BS-ALGEBRAS AND ITS FUZZY IDEAL

P. Ayesha Parveen

Assistant Professor, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India-627012.

Email-id: aabidaaasima@gmail.com,

Abstract

In this paper, a new algebra called BS-Algebras which is a generalization of B-Algebras is introduced. We include the concept of fuzzy ideal in BS-Algebras. Some new characterizations were given.

Keywords: BS-Algebras, Fuzzy ideal, Homomorphism, Cartesian Product.

1 Introduction

After the introduction of fuzzy subsets by L.A.Zadeh [4], several researches explored on the generalization of the notion of fuzzy subset.In 1966, Imai and Iseki introduced two classes of abstract algebras viz. BCK-algebras and BCI-algebras[2]. J.Neggers and H.S. Kim introduced the notion of B-algebras [3] which is a generalisation of BCKalgebras. We introduce the notion of BS-algebras which is a generalisation of Balgebras. In this paper, we study the concepts of BS-Algebras with its examples. We apply the concept of fuzzy ideal in BS-Algebras and establish some of their basic properties. We investigate some algebraic nature of fuzzy ideal in BS-algebras. The homomorphic behaviour of fuzzy ideal of BS-algebras have been obtained. Finally, Fuzzy ideal of BS-algebras is also applied in Cartesian product.

2 Preliminaries

Definition 2.1. [3] A B-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms
(i) $x * x=0$
(ii) $x * 0=x$
(iii) $(x * y) * z=x *(z *(0 * y)) \forall x, y, z \in X$

Definition 2.2. Let μ_{1} and μ_{2} be two fuzzy sets of X. Then its Intersection is denoted by $\mu_{1} \cap \mu_{2}$ is defined by $\mu_{1} \cap \mu_{2}=\min \left\{\mu_{1}(x), \mu_{2}(x)\right\} \forall x \in X$

Definition 2.3. Let $A=\left\{\mu_{1}(x): x \in X\right\}$ and $B=\left\{\mu_{2}(x): x \in X\right\}$ be two fuzzy sets on X. The cartesian product $A \times B=\left\{\mu_{1} \times \mu_{2}(x, y): x, y \in X\right\}$ is defined by $\left(\mu_{1} \times \mu_{2}\right)(x, y)=\min \left\{\mu_{1}(x), \mu_{2}(y)\right\}$ where $\mu_{1} \times \mu_{2}: X \times X \rightarrow[0,1] \forall x, y \in X$.

Definition 2.4. [1] A fuzzy set μ of BS-algebra X is called a doubt fuzzy bi-ideal of X if
i) $\mu(1) \leq \mu(x)$
ii) $\mu(y * z) \leq \max \{\mu(x), \mu(x *(y * z))\} \forall x, y, z \in X$

3 BS-Algebras

Definition 3.1. A BS-algebra is a non empty set with a constant 1 and a binary operation $*$ satisfying the following axioms
(i) $x * x=1$
(ii) $x * 1=x$
(iii) $1 * x=x$
(iv) $(x * y) * z=x *(z *(1 * y)) \forall x, y, z \in X$

A binary relation \leq on X can be defined by $x \leq y$ if and only if $x * y=1$
Example 3.2. i) Let $X=\{1, a, b, c\}$ be a set with the following table

$*$	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

Then $(X, *, 1)$ is a BS-algebra.
ii) Let $X=\{1, a, b\}$ be a set with the following table

$*$	1	a	b
1	1	a	b
a	a	1	a
b	b	a	1

Then $(X, *, 1)$ is a BS-algebra.
(iii) Let $X=\{1, a, b, c, d, e\}$ be a set with the following table

$*$	1	a	b	c	d	e
1	1	a	b	c	d	e
a	a	1	b	d	e	c
b	b	a	1	e	c	d
c	c	d	e	1	b	a
d	d	e	c	a	1	b
e	e	c	d	b	a	1

If we put $y=x$ in $(x * y) * z=x *(z *(1 * y))$,
then we have $(x * x) * z=x *(z *(1 * x)) \rightarrow(\mathrm{I})$
$\Rightarrow 1 * z=x *(z *(1 * x))$

