BS-ALGEBRAS AND ITS FUZZY IDEAL

P. Ayesha Parveen Assistant Professor, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India-627012. Email-id: aabidaaasima@gmail.com,

Abstract: In this paper, a new algebra called BS-Algebras which is a generalization of B-Algebras is introduced. We include the concept of fuzzy ideal in BS-Algebras. Some new characterizations were given.

Keywords: BS-Algebras, Fuzzy ideal, Homomorphism, Cartesian Product.

1 Introduction

After the introduction of fuzzy subsets by L.A.Zadeh[4], several researches explored on the generalization of the notion of fuzzy subset. In 1966, Imai and Iseki introduced two classes of abstract algebras viz. BCK-algebras and BCI-algebras[2]. J.Neggers and H.S. Kim introduced the notion of B-algebras[3] which is a generalisation of BCKalgebras. We introduce the notion of BS-algebras which is a generalisation of Balgebras. In this paper, we study the concepts of BS-Algebras with its examples. We apply the concept of fuzzy ideal in BS-Algebras and establish some of their basic properties. We investigate some algebraic nature of fuzzy ideal in BS-algebras. The homomorphic behaviour of fuzzy ideal of BS-algebras have been obtained. Finally, Fuzzy ideal of BS-algebras is also applied in Cartesian product.

2 Preliminaries

Definition 2.1. [3] A B-algebra is a non empty set X with a constant 0 and a binary operation * satisfying the following axioms

- (i) x * x = 0
- (ii) x * 0 = x
- (iii) $(x * y) * z = x * (z * (0 * y)) \forall x, y, z \in X$

Definition 2.2. Let μ_1 and μ_2 be two fuzzy sets of X. Then its Intersection is denoted by $\mu_1 \cap \mu_2$ is defined by $\mu_1 \cap \mu_2 = min\{\mu_1(x), \mu_2(x)\} \forall x \in X$

Definition 2.3. Let $A = \{\mu_1(x) : x \in X\}$ and $B = \{\mu_2(x) : x \in X\}$ be two fuzzy sets on X. The cartesian product $A \times B = \{\mu_1 \times \mu_2(x, y) : x, y \in X\}$ is defined by $(\mu_1 \times \mu_2)(x, y) = \min\{\mu_1(x), \mu_2(y)\}$ where $\mu_1 \times \mu_2 : X \times X \to [0, 1] \forall x, y \in X$.

Definition 2.4. [1] A fuzzy set μ of BS-algebra X is called a doubt fuzzy bi-ideal of X if

$$\label{eq:main_state} \begin{split} & \text{i) } \mu(1) \leq \mu(x) \\ & \text{ii) } \mu(y*z) \leq \max\{\mu(x), \mu(x*(y*z))\} \; \forall \; x,y,z \; \in \; X \end{split}$$

3 BS-Algebras

Definition 3.1. A BS-algebra is a non empty set with a constant 1 and a binary operation * satisfying the following axioms

- (i) x * x = 1
- (ii) x * 1 = x
- (iii) 1 * x = x
- (iv) $(x * y) * z = x * (z * (1 * y)) \forall x, y, z \in X$

A binary relation \leq on X can be defined by $x \leq y$ if and only if x * y = 1

Example 3.2. i) Let $X = \{1, a, b, c\}$ be a set with the following table

*	1	a	b	с
1	1	a	b	с
a	a	1	с	b
b	b	с	1	a
с	с	b	a	1

Then (X, *, 1) is a BS-algebra.

ii) Let $X = \{1, a, b\}$ be a set with the following table

*	1	a	b
1	1	a	b
a	a	1	a
b	b	a	1

Then (X, *, 1) is a BS-algebra.

(iii) Let $X = \{1, a, b, c, d, e\}$ be a set with the following table

*	1	a	b	с	d	е
1	1	a	b	с	d	е
a	a	1	b	d	е	с
b	b	a	1	е	с	d
с	с	d	е	1	b	a
d	d	е	с	a	1	b
е	е	с	d	b	a	1

If we put y = x in (x * y) * z = x * (z * (1 * y)), then we have $(x * x) * z = x * (z * (1 * x)) \to (I)$ $\Rightarrow 1 * z = x * (z * (1 * x))$ If we put z = x in (I) then we obtain

 $1 \ast x = x \ast (x \ast (1 \ast x)) \rightarrow (II)$

Using (i) and (I) and z = 1 it follows that $1 = x * (1 * (1 * x)), \rightarrow (III)$

we observe that the four axioms (i),(ii),(iii) and(iv) are independent.

