
Recent Trends in Physics: Quantum Science & Technology 

 1  
 

CHAPTER 1: Quantum Mechanics at a Glance for Beginners 

1. Dr. Arvind Kumar Sharma, Professor  (Department of Physics), Swami Vivekanand Subharti University, Meerut- 250005 

Email: arvindsharmaphy@gmail.com 

2. Dr. Mohd. Israil, Associate Professor  (Department of Physics), Swami Vivekanand Subharti University, Meerut- 250005 

Email: israilsaifi@gmail.com 

3. Dr. Nirdesh Kumar Singh, Associate Professor  (Department of Physics), Swami Vivekanand Subharti University, Meerut- 

250005 

Email: k_nirdeshsingh@rediffmail.com 

1.0 Introduction- As we know that Mechanics is a branch of physics which deals the 

motion of objects. It is mainly divided into four types on the basis of size and  speed of  objects 

given in (Table- 1): 
Table 1- 

S.No. Mechanics Size of object  Speed of object v Examples 

1 Classical or Newtonian 

Mechanics 

Macroscopic (i.e. 

size greater than 

that of atoms)  

v
≪ Speed of light c  
(≈ 3 × 108  m s⁄ ) 

 

Motion of 

bicycle, scooter, 

car, train. 

Aeroplane etc. 

2 Quantum Mechanics Microscopic (i.e. 

size comparable to 

atoms) 

v ≪ c 

 

Motion of atom, 

molecule, 

electron, proton, 

neutron etc. 

3 Relativistic Mechanics Macroscopic v ≈ c Motion of 

photon,  meson 

etc. 

4 Relativistic Quantum 

Mechanics or Quantum 

Field Theory 

Microscopic v ≈ c Motion of EM 

radiations 

 

(Courtesy to Google website) 
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The word “quantum” comes from the Latin word which means “how much”. Quantum 

mechanics is the study of how atomic particles exist and interact with each other. Quantum 

models always involve something coming in discrete amounts e.g. energy 𝐸 = 𝑛 ℎ𝜈, where 𝑛 =

0, 1, 2,3, ⋯ where  𝒉 (= 𝟔. 𝟔𝟕 × 𝟏𝟎−𝟑𝟒𝑱 𝒔 𝒐𝒓 𝟔. 𝟔𝟕 × 𝟏𝟎−𝟑𝟒 1.6 × 𝟏𝟎−𝟏𝟗 =⁄ 𝟒. 𝟏𝟑𝟓𝟔𝟔𝟕𝟕 ×

𝟏𝟎−𝟏𝟓 𝐞𝐕 ⋅ 𝐬 )   is a fundamental physical constant occurring in quantum mechanics called 

Planck constant. The reduced Planck constant or Dirac constant is denoted by ħ = h/2π. Niels 

Bohr and Max Planck are the founding fathers of Quantum Physics; each received a Nobel 

Prize in Physics for their work on quanta. 

A great revolution occurs in Physics during 1900- 1930.Quantum mechanics is the study 

of matter and its interactions with energy on the scale of atomic and subatomic particles. This era 

was called Quantum Mechanics (QM). QM is applied to explain the behavior of microscopic 

particles (e.g. electrons, protons, neutrons, hydrogen atom, potential wells, potential barriers, 

tunneling etc.). The idea of quantization was first introduced by Max Planck in 1900 to explain 

the whole spectrum of black- body. Most of the inventions are made by several Physicists 

including Albert Einstein (Photo electric Effect), Arthur Holly Compton (Compton Effect), 

Werner Heisenberg (Heisenberg’s uncertainty relations), Louis Victor de Broglie (Matter 

Waves or de Broglie waves), Erwin Schrödinger (Schrödinger wave equations), Max Born 

(Wave functions) and Paul Adrien Maurice Dirac (Dirac equation) etc. Quantum theory converts 

into classical physics when size of the particle becomes macroscopic. In quantum mechanics, 

particles have wavelike properties, and a particular wave equation, the Schrödinger equation, 

governs how these waves behave in different situations. 
 

 
The first law of quantum physics states that the boundary between matter and energy is 

not always in a state of stability or finite, i.e. everything is made of matter and energy. The 

relationship between matter and energy is exhibited at different atomically levels. There are 

basically four important principles of quantum mechanics, proven experimentally and which 

apply to the behavior of nuclear particles at small distances: the quanta of electromagnetic 

energy, the uncertainty principle, the Pauli Exclusion Principle, and the wave theory of particles 

of matter. 

Applications of quantum mechanics are based upon quantum effects, like integrated 

circuits and lasers. Quantum mechanics is also critically important for understanding how 

individual atoms are joined by covalent bonds to form molecules. Quantum mechanics is 

practical used in Lasers, Solar cells, Electron microscopes, Atomic clocks used for GPS, 

MRI scanners for medical imaging. It is typically applied to microscopic systems, e.g. 

molecules, atoms and sub-atomic particles. The waves could be measured in particle-like small 

packets of energy called quanta led to the branch of physics that deals with atomic and 

subatomic systems which we today call Quantum Mechanics. 

 

Thus, Quantum mechanics is the branch of physics that deals with the behavior of matter 

and energy on the scale of atoms and subatomic particles or waves. The term "quantum 

mechanics" was first coined by Max Born in 1924.In this chapter we will discuss Particle 
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Properties of Waves: Spectrum of Black Body radiation, Compton Effect, Photoelectric effect, 

and their explanations based on Max Planck’s Quantum hypothesis. Wave Properties of 

Particles: Louis de Broglie’s hypothesis of matter waves and their experimental verification by 

Davisson- Germer’s experiment and Thomson’s experiment. 

 In the honour of Max Planck the whole world celebrate World Quantum Day on 14 

April, i.e. a reference to 4.14 due to 𝒉 (𝟒. 𝟏𝟑𝟓𝟔𝟔𝟕𝟕 × 𝟏𝟎−𝟏𝟓 𝐞𝐕 ⋅ 𝐬 ).World Quantum Day is an 

annual celebration for promoting public awareness and understanding of quantum science and technology 

around the world. Quantum Mechanics or Relativity (or both) is said to be Modern Physics. 