If we put $z=x$ in (I) then we obtain
$1 * x=x *(x *(1 * x)) \rightarrow(I I)$
Using (i) and (I) and $z=1$ it follows that $1=x *(1 *(1 * x)), \rightarrow(I I I)$
we observe that the four axioms (i),(ii),(iii) and(iv) are independent.
iv) Let $X=\{1, a, b\}$ be a set with the following table

$*$	1	a	b
1	1	a	1
a	a	1	a
b	1	a	1

Then the axioms (i) and (iv) hold, but not (ii) and (iii) since $b * 1=1 \neq b$
v) The set $X=\{0,1,2\}$ with the following table

$*$	1	a	b
1	1	a	b
a	a	a	a
b	b	a	b

The axioms (ii), (iii) and(iv) satisfies but not (i) since $a * a=a \neq 1$ and $b * b=b \neq 1$ vi) Let $X=\{1, a, b, c\}$ be a set with the following table

$*$	1	a	b	c
1	1	a	b	c
a	a	1	1	1
b	b	1	1	a
c	c	1	1	1

Then $(X, *, 1)$ satisfies the axioms (i),(ii) and (iii) but not (iv)
since $(b * c) * 1=a \neq b=b *(1 *(1 * c))$

Theorem 3.3. If $(X, *, 1)$ is a BS-algebra, then $y * z=y *(1 *(1 * z))$ for any $y, z \in X$

Proof. This comes from the axioms $x * 1=x$ and $(x * y) * z=x *(z *(1 * y))$
Now, $y * z=(y * z) * 1$ (by (ii))

$$
=y *(1 *(1 * z))(\text { by (iv) })
$$

Theorem 3.4. If $(X, *, 1)$ is a BS-algebra, then $(x * y) *(1 * y)=x$ for any $x, y \in X$

Proof. From (iv) with $z=1 * y$ we have $(x * y) *(1 * y)=x *((1 * y) *(1 * y))$
From axiom(i) $(x * y) *(1 * y)=x * 1$
From axiom(ii), it follows that $(x * y) *(1 * y)=x$
Theorem 3.5. If $(X, *, 1)$ is a BS-algebra, then $x * z=y * z \Rightarrow x=y$ for any $x, y, z \in X$

Proof. If $x * z=y * z$, then $(x * z) *(1 * z)=(y * z) *(1 * z)$
and by previous theorem, it follows that $x=y$
Theorem 3.6. If $(X, *, 1)$ is a BS-algebra, then $x *(y * z)=(x *(1 * z)) * y$ for any $x, y, z \in X$

Proof. Using (iv) we obtain

$$
\begin{aligned}
(x *(1 * z)) * y & =x *(y *(1 *(1 * z))) \\
& =x *(y * z)(\operatorname{by} \operatorname{thm}(3.3))
\end{aligned}
$$

Theorem 3.7. Let $(X, *, 1)$ be a BS-algebra.Then for any $x, y \in X$
(i) $x * y=1 \Rightarrow x=y$
(ii) $1 * x=1 * y \Rightarrow x=y$
(iii) $1 *(1 * x)=x$

Proof. (i) Since $x * y=1 \Rightarrow x * y=y * y$, by theorem (3.5), it follows that $x=y$ (ii)If $1 * x=1 * y$, then

$$
\begin{aligned}
1=x * x & =(x * x) * 1 \\
& =x *(1 *(1 * x)) \\
& =x *(1 *(1 * y)) \\
& =(x * y) * 1 \\
1 & =x * y
\end{aligned}
$$

By (i), $x=y$
(iii) For any $x \in X$, we obtain

$$
\begin{aligned}
1 * x & =(1 * x) * 1(b y(i i)) \\
& =1 *(1 *(1 * x))(b y(i v))
\end{aligned}
$$

By (ii) part of this theorem, we have $x=1 *(1 * x)$
Theorem 3.8. If $(X, *, 1)$ is a BS-algebra, then $(x * y) * y=x * y^{2}$ for any $x, y \in X$

Proof. From (iv),

$$
\begin{aligned}
(x * y) * y & =x *(y *(1 * y)) \\
& =x *(y * y) \\
& =x * y^{2}
\end{aligned}
$$

Theorem 3.9. If $(X, *, 1)$ is a BS-algebra,then $(1 * y) *(x * y)=x$ for any $x, y \in X$