iv) Let $X = \{1, a, b\}$ be a set with the following table

*	1	a	b
1	1	a	1
a	a	1	a
b	1	a	1

Then the axioms (i) and (iv) hold, but not (ii) and (iii) since $b * 1 = 1 \neq b$ v) The set $X = \{0, 1, 2\}$ with the following table

*	1	a	b
1	1	a	b
a	a	a	a
b	b	a	b

The axioms (ii), (iii) and(iv) satisfies but not (i) since $a * a = a \neq 1$ and $b * b = b \neq 1$ vi) Let $X = \{1, a, b, c\}$ be a set with the following table

*	1	a	b	с
1	1	a	b	с
a	a	1	1	1
b	b	1	1	a
c	с	1	1	1

Then (X, *, 1) satisfies the axioms (i),(ii) and (iii) but not (iv) since $(b * c) * 1 = a \neq b = b * (1 * (1 * c))$

Theorem 3.3. If (X, *, 1) is a BS-algebra, then y * z = y * (1 * (1 * z)) for any $y, z \in X$

Proof. This comes from the axioms x * 1 = x and (x * y) * z = x * (z * (1 * y))Now, y * z = (y * z) * 1 (by (ii)) = y * (1 * (1 * z)) (by (iv))

Theorem 3.4. If (X, *, 1) is a BS-algebra, then (x * y) * (1 * y) = x for any $x, y \in X$

Proof. From (iv) with z = 1 * y we have (x * y) * (1 * y) = x * ((1 * y) * (1 * y))From axiom(i) (x * y) * (1 * y) = x * 1From axiom(ii), it follows that (x * y) * (1 * y) = x

Theorem 3.5. If (X, *, 1) is a BS-algebra, then $x * z = y * z \Rightarrow x = y$ for any $x, y, z \in X$

Proof. If x * z = y * z, then (x * z) * (1 * z) = (y * z) * (1 * z)and by previous theorem, it follows that x = y

Theorem 3.6. If (X, *, 1) is a BS-algebra, then x * (y * z) = (x * (1 * z)) * y for any $x, y, z \in X$

Proof. Using (iv) we obtain

$$(x * (1 * z)) * y = x * (y * (1 * (1 * z)))$$
$$= x * (y * z)(by thm(3.3))$$

Theorem 3.7. Let (X, *, 1) be a BS-algebra. Then for any $x, y \in X$ (i) $x * y = 1 \Rightarrow x = y$ (ii) $1 * x = 1 * y \Rightarrow x = y$ (iii) 1 * (1 * x) = x *Proof.* (i) Since $x * y = 1 \Rightarrow x * y = y * y$, by theorem (3.5), it follows that x = y (ii) If 1 * x = 1 * y, then

$$1 = x * x = (x * x) * 1$$

= x * (1 * (1 * x))
= x * (1 * (1 * y))
= (x * y) * 1
1 = x * y

By (i), x = y

(iii) For any $x \in X$, we obtain

$$1 * x = (1 * x) * 1(by(ii))$$

= 1 * (1 * (1 * x))(by(iv))

By (ii) part of this theorem, we have x = 1 * (1 * x)

Theorem 3.8. If (X, *, 1) is a BS-algebra, then $(x * y) * y = x * y^2$ for any $x, y \in X$

Proof. From (iv),

$$(x * y) * y = x * (y * (1 * y))$$

= $x * (y * y)$
= $x * y^2$

Theorem 3.9. If (X, *, 1) is a BS-algebra, then (1 * y) * (x * y) = x for any $x, y \in X$

Proof. From theorem (3.6),

$$(1 * y) * (x * y) = ((1 * y) * (1 * y)) * x$$

= 1 * x
= x

Definition 3.10. A BS-algebra (X, *, 1) is said to be commutative if x * (1 * y) = y * (1 * x) for any $x, y \in X$

Note 3.11. The BS-algebra in example:3.2 (i) is commutative while the algebra in example:3.2 (iii) is not commutative since

 $c*(1*d)=b\neq a=d*(1*c)$

Theorem 3.12. If (X, *, 1) is a commutative BS-algebra, then (1 * x) * (1 * y) = y * xfor any $x, y \in X$

Proof. Since X is commutative,

$$(1 * x) * (1 * y) = y * (1 * (1 * x))$$

= $y * x$ (by thm(3.3))

Theorem 3.13. If (X, *, 1) is a commutative BS-algebra, then x * (x * y) = y for any $x, y \in X$