Quantum entanglement (i.e. Entangle Photons) is the phenomenon that occurs when a group 

of particles are generated, interact, or share spatial proximity in a way such that the quantum 

state of each particle of the group cannot be described independently of the state of the others, 

including when the particles are separated by a large distance. Quantum entanglement is when a 

system is in a "superposition" of more than one state.  Entanglement is a primary feature of 

quantum mechanics which is not present in classical mechanics. Entanglement is a special kind 

of superposition that involves two separated locations in space.   

 

 

(Courtesy to Google website) 

Measurements of physical properties such as position, momentum, spin, 

and polarization performed on entangled particles can, in some cases, be found to be 

perfectly correlated. For example, if a pair of entangled particles is generated such that their total 

https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Quantum_state
https://en.wikipedia.org/wiki/Quantum_state
https://en.wikipedia.org/wiki/Measurement#Quantum_mechanics
https://en.wikipedia.org/wiki/Physical_properties
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Correlated
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spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the 

spin of the other particle, measured on the same axis, is found to be anticlockwise.  

Examples- 

 1.  If someone toss (or flip) a coin but doesn't look at the result. The fellow knows it is either 

heads or tails. The fellow just doesn’t know which it is. Superposition means that it is not just 

unknown to the fellow, its state of heads or tails does not even exist until you look at it (make a 

measurement). Similarly, entanglement (superposition of two separate places) of a group of 

photos, it could be a photon encountering on a 50-50 splitter. After the splitter, the photon could 

be in path A, or it could be in path B. In this case, the superposition is between  

• a photon in path A and no photon in path B   

• no photon in path A and a photon in path B. 

 

As a normal human being, the fellow thinks that it is in just one path or the other path, and it is 

just that one does not know about. But in fact, it is in both, until you actually measure it. Again, 

that normal human being wants to say that if I measured it and found it in path A. 

 
S.N. 

EM Wave 







=

E

ch
  Matter Wave 








=

p

h
  

1 An oscillating charged particle gives rise 

to the EM wave. 

A matter wave is associated with a moving 

microscopic particle. 

2 The speed of an EM wave is constant in a 

medium. Its speed is  ( )smc /103 8=  

in vacuum. 

Its speed is always greater than the speed of 

light. 

3 Its wave length is inversely proportional 

to the energy of photon, i.e. 
E

1
 . 

Its wave length is inversely proportional to the 

momentum of microscopic particle, i.e. 
p

1
 . 

4  An EM wave can be radiated into space 

by an oscillating charged particle. 

A Matter wave cannot be emitted by a moving 

microscopic particle. 

5 In an EM wave its electric and magnetic 

fields oscillate ⊥  to the direction of 

motion. 

A de- Broglie wave is associated with neutral and 

charged microscopic particles. A charged moving 

microscopic particle has electric and magnetic 

fields.  

 

 

 



Recent Trends in Physics: Quantum Science & Technology 

 5  
 

1.1 de-Broglie concept of matter waves- 
 

 

Prince Louis-Victor de Broglie [15thAugust, 1892 – 19th March, 1987]-In 1924, 

French physicist first time introduced the idea of matter wave or de Broglie 

wave. In 1929, de Broglie was awarded Nobel Prize for this discovery ‘the wave 

nature of electron’.(Courtesy to Google website) 

 

Up to 1923, a matter was considered to be particle in nature. de Broglie extended the idea 

of dual nature of light to all microscopic particles (e.g. electrons, protons, neutrons, alpha 

particles etc.). According to quantum hypothesis, a light consists of packets of energy called 

photons. de Broglie deduced the connection between particle nature and wave nature from the 

Planck’s energy formula and Einstein’s energy- mass relation of electromagnetic (EM) wave.  

( )101.1.......



c

hhE ==  

where h is Planck’s constant,  is frequency of EM wave and   is wavelength of EM wave 

( )102.1.......2cmE =  

2cm
ch
=


   or, 

( )
( )103.1.......

cv =
==

m

h

cm

h


⇒

 

E and P are the characteristics of particle whereas   and   are the characteristics of wave. Thus, 

particle and wave natures are related to each other by the Planck’s constant h which gives dual 

nature of EM wave (or light). 

Louis de Broglie proposed a hypothesis which is known as de Broglie hypothesis i.e. a 

moving particle is associated with a wave which is called de Broglie or matter wave. A 

moving macroscopic particle has two different velocities namely one corresponds to the 

mechanical motion of the particle denoted v  by and other corresponds to matter wave denoted 

by u .From eqs. (1.201) and (1.202) we put the value of 







=

h

cm 2

  and 







=

vm

h


from the formula of matter wave in equation. 

( ) c.vsincev204.1
vv

22

== u
c

m

h

h

cm
u  

 

 

p

h
=
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Properties of matter waves- 

1. These waves are generated only when microscopic particles are in motion. If speed v  of the 

particle is zero (i.e. 0v = ) then the wavelength of matter wave 
( )

=








=
=

0vm

h
  on the 

other hand if  =v  then
( )

0
v

=
=

=
m

h
 .  

2. These waves are independent of nature of microscopic particles, i.e. either the particles are 

charged or neutral.  

3. Speed of matter waves is always greater than the speed of light ( )smc /103 8= , i.e. cpv  .     

Note- A matter wave cannot be split as electromagnetic waves do this. 

The experimental proof of de Broglie wave for slow electron was given by Davisson- 

Germer and for fast moving electron was given by G.P. Thomson. In 1937, C.J. Davisson 

and G.P. Thomson shared Nobel Prize for experimental confirmation of matter waves. 

Application of de Broglie wave- Bohr’s condition for the 

quantization of angular momentum  

       Let an electron of mass em  is revolving with velocity 
→

nv in an nth circular orbit of radius nr  

around the nucleus of an atom (e.g. hydrogen atom). According to de Broglie hypothesis, 

wavelength of the de Broglie wave is given by: 

( )ii
m

h

e

n .......
v n

=  

Here, the motion of the electron can be thought as the wave of n  traveling along the 

circumference of the orbit. Thus, for a circular path its circumference is integral multiple of the 

wavelength, i.e.  