Proof. From theorem (3.6),

$$
\begin{aligned}
(1 * y) *(x * y) & =((1 * y) *(1 * y)) * x \\
& =1 * x \\
& =x
\end{aligned}
$$

Definition 3.10. A BS-algebra $(X, *, 1)$ is said to be commutative if $x *(1 * y)=$ $y *(1 * x)$ for any $x, y \in X$

Note 3.11. The BS-algebra in example:3.2 (i) is commutative while the algebra in example:3.2 (iii) is not commutative since
$c *(1 * d)=b \neq a=d *(1 * c)$
Theorem 3.12. If $(X, *, 1)$ is a commutative BS-algebra, then $(1 * x) *(1 * y)=y * x$ for any $x, y \in X$

Proof. Since X is commutative,

$$
\begin{aligned}
(1 * x) *(1 * y) & =y *(1 *(1 * x)) \\
& =y * x(\operatorname{by} \operatorname{thm}(3.3))
\end{aligned}
$$

Theorem 3.13. If $(X, *, 1)$ is a commutative BS-algebra,then $x *(x * y)=y$ for any $x, y \in X$

Proof. By theorem (3.6),

$$
\text { Now, } \begin{aligned}
x *(x * y) & =(x *(1 * y)) * x \\
& =(y *(1 * x)) * x(\text { since } \mathrm{X} \text { is commutative) } \\
& =y *(x * x) \\
& =y * 1 \\
& =y
\end{aligned}
$$

Corollary 3.14. If $(X, *, 1)$ is a commutative $B S$-algebra, then the left cancellation law holds (i.e) $(x * y)=x * y^{\prime} \Rightarrow y=y^{\prime}$

Proof. From previous theorem, $y=x *(x * y)=x *\left(x * y^{\prime}\right)=y^{\prime}$
Theorem 3.15. If $(X, *, 1)$ is a commutative BS-algebra,then $(1 * x) *(x * y)=y * x^{2}$ for any $x, y \in X$

Proof.

$$
\text { Now, } \begin{aligned}
(1 * x) *(x * y) & =((1 * x) *(1 * y)) * x(\text { by theorem }(3.6)) \\
& =(y * x) * x(\text { by theorem }(3.12)) \\
& =y * x^{2}(\text { by theorem }(3.8))
\end{aligned}
$$

4 Fuzzy Ideal

Definition 4.1. A fuzzy set A in X is called a fuzzy ideal of X if it satisfies
i) $\mu(1) \geq \mu(y)$
ii) $\mu(y) \geq \min \{\mu(y * x), \mu(x)\}$

Example 4.2. Let $X=\{1, a, b, c\}$ be a set with the following table

$*$	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

Then $(X, *, 1)$ is a BS-algebra. Define a fuzzy set μ in X by $\mu(1)=\mu(b)=0.7$ and $\mu(a)=$ $\mu(c)=0.3$ is the fuzzy ideal of X.

Theorem 4.3. If a fuzzy set A in X is a fuzzy ideal, then $\forall x \in X, \mu(1) \geq \mu(x)$

Proof. straight forward

Theorem 4.4. Let μ_{1} and μ_{2} be two fuzzy ideals of a BS-algebra X. Then $\mu_{1} \cap \mu_{2}$ is also a fuzzy ideal of BS-algebra X.

Proof.

$$
\text { Now, } \begin{aligned}
\left(\mu_{1} \cap \mu_{2}\right)(1) & =\left(\mu_{1} \cap \mu_{2}\right)(x * x) \\
& \geq \min \left\{\left(\mu_{1} \cap \mu_{2}\right)(x),\left(\mu_{1} \cap \mu_{2}\right)(x)\right\} \\
& =\left(\mu_{1} \cap \mu_{2}\right)(x)
\end{aligned}
$$

Therefore, $\left(\mu_{1} \cap \mu_{2}\right)(1) \geq\left(\mu_{1} \cap \mu_{2}\right)(x)$
Also,

$$
\begin{aligned}
\left(\mu_{1} \cap \mu_{2}\right)(y) & =\min \left\{\mu_{1}(y), \mu_{2}(y)\right\} \\
& \geq \min \left\{\min \left\{\mu_{1}(x), \mu_{1}(y * x)\right\}, \min \left\{\mu_{2}(x), \mu_{2}(y * x)\right\}\right\} \\
& =\min \left\{\min \left\{\mu_{1}(x), \mu_{2}(x)\right\}, \min \left\{\mu_{1}(y * x), \mu_{2}(y * x)\right\}\right\} \\
& =\min \left\{\left(\mu_{1} \cap \mu_{2}\right)(x),\left(\mu_{1} \cap \mu_{2}\right)(y * x)\right\}
\end{aligned}
$$