Proof. By theorem (3.6),

Now,
$$x * (x * y) = (x * (1 * y)) * x$$

$$= (y * (1 * x)) * x \text{ (since X is commutative)}$$

$$= y * (x * x)$$

$$= y * 1$$

$$= y$$

Corollary 3.14. If (X, *, 1) is a commutative BS-algebra, then the left cancellation law holds (i.e) $(x * y) = x * y' \Rightarrow y = y'$

Proof. From previous theorem, y = x * (x * y) = x * (x * y') = y'

Theorem 3.15. If (X, *, 1) is a commutative BS-algebra, then $(1 * x) * (x * y) = y * x^2$ for any $x, y \in X$

Proof.

Now,
$$(1 * x) * (x * y) = ((1 * x) * (1 * y)) * x$$
 (by theorem (3.6))
= $(y * x) * x$ (by theorem (3.12))
= $y * x^2$ (by theorem (3.8))

4	Fuzzy	Ideal
----------	-------	-------

Definition 4.1. A fuzzy set A in X is called a fuzzy ideal of X if it satisfies i) $\mu(1) \ge \mu(y)$ ii) $\mu(y) \ge \min\{\mu(y * x), \mu(x)\}$

Example 4.2. Let $X = \{1, a, b, c\}$ be a set with the following table

*	1	a	b	c
1	1	a	b	c
a	a	1	с	b
b	b	с	1	a
с	с	b	a	1

Then (X, *, 1) is a BS-algebra. Define a fuzzy set μ in X by $\mu(1) = \mu(b) = 0.7$ and $\mu(a) = \mu(c) = 0.3$ is the fuzzy ideal of X.

Theorem 4.3. If a fuzzy set A in X is a fuzzy ideal, then $\forall x \in X, \mu(1) \ge \mu(x)$

Proof. straight forward

Theorem 4.4. Let μ_1 and μ_2 be two fuzzy ideals of a BS-algebra X. Then $\mu_1 \cap \mu_2$ is also a fuzzy ideal of BS-algebra X.

Proof.

Now,
$$(\mu_1 \cap \mu_2)(1) = (\mu_1 \cap \mu_2)(x * x)$$

$$\geq \min\{(\mu_1 \cap \mu_2)(x), (\mu_1 \cap \mu_2)(x)\}$$

$$= (\mu_1 \cap \mu_2)(x)$$

Therefore, $(\mu_1 \cap \mu_2)(1) \ge (\mu_1 \cap \mu_2)(x)$

Also,

$$\begin{aligned} (\mu_1 \cap \mu_2)(y) &= \min\{\mu_1(y), \mu_2(y)\} \\ &\geq \min\{\min\{\mu_1(x), \mu_1(y * x)\}, \min\{\mu_2(x), \mu_2(y * x)\}\} \\ &= \min\{\min\{\mu_1(x), \mu_2(x)\}, \min\{\mu_1(y * x), \mu_2(y * x)\}\} \\ &= \min\{(\mu_1 \cap \mu_2)(x), (\mu_1 \cap \mu_2)(y * x)\} \end{aligned}$$

 $(\mu_1 \cap \mu_2)(y) \ge \min\{(\mu_1 \cap \mu_2)(x), (\mu_1 \cap \mu_2)(y * x)\}$ Hence $\mu_1 \cap \mu_2$ is a fuzzy ideal of X.

Theorem 4.5. Let μ be a fuzzy ideals of BS-algebra X. If $x * y \leq z$, then $\mu(x) \geq \min\{\mu(y), \mu(z)\}$

Proof. Let $x, y, z \in X$ such that $x * y \leq z$. Then (x * y) * z = 1, and thus

$$\begin{split} \mu(x) &\geq \min\{\mu(x*y), \mu(y)\} \\ &\geq \min\{\min\{\mu((x*y)*z), \mu(z)\}, \mu(y)\} \\ &= \min\{\min\{\mu(1), \mu(z)\}, \mu(y)\} \\ &= \min\{\mu(z), \mu(y)\} \end{split}$$

Therefore, $\mu(x) \ge \min\{\mu(z), \mu(y)\}$

Theorem 4.6. Let A be a fuzzy ideals of a BS-algebras X. If $x \le y$, then $\mu(x) \ge \mu(y)$ (*i.e*)order reversing

Proof. Let $x, y \in X$ such that $x \leq y$. Then x * y = 1 and thus

$$\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$$
$$= \min\{\mu(1), \mu(y)\}$$
$$= \mu(y)$$
$$\mu(x) \ge \mu(y)$$

Hence, μ is order reversing.

