of rate constants. Based on the review of the oxidation of HCEs by oxidants, it was observed that rate constants are estimated both experimentally as well as computationally. The rate constant values of the HCEs are found to be quite comparable that are measured both experimentally and computationally. It also validates the fast reactivity of HCEs with the oxidants. Additionally, it has been divulged that studying the kinetics of a reaction is essential to figuring out the atmospheric lifetime and GWPs of compounds. The lifetimes are found to be quite short which leads to low GWP and so that during their release do not produce any long-lived hazardous compounds. Furthermore, understanding the fate of oxidation product radicals in some reported literature would be particularly instructive for comprehending the detailed mechanism and how volatile organic molecules react with oxidants in the atmosphere. Considering the aforementioned studies, HCEs might be preferable to CFCs, HFCs, and HCFCs and thought of as a better alternative.

REFERENCES

1. Singh H, Chen Y, Staudt A, *et al.* Dominant presence of oxygenated organic species in the remote troposphere. Nature (2001) 410, 1078-1081.

2. McKinney KA, Lee BH, Vasta A, *et al.* Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest. Atmos. Chem. Phys. (2011) 4807-4831.

3. Finlayson-Pitts BJ, Pitts Jr JN. Chemistry of the Upper and Lower Atmosphere. Academic Press N.Y (2000).

4. Grosjean E, Grosjean D. The Reaction of Unsaturated Aliphatic Oxygenates with Ozone. Atmos. Chem. (1999) 32, 205-232.

5. Mellouki A, Le Bras G, Sidebottom H. Kinetics and Mechanisms of the oxidation of Oxygenated Organic Compounds in the Gas Phase. Chem. ReV. (2003) 103, 5077–5096.

6. Kanakidou M, Seinfeld JH, Pandis SN, et al. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. (2005) 5, 1053-1123.

7. Dalmasso PR, Taccone Rau'l A, Nieto JD, Cometto PM, Lane SI. Kinetic study of the OH reaction with some hydrochloroethers under simulated atmospheric conditions. Atmos. Environ. (2010) 44, 1749–1753.

8. Coe PL, Rowbotham RA, Tatlow JC. Chloropolyfluoro-derivatives of ethyl methyl ether. Journal of Fluorine Chemistry (1997) 82, 9-12.

9. World Health Organization. Selected Chloroalkyl Ethers, Environmental Health. Criteria No 201. WHO Press, Geneva, Switzerland (1998).

10. McClay K, Schaefer CE, Vainberg S, Steffan RJ. Biodegradation of bis (2-chloroethyl) ether by Xanthobacter sp. strain ENV481. Applied and Environmental Microbiology (2007) 73, 6870-6875.

11. Tsai WT. Environmental risk assessment of hydrofluoroethers (HFEs). J. Hazard. Mater. (2005) 119, 69–78.

12. Sekiya A, Misaki S. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs. J. Fluor. Chem. (2000) 101, 215–221.

13. Singh HJ, Mishra BK. Ab initio studies on the reactivity of the CF₃OCH₂O radical: Thermal decomposition vs. reaction with O₂. J. Mol. Model. (2010) 16, 1473–1480.

14. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S. Do Hydrofluorocarbons Destroy Stratospheric Ozone? Science (1994) 263, 71–75.

15. World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion (1994). Report No. 37, WMO: Geneva (1995).

16. McCulloch A. CFC and Halon replacements in the environment. J. Fluor. Chem. (1999) 100, 163-173.

17. Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PW. Atmospheric chemistry of HFE-7100 ($C_4F_9OCH_3$): reaction with OH radicals, UV spectra and kinetic data for $C_4F_9OCH_2$ • and $C_4F_9OCH_2O_2$ • radicals, and the atmospheric fate of $C_4F_9OCH_2O$ • radicals. J. Phys. Chem. A (1997) 101, 8264–8274.

18. Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. (2000) 34, 2063-2101.

19. Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics. John Wiley & Sons, U.S.A (1998).

20. Burkholder JB, Cox RA, Ravishankara, AR. Atmospheric Degradation of Ozone Depleting Substances, Their Substitutes, and Related Species. Chem. Rev. (2015) 115, 3704-3759.

21. Zierkiewicz W, Michalska D, Zeegers-Huyskens T. Theoretical investigation of the conformation, acidity, basicity and hydrogen bonding ability of halogenated ethers. Phys. Chem. Chem. Phys. (2010) 12, 13681–13691.

22. Nishida S, Morita Y, Ueda A, Kobayashi T, Fukui K, Ogasawara K, Sato K, Takui T, Nakasuji K. Curve-Structured Phenalenyl Chemistry: Synthesis, Electronic Structure, and Bowl-Inversion Barrier of a Phenalenyl-Fused Corannulene Anion. J. Am. Chem. Soc. (2008) 130, 14954–14955.

23. Zhang T, Wu S, Cao Y, Fu Y, Guo Y, Zhang L, Li L, Zhou H, Liu X, Li C and Tang X. Rapid Access to 10- (Cyclohexylimino)-7, 9-diazaspiro [4.5] decane-6, 8-dione Derivatives for HIV-1 Reverse Transcriptase Inhibition via Ruthenium-Catalyzed Ring-Closing Metathesis. Synthesis (2013) 45, 2273–2279.

24. Guijarro A, Mancheno B, Ortiz J and Yus M. Lithiomethyl ethyl ethyl ethyl ethyl ethyl ethyl ethyl ethyl a DTBB-catalysed lithiation. Tetrahedron (1996) 52, 1643–165.