$\left(\mu_{1} \cap \mu_{2}\right)(y) \geq \min \left\{\left(\mu_{1} \cap \mu_{2}\right)(x),\left(\mu_{1} \cap \mu_{2}\right)(y * x)\right\}$
Hence $\mu_{1} \cap \mu_{2}$ is a fuzzy ideal of X.

Theorem 4.5. Let μ be a fuzzy ideals of BS-algebra X. If $x * y \leq z$, then $\mu(x) \geq \min \{\mu(y), \mu(z)\}$

Proof. Let $x, y, z \in X$ such that $x * y \leq z$. Then $(x * y) * z=1$, and thus

$$
\begin{aligned}
\mu(x) & \geq \min \{\mu(x * y), \mu(y)\} \\
& \geq \min \{\min \{\mu((x * y) * z), \mu(z)\}, \mu(y)\} \\
& =\min \{\min \{\mu(1), \mu(z)\}, \mu(y)\} \\
& =\min \{\mu(z), \mu(y)\}
\end{aligned}
$$

Therefore, $\mu(x) \geq \min \{\mu(z), \mu(y)\}$
Theorem 4.6. Let A be a fuzzy ideals of a BS-algebras X. If $x \leq y$, then $\mu(x) \geq \mu(y)$ (i.e)order reversing

Proof. Let $x, y \in X$ such that $x \leq y$. Then $x * y=1$ and thus

$$
\begin{aligned}
\mu(x) & \geq \min \{\mu(x * y), \mu(y)\} \\
& =\min \{\mu(1), \mu(y)\} \\
& =\mu(y) \\
\mu(x) & \geq \mu(y)
\end{aligned}
$$

Hence, μ is order reversing.

Theorem 4.7. Let A be a fuzzy ideal of X. Then $\left(\ldots\left(\left(x * a_{1}\right) * a_{2}\right) * a_{n}=0\right.$ for any $x, a_{1}, a_{2} \ldots a_{n} \in X$, implies $\mu(x) \geq \min \left\{\mu\left(a_{1}\right), \mu\left(a_{2}\right) \ldots \mu\left(a_{n}\right)\right\}$

Proof. Using induction on n and by previous two theorems we can easily prove the theorem

Theorem 4.8. Let B be a crisp subset of X. Suppose that $A=\mu(x)$ is a fuzzy set in X defined by $\mu(x)=\lambda$ if $x \in B$ and $\mu(x)=\tau$ if $x \notin B \forall \lambda, \tau \in[0,1]$ with $\lambda \geq \tau$. Then A is a fuzzy ideal of X if and only if B is a ideal of X

Proof. Assume that A is a fuzzy ideal of X. Let $x \in B$.
Let $x, y \in X$ be such that $y * x \in B$ and $x \in B$. Then $\mu(y * x)=\lambda=\mu(x)$, and hence $\mu(y) \geq \min \{\mu(x), \mu(y * x)\}=\lambda$

Thus $\mu(y)=\lambda$ (i.e) $y \in B$

Therefore B is a ideal of X.
Conversely, Suppose that B is a ideal of X. Let $y \in X$
Let $x, y \in X$. If $y * x \in B$ and $x \in B$, then $y \in B$
Hence, $\mu(y)=\lambda=\min \{\mu(y * x), \mu(x)\}$
If $y * x \notin B$ and $x \notin B$, then clearly, $\mu(y) \geq \min \{\mu(x), \mu(y * x)\}$
If exactly one of $y * x$ and x belong to B, then exactly one of $\mu(y * x), \mu(x)$
is equal to τ. Therefore, $\mu(y) \geq \tau=\min \{\mu(x), \mu(y * x)\}$
Consequently, A is a fuzzy ideal of X.
Theorem 4.9. A fuzzy set μ is a ideal of X then the set $U(\mu: t)$ is ideal of X for every $t \in[0,1]$

Proof. Suppose that μ is a fuzzy ideal of X. For $t \in[0,1]$.
Let $x, y \in X$ be such that $y * x \in U(\mu: t)$ and $x \in U(\mu: t)$.
Then $\mu(y) \geq \min \{\mu(x), \mu(y * x)\}$.
Then $y \in U(\mu: t)$. Hence $U(\mu: t)$ is a ideal of X.