Theorem 4.7. Let A be a fuzzy ideal of X. Then $(...((x * a_1) * a_2) * a_n = 0$ for any $x, a_1, a_2...a_n \in X$, implies $\mu(x) \ge \min\{\mu(a_1), \mu(a_2)...\mu(a_n)\}$

Proof. Using induction on n and by previous two theorems we can easily prove the theorem

Theorem 4.8. Let B be a crisp subset of X. Suppose that $A = \mu(x)$ is a fuzzy set in X defined by $\mu(x) = \lambda$ if $x \in B$ and $\mu(x) = \tau$ if $x \notin B \forall \lambda, \tau \in [0, 1]$ with $\lambda \geq \tau$. Then A is a fuzzy ideal of X if and only if B is a ideal of X

Proof. Assume that A is a fuzzy ideal of X. Let $x \in B$. Let $x, y \in X$ be such that $y * x \in B$ and $x \in B$. Then $\mu(y * x) = \lambda = \mu(x)$, and hence $\mu(y) \ge \min\{\mu(x), \mu(y * x)\} = \lambda$ Thus $\mu(y) = \lambda$ (i.e) $y \in B$ Therefore B is a ideal of X.

Conversely, Suppose that B is a ideal of X. Let $y \in X$ Let $x, y \in X$. If $y * x \in B$ and $x \in B$, then $y \in B$ Hence, $\mu(y) = \lambda = \min\{\mu(y * x), \mu(x)\}$ If $y * x \notin B$ and $x \notin B$, then clearly, $\mu(y) \ge \min\{\mu(x), \mu(y * x)\}$ If exactly one of y * x and x belong to B, then exactly one of $\mu(y * x), \mu(x)$ is equal to τ . Therefore, $\mu(y) \ge \tau = \min\{\mu(x), \mu(y * x)\}$ Consequently,A is a fuzzy ideal of X.

Theorem 4.9. A fuzzy set μ is a ideal of X then the set $U(\mu : t)$ is ideal of X for every $t \in [0, 1]$

Proof. Suppose that μ is a fuzzy ideal of X. For $t \in [0, 1]$. Let $x, y \in X$ be such that $y * x \in U(\mu : t)$ and $x \in U(\mu : t)$. Then $\mu(y) \ge min\{\mu(x), \mu(y * x)\}$. Then $y \in U(\mu : t)$. Hence $U(\mu : t)$ is a ideal of X.

Definition 4.10. Let f be a mapping from the set X into the set Y. Let B be a fuzzy set in Y. Then the inverse image of B is defined as $f^{-1}(\mu)(x) = \mu(f(x))$. The set $f^{-1}(B) = \{f^{-1}(\mu)(x) : x \in X\}$ is a fuzzy set.

Theorem 4.11. Let $f : X \to Y$ be a homomorphism of BS-algebra. If B is a fuzzy ideal of Y, then the pre-image $f^{-1}(B)$ of B under f in X is a fuzzy ideal of X

Proof. For all $x \in X$, $f^{-1}(\mu)(x) = \mu(f(x)) \le \mu(1) = \mu(f(1)) = f^{-1}(\mu)(1)$ Therfore, $f^{-1}(\mu)(x) \le f^{-1}(\mu)(1)$ Let $x, y \in X$. Then

$$\begin{split} f^{-1}(\mu)(x) &= \mu(f(x)) \\ &\geq \min\{\mu(f(x)*f(y)), \mu(f(y))\} \\ &\geq \min\{\mu(f(x*y)), \mu(f(y))\} \\ &= \min\{f^{-1}(\mu)(x*y), f^{-1}(\mu)(y)\} \end{split}$$

Therefore, $f^{-1}(\mu)(x) \ge \min\{f^{-1}(\mu)(x * y), f^{-1}(\mu)(y)\}$ Hence $f^{-1}(B) = \{f^{-1}(\mu)(x) : x \in X\}$ is a fuzzy ideal of X.

Theorem 4.12. Let $f : X \to Y$ be a onto homomorphism of BS-algebra. Then B is a fuzzy ideal of Y, if $f^{-1}(B)$ of B under f in X is a fuzzy ideal of X

Proof. For any $u \in Y$, there exists $x \in X$ such that f(x) = uThen $\mu(u) = \mu(f(x)) = f^{-1}(\mu)(x) \le f^{-1}(\mu)(1) = \mu(f(1)) = \mu(1)$ Therefore, $\mu(u) \le \mu(1)$

Let $u, v \in Y$. Then f(x) = u and f(y) = v for some $x, y \in X$.