( ) 3,2,1.......2 == nwhereiiinr nn   

nv
2

e

n
m

h
nr =

⇒                                                                                                   
 n

h
nrmJ ne ===

2
vn  
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 (Courtesy to Google website)  It represents Bohr’s condition for the 

quantization of angular momentum            

Example 1.101- Why do not we see the wave properties of a macroscopic object (e.g. 

baseball, cat, man, elephant, earth etc.)? 

Solution 1.101- An object will appear wave like if it exhibits interference or diffraction pattern 

when its size ‘a’ is of the order of the wavelength , i.e. a . But in case of macroscopic 

objects the essential condition of diffraction is not satisfied. 

Example 1.102-Does, de Broglie hypothesis have any relevance to macroscopic matter? 

Solution 1.102-de Broglie relation can be applied to both microscopic and macroscopic. For 

example A car (i.e. a macroscopic object) of mass 100 Kg is moving at a speed of 100 m/s then it 

will have de- Broglie Wavelength  λ =  
6.63×10−34

100 ×100
= 6.63 × 10−30 𝑚 

The car consists of very small wavelength which corresponds to high frequencies. Waves below 

certain wavelength or beyond certain frequencies undergo particle-antiparticle annihilation to 

create mass. So, wave nature or de Broglie wavelength is not observable in the macroscopic 

matter. 

1.2 Phase velocity (or wave velocity)
→

pv  -When a single wave of definite wavelength   

travels in a medium, then its velocity of propagation in the medium is called the phase velocity 

or the velocity with which a point of constant phase moves is called phase velocity. 

Propagation of a wave along positive x- axis is given as:  

( )011.2........., 0









−→
→→

=






 rkt

etr


  

where 0  is amplitude of the wave, 
→

k  is wave vector, 
→

r  is position vector and   is angular 

frequency of the wave.  

The phase of the wave is 
→→

−= rkt  

When the phase is constant at a point then ( )constant0 =−
→→

rkt  
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Or, ( )021.2.........0


−=
→

t
k

r  

Thus, phase velocity 
→

pv  is given by: 

( )031.2.........ˆ
td

r
vp k

k

d 
==

→
→

⇒
 

When wavelength   of a wave is greater (or smaller) than the separation ''a  between two 

consecutive particles of the medium in which it propagates, then the medium is known as non- 

dispersive (or dispersive) medium, i.e. ( )medium dispersive -nonFora

( )medium dispersive Fora . In a non- dispersive medium pv  is constant, i.e. waves of 

different frequencies and wavelengths travels with same velocity. Examples- (i) free space is 

non- dispersive medium for electromagnetic waves. (ii) Air is non- dispersive medium for sound 

waves. (iii) A continuous string is non- dispersive medium for transverse waves produced in it. 

In a non- dispersive medium pv  is not constant.  

Group velocity (or particle velocity
→

v )
→

gv  -From the relation between particle 

velocity 
→

v  and de Broglie wave velocity 







=

→→

pvu  we have:  

( ) ( )always.c vSincev
v

v p

2

p == c
c

u  

It is clear from above expression that a material particle a not be equivalent to a single wave 

because cpv .  This difficulty was resolved by Erwin Schrödinger. He assumed that that 

moving material particle is not equivalent to a single wave but equivalent to a wave packet. A 

wave packet consists of a group of waves. Each wave has slightly different velocity and 

wavelength. The amplitude of each wave is so chosen that they interfere constructively over a 

small region of space where the particle can be localized and outside of this region they interfere 

destructively so the amplitude of the resultant waves falls rapidly to zero.   

            A wave packet is a small region of constructive interference between two (or more) 

waves of same amplitude but slightly different angular frequencies which is formed by the 

superposition the waves. Let these waves having the amplitude ''a  but slightly different angular 

frequencies  and   ; and slightly different wave numbers k  and kk   are moving 

along x- axis. Let the two waves are mathematically represented by: 

( ) ( )041.2.........sin1 xktay −=   

V𝑝 =  
𝜔

𝑘
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( ) ( )  ( )051.2.........sin1 xkktay −=   

Applying the principle of superposition we have: 

( ) ( ) ( ) xkktaxktayyy −+−=+=  sinsin21  

( ) ( ) ( )  ( ) ( ) ( ) 







 −−−







 −+−
=

2
cos

2
sin2

xkktxktxkktxkt
a


 








 
−

















 
+−







 
+= x

k
tx

k
kta

22
cos

22
sin2


  

Since d  and kd  are very small quantities, then 


 


+
2

and k
k

k 


+
2

. Thus, above 

equation becomes as: 

    ( )061.2.........sin
22

cossin2 xktAx
k

txktay −=






 
−


− 


  

where 






 
−


= x

k
taA

22
cos2


is the amplitude of the wave packet. It changes both in space 

and time by a very slow-moving envelope of frequency 
2


 and wave number

2

k
. It forms a 

standing wave which can be imagined by combining two identical waves moving in opposite 

directions. This represents beats. The phase of the wave packet is  xkt −  

 
(Courtesy to Google website) 
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The observed velocity of the wave group or wave packet is called group velocity gv . It is 

defined as:  

( )packet.  wavea form  to waves two theofion superpositFor 
2

2
vg

kk 


=




=


 

(i) Relation between phase and group velocities- From the formula of phase velocity, we have 

the angular frequency kpv= . 

kd

d
k

kd

kd

kd

d p

p

p

g

v
v

v
v +===


 














d

d

d

d








 −
+=









+=

2

p

p

p

p
2

v2
v

2

v2
v )06.1.......( C

⇒

 

For normal dispersive medium 
d

d pv
is positive. This shows that pg vv   . 

For anomalous dispersive medium 
d

d pv
is negative. This shows that pg vv   . 

For non- dispersive medium 
d

d pv
is zero. This shows that pg vv =  . 