Definition 4.10. Let f be a mapping from the set X into the set Y. Let B be a fuzzy set in Y. Then the inverse image of B is defined as $f^{-} 1(\mu)(x)=\mu(f(x))$. The set $f^{-1}(B)=\left\{f^{-1}(\mu)(x): x \in X\right\}$ is a fuzzy set.

Theorem 4.11. Let $f: X \rightarrow Y$ be a homomorphism of BS-algebra. If B is a fuzzy ideal of Y, then the pre-image $f^{-1}(B)$ of B under f in X is a fuzzy ideal of X

Proof. For all $x \in X, f^{-1}(\mu)(x)=\mu(f(x)) \leq \mu(1)=\mu(f(1))=f^{-1}(\mu)(1)$ Therfore, $f^{-1}(\mu)(x) \leq f^{-1}(\mu)(1)$
Let $x, y \in X$. Then

$$
\begin{aligned}
f^{-1}(\mu)(x) & =\mu(f(x)) \\
& \geq \min \{\mu(f(x) * f(y)), \mu(f(y))\} \\
& \geq \min \{\mu(f(x * y)), \mu(f(y))\} \\
& =\min \left\{f^{-1}(\mu)(x * y), f^{-1}(\mu)(y)\right\}
\end{aligned}
$$

Therefore, $f^{-1}(\mu)(x) \geq \min \left\{f^{-1}(\mu)(x * y), f^{-1}(\mu)(y)\right\}$
Hence $f^{-1}(B)=\left\{f^{-1}(\mu)(x): x \in X\right\}$ is a fuzzy ideal of X.

Theorem 4.12. Let $f: X \rightarrow Y$ be a onto homomorphism of $B S$-algebra. Then B is a fuzzy ideal of Y, if $f^{-1}(B)$ of B under f in X is a fuzzy ideal of X

Proof. For any $u \in Y$, there exists $x \in X$ such that $f(x)=u$
Then $\mu(u)=\mu(f(x))=f^{-1}(\mu)(x) \leq f^{-1}(\mu)(1)=\mu(f(1))=\mu(1)$
Therefore, $\mu(u) \leq \mu(1)$
Let $u, v \in Y$. Then $f(x)=u$ and $f(y)=v$ for some $x, y \in X$.

$$
\text { Thus } \begin{aligned}
\mu(u)=\mu(f(x)) & =f^{-1}(\mu)(x) \\
& \geq \min \left\{f^{-1}(\mu)(x * y), f^{-1}(\mu)(y)\right\} \\
& =\min \{\mu(f(x * y)), \mu(f(y))\} \\
& =\min \{\mu(f(x) * f(y)), \mu(f(y))\} \\
& =\min \{\mu(u * v), \mu(v)\}
\end{aligned}
$$

Therefore, $\mu(u) \geq \min \{\mu(u * v), \mu(v)\}$
Then B is a fuzzy ideal of Y

Theorem 4.13. Let A and B be fuzzy ideals of X, then $A \times B$ is a fuzzy ideal of $X \times X$

Proof. For any $(x, y) \in X \times X$, we have

$$
\begin{aligned}
\left(\mu_{1} \times \mu_{2}\right)(1,1) & =\min \left\{\mu_{1}(1), \mu_{2}(1)\right\} \\
& \geq \min \left\{\mu_{1}(x), \mu_{2}(y)\right\} \forall x, y \in X \\
& =\left(\mu_{1} \times \mu_{2}\right)(x, y)
\end{aligned}
$$

Therefore, $\left(\mu_{1} \times \mu_{2}\right)(1,1) \geq\left(\mu_{1} \times \mu_{2}\right)(x, y)$