25. Canada Environmental Protection Act. Priority substances list assessment report: bis(2-chloroethyl) ether. Publication no. 40-215/9E. Environment Canada, Ottawa, Ontario, Canada (1993).

26. Wuts P GM, Greene TW. Protective groups in organic synthesis. Wiley (2006).

27. Dalmasso PR, Taccone RA, Nieto JD, Teruel MA, & Lane SI. Rate constants for the reactions of chlorine atoms with hydrochloroethers at 298 K and atmospheric pressure. International journal of chemical kinetics (2005) 37(7), 420-426.

28. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane, SI. Gas-phase reactions of Cl atoms with hydrochloroethers: relative rate constants and their correlation with substituents' electronegativities. Journal of Physical Organic Chemistry (2008) 21, 393-396.

29. Mishra BK, Chakrabartty AK, Bhattacharjee D, Deka RC. Theoretical study on the kinetics and branching ratios of the gas phase reactions of 1, 1- dichlorodimethylether (DCDME) with Cl atom. Struct Chem (2013) 24, 1621-1626.

30. Mishra BK, Chakrabartty AK, & Deka RC. A computational perspective on the kinetics and thermochemistry of the gas phase reactions of 1, 1-dichlorodimethylether (DCDME) with OH radical at 298 K. Molecular Physics (2014) 112(11), 1512-1519.

31. Gour NK, Begum SS, & Deka RC. Computational study on night-time reaction of 1, 1-Dichlorodimethylether (DCDME) CH3OCHCl2 with NO3 radical and the fortuity of alkoxy radical CH3OC (O) Cl2. Chem. Phys. Lett. (2018) 701, 157-164.

32. Paul, S., Gour, N. K., & Deka, R. C. (2019). Mechanistic investigation of the atmospheric oxidation of bis (2-chloroethyl) ether (ClCH₂CH₂OCH₂CH₂Cl) by OH and NO3 radicals and Cl atoms: a DFT approach. Journal of molecular modeling (2019) 25(2), 43.

33. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane SI. Hydrochloroetheres in the troposphere: kinetics with Cl atoms, lifetimes and atmospheric acceptability indices. Atmospheric Environment (2012) 47, 104-110.

34. Ye JT, Bai FY, & Pan, XM. Computational study of H-abstraction reactions from CH_3OCH_2 $CH_2Cl/CH_3CH_2OCH_2CH_2Cl$ by Cl atom and OH radical and fate of alkoxy radicals. Environmental Science and Pollution Research (2016) 23(23), 23467-23484.

35. Gour NK, Sarma PJ, Mishra BK, & Deka RC. Quantum calculation on night-time degradation of 2-chloroethyl ethyl ether (CH₃CH₂OCH₂CH₂Cl) initiated by NO₃ radical. Journal of Theoretical and Computational Chemistry. (2017) 16(08), 1750068.

36. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Cobos CJ, & Lane SI. Reactivity of hydrohaloethers with OH radicals and chlorine atoms: Correlation with molecular properties. Atmospheric Environment (2014) 91, 104-109.

37. Paul S, Gour NK, & Deka RC. Oxidation pathways, kinetics and branching ratios of chloromethyl ethyl ether (CMEE) initiated by OH radicals and the fate of its product radical: an insight from a computational study. Environmental Science: Processes & Impacts (2019) 21(9), 1519-1531.

38. McLoughlin P, Kane R, Shanahan I. A relative rate study of the reaction of chlorine atoms (Cl) and hydroxyl radicals (OH) with a series of ethers. International Journal of Chemical Kinetics (1993) 25, 137-149.

39. Gour NK, Sarma PJ, Mishra BK, & Deka RC. Night-time reaction of 2-chloroethyl methyl ether (CH₃OCH₂CH₂Cl) initiated by NO₃ radical: A theoretical insight. Computational and Theoretical Chemistry (2017) 1110, 1-7.

40. Jenkin ME, Hayman GD, Wallington TJ, Hurley MD, Ball JC, Nielsen OJ, Ellermann T. Kinetic and mechanistic study of the self-reaction of CH3OCH2O2 radicals at room temperature. J. Phys. Chem. (1993) 97, 11712-11723.

41. Papadimitriou VC, Kambanis KG, Lazarou YG, & Papagiannakopoulos P. Kinetic study for the reactions of several hydrofluoroethers with chlorine atoms. J. Phys. Chem. A (2004) 108(14), 2666-2674.

42. Hein R, Crutzen PJ, Heimann M. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles (1997) 11, 43-76.

43. Platt U, Janssen C. Observation and role of the free radicals NO₃, ClO, BrO and IO in the troposphere. Faraday Discussions (1995) 100, 175-198.

44. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature (1998) 394, 353-356.

45. Logan JA. Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence. J. Geophys. Res. (1985) 90, 10463-10482.

46. Atkinson R. Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes. J. Phys. Chem. Ref. Data (1997) 26, 215–290.

47. Blowers P, Tetrault KF, and Trujillo-Morehead Y. Global Warming Potential Predictions for Hydrofluoroethers with two carbon atoms. Theo. Chem. Accounts. (2008) 119, 4, 369-381.

48. Hodnebrog Ø, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen, CJ, Shine KP, Wallington TJ. Global Warming Potentials and Radiative Efficiencies of Halocarbons and Related Compounds: A Comprehensive Review. Rev. Geophys. (2013) 51, 300-378.