(ii) Relation between particle v'' , phase 'v' p  and group 'v' g   velocities- According to de Broglie 

hypothesis, a moving microscopic particle consists of a group of waves. The total energy '' E  and 

momentum '' p   of the particle are given  

Case (i) relativistic mechanics: Total energy '' E  is given by  

2cmE = or, ( )207.1.........

c

v
1

c

v
1

2

2

02

2

0 c

h

m
c

m
h









−

=→









−

=   

Angular frequency   is given as: 

( )081.2.........

c

v
1

c

v
1

22
2

2

02

2

0









−

=









−

==



cm
c

h

m
 ,             where 

2

h
=  




d

d p

pg

v
vv −=  
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( )091.2.........

c

v
1

vv
v

c

v
1

v2

2

1

23
2

0

23
2
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0





















−

=





















−








 −








−
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

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d
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( )101.2.........

c

v
1

v
v

2

0









−

==
m

mp  

Wave number k  is given as: 

( )111.2.........

c

v
1

v22

2

0









−

===



m

h

p
k






 




















−+








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
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
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


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
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





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

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
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
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+












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
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
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2

0
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2

2
0

c

v
1

v

c

v
1

v

c

v
1

v
v

c

v
1

v2

2

1
v

c

m
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


 

( )121.2.........v

c

v
1

23
2

0 d
m





















−

=



 

On dividing eq. (1.211) from eq. (1.212), we have phase velocity 

)06.1.......( D  

 

( )
g

2

p
vv2

2
v

=
====

m

h

h

cm

k








⇒                                              

 

Case (ii) In Non- relativistic mechanics: Total energy '' E  is given by 

( )131.2.........
2

v
v

2

1
2

2

h

m
mhE =→==   

vvg ==
kd

d
 

2

gp vv c=  
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From de Broglie concept, we have: 

( )
( )141.2.........

vv g=
==

m

h

p

h
  

The phase velocity is given by: 

gm

h

h

m

k v2

v

2

2
v

2

g

p ==== 







⇒  

Ex. 1.201- Calculate the phase velocity given by 𝑬𝒙 =  𝑬𝟎 𝐜𝐨𝐬(𝝎𝒕 − 𝒌𝒛) 𝑨/𝒎 with a 

frequency of 5 GHz and a wavelength in the material medium of 3.0 cm is  

Sol. 1.201- Given: 𝑣 = 5 𝐺𝐻𝑧 =  5 𝑋109𝐻𝑧, 𝜆 = 3.0 𝑐𝑚 & 𝑐 =  3 𝑋108 𝑚/𝑠 

𝐯𝒑 =  
𝝎 (= 𝟐𝝅𝒗)

𝒌 (=
𝟐𝝅
𝜆

)
= 𝒗𝜆 =  5𝑋109 𝑋 .03 = 𝟏. 𝟓 𝑿𝟏𝟎𝟖𝒎/𝒔 = 𝒄/𝟐 

Ex. 1.202- Estimate the phase velocity of a wave having a group velocity of 6 x 106 is  

Sol. 1.202- Given: v𝑔 = 6𝑿 𝟏𝟎𝟔 𝑚/𝑠  

v𝑝v𝑔 =  𝑐2 𝑜𝑟 v𝑝 =  
𝑐2

v𝑔
=

(3𝑋 108)2

6𝑋 106
=  

3𝑋 1010

2
= 1.5 𝑋 1010 = 𝟏𝟓𝟎 𝑿 𝟏𝟎𝟖 𝒎/𝒔 

Q.1.203 1 MHz plane wave travelling in a dispersive medium has a phase velocity 𝟑 ×

𝟏𝟎𝟖𝒎/𝒔. The phase velocity as a function of wavelength is given by𝐯𝒑 = 𝑲 √𝝀, where K is a 

constant. Calculate the group velocity. 

Sol. 1.203 -Given: f = 1 MHz, v𝑝 =  3 × 108 𝑚/𝑠&v𝑝 = 𝐾 √𝜆 

v𝑔 =  v𝑝 − 𝜆
𝑑v𝑝

𝑑𝜆
=  𝐾 √𝜆 −  𝜆 

𝑑𝐾 √𝜆

𝑑𝜆
 =  𝐾 √𝜆 −  𝜆𝐾

1

2

1

√𝜆
=  

𝐾 √𝜆

2
 

     =  
v𝑝

2
=  

3 × 108

2
=  𝟏. 𝟓 × 𝟏𝟎𝟖 𝒎/𝒔 

 

 

2

v
vp

p
=  
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1.3 Heisenberg’s uncertainty principle (or the principle of 

indeterminacy) –  

 

Werner Karl Heisenberg [5th December, 1901 – 1st February, 1976]- Werner 

Karl Heisenberg was a German theoretical physicist and philosopher 

who discovered (1925) a way to formulate quantum mechanics in terms of 

matrices. In 1927 he published his uncertainty principle. He got Nobel Prize in 

Physics 1932 for this work. (Curtsey of Google) 
 

in case of microscopic particles it is impossible to determine exactly the position 






→
r and momentum 








→

p of them simultaneously. Heisenberg's approach was to quantum mechanics as being matrix 

algebra. Similarly, some others canonical variables (e.g. energy ( )E  and time ( )t ; angular momentum








→
J and angular displacement ( )  ) cannot be determined simultaneously. Heisenberg’s uncertainty 

relations are: 
2


 rp , 

2


 tEk  & 

2


 J  where ∆ denotes uncertainty  

There is an interesting story of Heisenberg, when he was driving a vehicle very fast and suddenly the 

beaked his at red light, he is stopped by a policeman then  his answer is quoted in fellow as: 

(Curtsey of Google) 

Applications of Heisenberg’s uncertainty principle- 

1. Electrons cannot exists inside a nucleus 

2. Existence of protons and neutrons inside the nucleus of an atom 

3. Radius of Bohr’s first orbit 

4. Binding energy of an electron in an atom 

5. Zero point energy of a harmonic oscillator  

6. Zero point energy of a particle in one dimensional box 

7. Finite value for the natural width of a spectral line  

https://www.britannica.com/science/uncertainty-principle
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1.4 Wave function and its Physical interpretation- 

 