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times X$.Then

$$
\begin{aligned}
\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, y_{1}\right) & =\min \left\{\mu_{1}\left(x_{1}\right), \mu_{2}\left(y_{1}\right)\right\} \\
& \geq \min \left\{\min \left\{\mu_{1}\left(x_{1} * x_{2}\right), \mu_{1}\left(x_{2}\right)\right\}, \min \left\{\mu_{2}\left(y_{1} * y_{2}\right), \mu_{2}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{\mu_{1}\left(x_{1} * x_{2}\right), \mu_{2}\left(y_{1} * y_{2}\right)\right\}, \min \left\{\mu_{1}\left(x_{2}\right), \mu_{2}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\left(\mu_{1} \times \mu_{2}\right)\left(\left(x_{1} * x_{2}\right),\left(y_{1} * y_{2}\right)\right),\left(\mu_{1} \times \mu_{2}\right)\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

Therefore, $\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, y_{1}\right) \geq \min \left\{\left(\mu_{1} \times \mu_{2}\right)\left(\left(x_{1} * x_{2}\right),\left(y_{1} * y_{2}\right)\right),\left(\mu_{1} \times \mu_{2}\right)\left(x_{2}, y_{2}\right)\right\}$ Hence, $A \times B$ is a fuzzy ideal of $X \times X$

Theorem 4.14. Let A and B be fuzzy sets in X such that $A \times B$ is a fuzzy ideal of $X \times X$,then
i) Either $\mu_{1}(1) \geq \mu_{1}(x)$ or $\mu_{2}(1) \geq \mu_{2}(x) \forall x \in X$
ii) If $\mu_{1}(1) \geq \mu_{1}(x) \forall x \in X$, then either $\mu_{2}(1) \geq \mu_{1}(x)$ or $\mu_{2}(1) \geq \mu_{2}(x)$
iii)If $\mu_{2}(1) \geq \mu_{2}(x) \forall x \in X$, then either $\mu_{1}(1) \geq \mu_{1}(x)$ or $\mu_{1}(1) \geq \mu_{2}(x)$

Proof. (i) Assume that $\mu_{1}(x)>\mu_{1}(1)$ and $\mu_{2}(y)>\mu_{2}(1)$ for some $x, y \in X$.

$$
\begin{array}{r}
\operatorname{Then}\left(\mu_{1} \times \mu_{2}\right)(x, y)=\min \left\{\mu_{1}(x), \mu_{2}(y)\right\} \\
>\min \left\{\mu_{1}(1), \mu_{2}(1)\right\} \\
=\left(\mu_{1} \times \mu_{2}\right)(1,1)
\end{array}
$$

$\Rightarrow\left(\mu_{1} \times \mu_{2}\right)(x, y)>\left(\mu_{1} \times \mu_{2}\right)(1,1) \forall x, y \in X$, which is a contradiction.

Hence (i) is proved.
(ii) Again assume that $\mu_{2}(1)<\mu_{1}(x)$ and $\mu_{2}(1)<\mu_{2}(y) \forall x, y \in X$

$$
\begin{aligned}
\operatorname{Then}\left(\mu_{1} \times \mu_{2}\right)(1,1) & =\min \left\{\mu_{1}(1), \mu_{2}(1)\right\} \\
& =\mu_{2}(1) \\
\text { Now, }\left(\mu_{1} \times \mu_{2}\right)(x, y) & =\min \left\{\mu_{1}(x), \mu_{2}(y)\right\} \\
& >\mu_{2}(1) \\
& =\left(\mu_{1} \times \mu_{2}\right)(1,1), \text { which is a contradiction. }
\end{aligned}
$$

Hence (ii) is proved
(iii) The proof is similar to (ii)

References

[1] P.Ayesha Parveen and M.Himaya Jaleela Begum, Doubt fuzzy bi-ideals of BSalgebras, International Journal of Emerging Technologies and Innovative Research(JETIR),Vol.6(3), 20-24, 2019.
[2] Y.Imai and K.Iseki, On Axiom System of Propositional Calculi, 15 Proc.Japan Academy, Vol. 42,19-22,1966.
[3] J.Neggers and H.S.Kim, On B-algebras ,Math. Vensik, Vol.54,21-29, 2002.
[4] L.A. Zadeh, Fuzzy sets Information and control, 8(1965), 338-353.
[5] L.A. Zadeh, Toward a generalized theory of uncertainity(GTU)-an outline, Inform.Sci.,Vol. 172, 1-40,2005.