In a water wave, the quantity varies periodically is height of the water surface (or level). In a 

sound, wave, the quantity varies periodically is pressure in the medium. Similarly, a quantity which 

varies in a matter wave is called wave function. It is denoted by Greek letter phi '' . The value of the 

wave function associated with a moving microscopic particle in particular position ( )zyx ,,  and time '' t

is concerned to the finding the probability there. Thus, displacement of a de Broglie wave is a wave 

function of space and time, i.e.  ( )tzyx ,,, . In general, a wave function ( )tzyx ,,,  is a complex 

quantity (real and imaginary parts). Let   is represented as:  

𝜓 (𝑟, 𝑡
→

)   =  𝐴  +  𝑖𝐵  =   𝜓0𝑒
𝑖(𝑘

→
⋅𝑟
→

 − 𝜔𝑡)
    . . . . . (1.401) 

where, A and B are real functions;  0  is amplitude of the wave; 
→

k  is wave vector; ( )kzjyixr ˆˆˆ ++=
→

 

is position vector. The complex conjugate of    is given as: 

( )021.4......., 0









−−→



→→

=−=






 trki

eBiAtr


  

( )( ) ( )2

0

2222,,  =+=+−+=−+=

















→


→

BABBAiBAiABiABiAtrtr  

It implies that probability is always real and positive quantity.  

       It is impossible to specify the position of a microscopic particle but it is possible to assign 

probabilities for observing it at any given position.  The quantity ( ) =
2

, the square of the 

absolute value of , shows the intensity of matter wave. Probability density represents probability of 

finding the particle in a given unit volume at a given instant of time. Wave function   itself is not a 

measurable quantity but its probability density 
2

 is measurable. Note-The displacement of any matter 

wave may be positive, negative or zero at any time but its probability can never negative.  

 

Max Born (11 December 1882 – 5 January 1970) was a German physicist and 
mathematician who developed quantum mechanics. He won the 1954 Nobel 
Prize in Physics for his "fundamental research in quantum mechanics, especially 
in the statistical interpretation of the wave function". The term "quantum 
mechanics" is due to Born. He also made contributions to solid-state 
physics and optics and supervised the work of a number of notable physicists in 
the 1920s and 1930s. (Curtsey of Google) 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Solid-state_physics
https://en.wikipedia.org/wiki/Solid-state_physics
https://en.wikipedia.org/wiki/Optics
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The complex nature of the wave function is no concern to us. Here, we are interested only in a single 

dimension (say x- axis) along the observing direction and for a given time.  

Max Born interpretation of wave function -The probability that a particle will be found in 

the infinitesimal interval dx  about the point x , denoted by ( )dxxp  is  

( ) ( ) ( ) ( )031.4......,, dxtxtxdxxP  =  

where ( )tx,  is complex conjugate of ( )tx, . 

The probability that a particle be in a particular space and time must lie between 0 (i.e. the 

particle is not there) and 1 (i.e. the particle is there). Let us consider an intermediate probability 

is 0.3, i.e. there is 30% chance of finding the particle in the given space and time. The probability 

that the particle will be found in a certain region ( )21 xx −  is the integral of the probability 

density over the region is given by: 

 

 

 

For a microscopic object, if the probability of finding the object over all space is finite then it is 

somewhere, i.e. 

 1
2222

1111

,,

,,

2
=

=

−=

zyx

zyx

dx ⇒ Normalization condition of a wave function 

Besides being nonmalleable of the wave function , it must be single valued, since the 

probability density has only one particular value at a certain place and time and continuous. 

Every wave function can be normalized by multiplying it by a proper constant.  

=
=

−=

0
2222

1111

,,

,,

2
Kdx

zyx

zyx

   is not normalized. It can be normalized if    is divided by the 

square root of the constant K, i.e. K . 

 function.  wavefor thecondition ity Orthogonal0
2222

1111

,,

,,

2
=

=

−=

zyx

zyx

dx  

This shows that the particle does not exist there. 

=
2

1

21

2

,

x

x

xx dxP   
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• Characteristics of a wave function-A wave function to be acceptable over a specified 

interval, it must satisfy the following conditions: 

(1)   Must be continuous and single valued everywhere. 

(2) Its partial derivatives i.e. 
z

and
yx 









 
,  must be continuous and single valued 

everywhere. 

(3)   Must be nonmalleable i.e. it must has a finite value 1. 

(4)   Must be a solution of Schrödinger’s wave equation. 

Physical significance of a wave function 






 →

tr, - A wave function explains behaviors of the 

particle at a given position 𝑟and a given timet. The magnitude of the wave function is large in the 

region where the probability of finding the particle is high and it’s vice versa is also true. Thus, a 

wave function measures the probability of the particle around a particular position. 

Applications of wave functions- 

(i) To determine probability of finding a particle in a given space.  

(ii) To determine average or expectation value of a physical observable quantity f is given as: 

< 𝑓 > =  
∫ 

∗
(r,t)𝑓𝑜𝑝 (r,t) dτ

∞
−∞

∫ 
∗
(r,t) (r,t) dτ

∞
−∞

       ⋯ ⋯ (1.404 𝑖𝑖)                        where dτ = dx dydz 

In case of normalized wave function∫  ∗(r, t) (r, t) dτ
∞

−∞
= 1  the denominator of the above 

expression becomes unity, then 

 

 

 

Examples:  (i) Expectation value of position vector 𝒓: 

< 𝑟 > =  ∫  ∗(r, t) r  (r, t) dτ
∞

−∞

= =  ∫  ∗(r, t) (x𝑖̂ + y𝑗̂ + z𝑘̂)   (r, t) dτ
∞

−∞

 

(ii) Expectation value of momentum or velocity  𝒑 or v:  

< 𝑝 > =  ∫  ∗(r, t)𝒑𝑜𝑝 (r, t)dτ = ∫  ∗(r, t)(−𝑖ℏ∇) (r, t)dτ
∞

−∞

∞

−∞

 

< 𝑓 > =  ∫  ∗(r, t)  𝑓𝑜𝑝 (r, t) dτ
∞

−∞
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            =  −𝑖ℏ ∫  ∗(r, t) (
𝜕

𝜕𝑥
𝑖̂ + 

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) (r, t) dτ

∞

−∞

 

(iii) Expectation value of total energy E: 

< 𝐸 > =  ∫  ∗(r, t)  𝐸𝑜𝑝 (r, t) dτ = ∫  ∗(r, t) (𝑖ℏ
𝜕

𝜕𝑡
) (r, t)dτ

∞

−∞

∞

−∞

 

             =  𝑖ℏ ∫  ∗(r, t) (
𝜕

𝜕𝑡
) (r, t) dτ

∞

−∞

 

(iv) Expectation value of potential V: < 𝑉 > =  ∫  ∗(r, t) V(r)  (r, t) dτ
∞

−∞
 

1.5 Time-dependent Schrödinger wave equation- 

 

Erwin Rudolf Josef Alexander Schrödinger [12 August 1887 – 4 January 
1961, Austrian theoretical Physicist]- Schrödinger, along with Paul Dirac, won 
the Nobel Prize in Physics in 1933 for his work on quantum mechanics. He is 
most known for his "Schrödinger's cat or Quantum Cat" thought experiment. 
He is known as father of wave function and cosmologist. (Curtsey of Google) 

 

Schrödinger's cat or Quantum Cat- It is not a reality but a paradox that after 
consuming the poison by the cat there is certain probability of the live or 
alive. This concept is used in case of probability of finding a particle: across a 
barrier, outside the finitely deep potential well etc. which is impossible in 
real sense. (Curtsey of Google) 

 

According to de- Broglie concept a matter wave is associated to a moving particle. The 

wavelength of the matter wave is given as: 

𝜆 =  
ℎ

𝑝
 𝑜𝑟, 𝑝 =  

ℎ

𝜆
=

 ℎ

2𝜋

2𝜋

 𝜆
=  ℏ𝑘  ( )011.5......  

Where p  is momentum of the particle, h  is Planck’s constant, 
2

k




 
= 
 

 wave number and
2

h



 
= 
 

. 

According to Planck- Einstein energy relation total energy (E) of the particle is given by: 

𝐸 = ℎ𝑣 =  
 ℎ

2𝜋
  2𝜋𝑣 =   ℏ𝜔  ( )502.1......          where ( )2 =  is angular frequency of the wave. 

 Motion of the particle along positive x-axis is given as: 

𝛹(𝑥⃗, 𝑡) =  𝛹0𝑒𝑖(𝑘𝑥⃗⃗⃗⃗⃗⃗  .  𝑥⃗− 𝜔𝑡) ⋯ ⋯ (𝑖) 

https://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
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Putting the value of k and  from equation (1.501) and equation (1502) in equation (i), we get. 

𝛹(𝑥⃗, 𝑡) =  𝛹0𝑒
𝑖
ℏ

(𝑝𝑥⃗⃗⃗⃗⃗⃗  .  𝑥⃗− 𝐸𝑡) ( )1.503......  

where ( , )x t  is wave function which is a complex and measurable quantity taken in quantum 

mechanics, 0  is initial amplitude of the wave and i = -1 

On partially differentiating equation (1.0703) w.r.t. ‘ x ’, we get. 

( . )

0

( , )
( , )

x

i
p x Et

x xip ipx t
e x t

x


 

−
= =


 

On multiplying by ‘i’ on both sides in above equation and arrange it, we have. 

𝑖ℏ
𝜕𝛹(𝑥,𝑡)

𝜕𝑥
=  −𝑝𝑥𝛹(𝑥⃗, 𝑡) ( )504.1......

⇒
( )x op
p i

x


= −


 Operator form of momentum 

On partially differentiating equation (1.0803) w.r.t. ‘t’, we get: 

𝜕𝛹(𝑥⃗, 𝑡)

𝜕𝑡
= 𝛹0 (−

𝑖

ℏ
𝐸) 𝑒

𝑖
ℏ

(𝑝𝑥⃗⃗⃗⃗⃗⃗  .  𝑥− 𝐸𝑡)
= −

𝑖

ℏ
𝐸 𝛹(𝑥⃗, 𝑡) ⋯ ⋯ (1.505) 

On multiplying by ‘i’ on both sides in above equation and arrange it, we have: 

𝑖ℏ
𝜕𝛹(𝑥,𝑡)

𝜕𝑥
=  𝐸 𝛹(𝑥⃗, 𝑡) ( )506.1......

⇒
opE i

t


=


 

Operator form of energy 

In non-relativistic case total energy of the particle is the sum of kinetic energy (K.E.) plus potential 

energy (P.E. or U) given as: 

𝐸 = 𝐾. 𝐸. +𝑃. 𝐸. =  
𝑝2

2𝑚
+ 𝑈 (𝑥, 𝑡) ⋯ (𝑖𝑖)    where  m is the mass of the particle. 

Multiplying on both sides in above equation, we have: 

𝐸𝛹(𝑥⃗, 𝑡) =  
𝑝2

2𝑚
𝛹(𝑥⃗, 𝑡) + 𝑈 𝛹(𝑥⃗, 𝑡)      ⋯ ⋯ (1.507) 

Now, putting the value of E and p in operator form in above equation we have: 

2 2

2

( , ) ( , )
( , ) ( , )

2

x t x t
i U x t x t

t m x

 


 
= − +

 
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It is Schrödinger’s time dependent equation in one dimensional motion of the particle. It can be given in 

three-dimensional motion of the particle by replacing ˆˆ ˆi j k
x x x x

    
→ = + + 

    
 and x r→ then 

above equation becomes as: 

2
2( , )

( , ) ( , ) ( , )
2

r t
i r t U r t r t

t m


 


= −  +


It is 3-D time dependent Schrödinger Wave Equation 

Time-independent Schrödinger wave equation- 

If the potential energy is a function of position only, i.e.  ( )rU , then the time dependent SWE is 

separable. Thus, a plane monochromatic wave can be written as: 

 
( )

( ) ( ) ( )508.1......, 00 tTrReeetr
tE

irp
i

tErp
i

====






 −
















−→

→→→→

   

where, ( )









→→

=
rp

i

erR


0  and ( )
( )tE

i

etT
−

=   

Using eq. (1.508) in 3-D time dependent Schrödinger Wave Equation , we get: 

 
( ) ( )

( ) ( ) ( )tTrRrU
mt

tTrR
i 








+

−
=



 2
2

2


  

Or, ( )
( )

( ) ( ) ( ) ( ) ( )tTrRrUrRtT
mt

tT
rRi +

−
=



 2
2

2


  

On dividing in above equation by ( ) ( )tTrRtr =






→
, , we get: 

( )
( ) ( )

( )
( )

( ) ( )
( ) ( )rUrR

tTrR

tT

mt

e

tTrR

rR
i

tE
i

+
−

=



−

2
2

2






 

or, 
( )

( )
( )

( ) ( )rUrR
rRm

tT
Ei

tT
i +

−
=







 − 2
2 1

2

1 


  

 

 

 

( ) ( ) ( ) ( ) ( )rRHrRrUrR
m

rRE =+
−

= 2
2

2


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Applications of Time independent  

1. Motion of a particle in one dimensional infinitely deep potential well- 

        A particle is restricted to one dimensional motion between the barriers of length ''a . The 

height of the potential barriers goes to infinity. The one dimensional region − x can be 

divided into three parts (I, II and III) (Fig. 1.5 a). To solve this problem we use initial and 

boundary conditions. 

Initial conditions- ( ) ( )ixU .....axand0xfor =   

( ) ( )iiaxU .......x0for0 =  

Boundary conditions- ( ) ( )iiixatx .....00 ==    

( ) ( )ivaxatx == 0   

• In regions I and III the time independent SWE is given as:                     

( )
( ) ( ) ( )501.1......0

2
22

2

=−+ xE
m

xd

xd





     

                                                                Fig. 1.5 a- Motion of a free electron in infinitely deep potential well 

As ( ) →xU  at the boundaries of the potential well then ( ) 0→x . Therefore, LHS also becomes 

zero so the above equation is ignored because its both sides become zero. 

In region II the time independent SWE is given as: 

( )
( ) ( ) 00

2
22

2

=−+ xE
m

xd

xd





 

( )v
Em

kLet .......
2

2

2


=  

or, 
( )

( ) ( )502.1.......02

2

2

=+ xk
xd

xd



         

Here, it is convenient to write the solution of eq. (1.602) as a sum of sines and cosines than as a sum of 

exponential terms, i.e. 

( ) ( )vixkBxkAx ..........sincos +=  

x= 0 x= a 

sin
3𝜋

𝑎
𝑥

I 

II III 

U = 0 

∞

↑

U 

Free Electron 
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On applying boundary condition (eq. iii) in the wave function, we have: 

 ( ) 0sin0cos0 kBkA += , or  A=0  

 ( ) ( )503.1sin xkBx =   

On applying boundary condition (eq. iv) in the wave function, we have: 

( ) akBa sin=  

or, 0sin0 = BakB  Otherwise wave function will be zero. 

 

or,  ( )504.1......
a

n
k


=  , where, 03,2,1 = nbutn   

Substituting the value of k from eq. (1.504) in eq. (1.503), we have: 

( ) ( )504.1......sin x
a

n
Bx


 =  

Substituting the value of k from eq. (2.604) in eq. (v), we have: 

( )505.1.......
22 2

222

2

2

am

n

m

a

n

E







=










= ⇒ 

                            Fig.1.6 b Eigen functions & Eigen values in infinitely deep potential well 

To calculate the wave function, we must normalize the wave function, i.e.     

( ) ( ) 1
0

=


a

dxxx                                                                                                                                      

 or, 

aaa

x
a

n

n

a
x

B
dxx

a

nB
dxx

a

n
B

0

2

0

2
2

0

2 2
sin

22

2
cos1

2
sin1 








−=








−== 







( ) ( ) a
B

n
n

a
a

B

2
2sin0sin

2
0

2

22

=







−−−= 


 or,    ( )506.1......

2

a
B =  

Substituting the value of B from eq. (1.606) in eq. (1.604), we get: 

⇒ 

2

222

2 am

n
En


=

 

( ) x
a

n

a
xn


 sin

2
=  

nak sin0sin ==

( ) ( )507.1........sin
2

x
a

n

a
x


 =

𝛹3(𝑥) =  √
2

𝑎
 

  𝐸1 =  
ℎ2

8𝑚𝑎2 

 

𝐸2 = 4 𝐸1 

𝐸2 = 9 𝐸1 

𝛹2(𝑥) =  √
2

𝑎
 sin

2𝜋

𝑎
𝑥 

𝛹1(𝑥) =  √
2

𝑎
 sin

𝜋

𝑎
𝑥 
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Wave or Eigen function corresponding to nth energy level is given by:           

2. Motion of a particle in three dimensional infinitely deep 

potential wells- 

       It is the application of time independent SWE. Here, the wave function must be a function of 

three spatial coordinates, i.e. ( )zyx ,,  only. Thus, the SWE is given as: 

( ) ( ) ( ) ( ) ( )508.1.......,,,,
2

,, 2
2

zyxrUzyx
m

zyxE  +
−

=


  

       Here, we consider a particle is restricted to three dimensional motions between the barriers 

of length ''a , ''b  and ''c  along x, y and z axes, respectively or motion of a free particle 

constrained inside a box of dimensions (a, b, c). We apply the same approach to solve (determine 

wave functions and energy levels) this problem as we used one dimensional infinitely deep 

potential well. The walls of the box are closed; they are infinite potential barriers, and the wave 

functions must be zero at the walls and beyond. So, we solve the SWE inside the box (U = 0). 

The particle is free inside the box. Therefore, the x-, y- and z- dependent part of the wave 

functions must be independent of each other. The above equation becomes as: 

( ) ( ) ( )azyx
zyxm

zyxE 508.1........,,
2

,,
2

2

2

2

2

22

 











+




+



−
=


 

Its solution is given as: 

( ) ( ) ( ) ( ) ( )509.1........sinsinsin,, 321 zkykxkAzyx =  

where A is a normalization constant. The quantities ( )3,2,1=iki  are determined by applying 

boundary conditions. 

0=  at ax = , by =  and cz = , we have: 

a

n
k

1
1 = , 

b

n
k

2

2 =  and 
c

n
k

3
3 =  

where 1n , 2n  and 3n  are integers whose values varies 1,2,3 …… 

Thus, we have 

 ( ) ( )510.1..........sinsinsin,, 321 















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
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


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c
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y

b

n
x
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n
Azyx


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On partially differentiating eq. (1.509) w.r.t. x, we get: 

 

( ) ( ) ( )zkykxkkA
x

3211 sinsincos=



 

and ( ) ( ) ( ) ( ) ( ) ( )akzkykxkkA
x
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Similarly we get: 
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For cubical box  cba ==  we have ( ) ( ) ( ) 2
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 For ground state   321 1 nnn ===  we have: 
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For first excited state 11,2 321 === nandnn ; 12,1 321 === nandnn  or 21,1 321 === nandnn  
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( ) 




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












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
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y
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a
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( ) 
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
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



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
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
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
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


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Thus we have three wave functions corresponding to the first excited state which is three 

fold degenerate states. Generally, an energy state or level is degenerate when there is more than 

one wave function for a given energy. The degeneracy in this case is due to the symmetry of the 

cube. Degeneracy results from particular properties of the potential energy function '' 






→
rU  that 

describe the system. A perturbation of potential energy can remove the degeneracy. Degeneracy 

can also be removed by applying external electric (Stark effect) or magnetic fields (Zeeman 

effect) If the box had three unequal sides (i.e. cuboids) then the degeneracy is removed because 

the three quantum numbers in different orders (211, 121, 112) would result in three different 

energies. Degeneracy also occurs in classical systems, e.g. in planetary motion, orbits of different 

eccentricities may have same energy. 

3. Qualitative analysis of finite potential well- 
 

A potential well whose depth is finite is called finite potential well. One dimensional finite 

square well potential is similar to infinite one, but here we let the potential be 0U  rather than 

infinite in the region 0x  (region I) and ax  (region III); otherwise zero in the region 

ax 0  (region II). In regions I and III; time independent SWE is given as: 

( )
( )

( )xU
xd

xd

m
xE 


 +

−
=

2

22

2


 

or, 
( )

  ( ) ( ) ( )513.1......
2 2

22

2

xxEU
m

xd

xd



=−=


       where  EU

m
−=

2

2 2


 is a 

constant. It ( )2  is positive because EU  .   The solution of eq. (1.513) has exponential forms 

xe  and xe − . The positive exponential must be rejected in region III where ax   to keep 

( )xIII  finite as →x ; similarly the negative exponential must be rejected in region I where 

0x  to keep ( )xI  finite as −→x . Thus we have ( ) x

I eAx  =  and ( ) x

III eBx  −= . The 

coefficients A and B are determined by matching these wave functions smoothly onto the wave 

function in the interior of the well. We require ( )x  and its first derivative 
( )
xd

xd
 to be 

continuous at 0=x  and ax = . This can be done only for certain value of E  which corresponds 
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to allowed energies for the bound particles. The wave functions join smoothly at the boundaries 

of the potential well.  Figure 2.7 b shows the wave functions and probability densities 

corresponding to three lowest allowed particle energies. Wave function ( )x  is nonzero at the 

walls increases the de Broglie wave outside the well. 

In the region II, time independent SWE is given as: 

( )
( ) ( ) ( )514.1.......

2 2

22

2

xkx
Em

xd

xd
IIII

II 


−=−=


  

 where 
2

2



Em
k =         

Instead of sinusoidal solution of solution of eq. (2.702), we write it in term of exponential as: 

( )ieDeC xkixki

II

−+=                                 

On applying boundary conditions, i.e. ( ) axandxatx === 00  we get quantized 

energy values nE  and particular wave functions ( )xn . The particle has a finite probability of 

being outside the well. Here, the wave functions join smoothly at the edge of the well and 

approach zero exponentially outside the well. The occurrence of the particle outside the well is 

prohibited classically, but it occurs in quantum mechanics. Because of the exponentially decrease 

of the wave functions ( )xI  and ( )xIII . The probability of the particle penetrates a distance 

greater than 



1

   being to decrease remarkably. The distance   is known as penetration 

depth. 

 ⇒𝛿 ∝  
1

√𝑈−𝐸
 

 

If  =U  then 0= , i.e. the wave function will not come out in case of infinitely deep 

potential well. For first energy state 1E , 1EU −   is very large therefore 1  is small. For second 

energy state 2E , 2EU −  is smaller than 1EU −  therefore 2  is larger than 1 . 

It is clear from above equation that the penetration length is proportional to Planck’s 

constant h  which violets the concept of classical physics. This result is also consistent (or 

favorable) with the uncertainty principle because in order for the particle to be in the well, the 

uncertainty E  of the energy must be very large. This can occur only for very short period of time t  

according to Heisenberg’s uncertainty relation (i.e. 2 tE  ). At a distance   beyond the well, 

 EUm −
=

2

1 


  
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the amplitude of the wave function has fallen to e1 of its value at the boundaries and approaches zero 

exponentially in the regions I and III. Thus, the exterior wave is necessarily zero beyond penetration 

depth on either side of the potential well. In case of electrons tunneling through semiconductors and 

nuclear alpha decay the value of penetration depth is 10  and 20 .  

Here, the allowed energies are given by the expression of energy by replacing 2+→ aa , i.e. 

 

 

It is clear from eq. (2.703) and eq. (2.704)  is energy dependent and smaller than length a  

of the well. The approximation is best for the lower- lying states and breaks down completely as 

E  approaches U , where   becomes infinite. Thus, the particles with energies UE  are not 

bound to the well, i.e. they may be found with comparable probability in the exterior regions I 

and III.  

Eigen Functions and Eigen values in various cases are shown in below figure- 

 

(From Quantum Physics of Atom, Molecules, Solids, Nuclei & Particles Robert Eisberg & 

Robert Resnick) 
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