Thus,
$$\mu(u) = \mu(f(x)) = f^{-1}(\mu)(x)$$

$$\geq \min\{f^{-1}(\mu)(x * y), f^{-1}(\mu)(y)\}$$

$$= \min\{\mu(f(x * y)), \mu(f(y))\}$$

$$= \min\{\mu(f(x) * f(y)), \mu(f(y))\}$$

$$= \min\{\mu(u * v), \mu(v)\}$$

Therefore, $\mu(u) \ge \min\{\mu(u * v), \mu(v)\}$ Then *B* is a fuzzy ideal of *Y*

Theorem 4.13. Let A and B be fuzzy ideals of X, then $A \times B$ is a fuzzy ideal of $X \times X$

Proof. For any $(x, y) \in X \times X$, we have

$$(\mu_1 \times \mu_2)(1, 1) = \min\{\mu_1(1), \mu_2(1)\}$$

$$\geq \min\{\mu_1(x), \mu_2(y)\} \ \forall \ x, y \in X$$

$$= (\mu_1 \times \mu_2)(x, y)$$

Therefore, $(\mu_1 \times \mu_2)(1, 1) \ge (\mu_1 \times \mu_2)(x, y)$

Let $(x_1, y_1), (x_2, y_2) \in X \times X$. Then

$$\begin{aligned} (\mu_1 \times \mu_2)(x_1, y_1) &= \min\{\mu_1(x_1), \mu_2(y_1)\} \\ &\geq \min\{\min\{\mu_1(x_1 \ast x_2), \mu_1(x_2)\}, \min\{\mu_2(y_1 \ast y_2), \mu_2(y_2)\}\} \\ &= \min\{\min\{\mu_1(x_1 \ast x_2), \mu_2(y_1 \ast y_2)\}, \min\{\mu_1(x_2), \mu_2(y_2)\}\} \\ &= \min\{(\mu_1 \times \mu_2)((x_1 \ast x_2), (y_1 \ast y_2)), (\mu_1 \times \mu_2)(x_2, y_2)\} \end{aligned}$$

Therefore, $(\mu_1 \times \mu_2)(x_1, y_1) \ge \min\{(\mu_1 \times \mu_2)((x_1 * x_2), (y_1 * y_2)), (\mu_1 \times \mu_2)(x_2, y_2)\}$ Hence, $A \times B$ is a fuzzy ideal of $X \times X$

Theorem 4.14. Let A and B be fuzzy sets in X such that $A \times B$ is a fuzzy ideal of $X \times X$, then i) Either $\mu_1(1) \ge \mu_1(x)$ or $\mu_2(1) \ge \mu_2(x) \ \forall \ x \in X$ ii) If $\mu_1(1) \ge \mu_1(x) \ \forall \ x \in X$, then either $\mu_2(1) \ge \mu_1(x)$ or $\mu_2(1) \ge \mu_2(x)$ iii) If $\mu_2(1) \ge \mu_2(x) \ \forall \ x \in X$, then either $\mu_1(1) \ge \mu_1(x)$ or $\mu_1(1) \ge \mu_2(x)$

Proof. (i) Assume that $\mu_1(x) > \mu_1(1)$ and $\mu_2(y) > \mu_2(1)$ for some $x, y \in X$.

Then
$$(\mu_1 \times \mu_2)(x, y) = min\{\mu_1(x), \mu_2(y)\}$$

> $min\{\mu_1(1), \mu_2(1)\}$
= $(\mu_1 \times \mu_2)(1, 1)$

 $\Rightarrow (\mu_1 \times \mu_2)(x,y) > (\mu_1 \times \mu_2)(1,1) \ \forall \ x,y \in X, \text{which is a contradiction}.$

Hence (i) is proved.

(ii) Again assume that $\mu_2(1) < \mu_1(x)$ and $\mu_2(1) < \mu_2(y) \forall x, y \in X$

Then
$$(\mu_1 \times \mu_2)(1, 1) = min\{\mu_1(1), \mu_2(1)\}$$

= $\mu_2(1)$
Now, $(\mu_1 \times \mu_2)(x, y) = min\{\mu_1(x), \mu_2(y)\}$
> $\mu_2(1)$
= $(\mu_1 \times \mu_2)(1, 1)$, which is a contradiction.

Hence (ii) is proved

(iii) The proof is similar to (ii)

References

- P.Ayesha Parveen and M.Himaya Jaleela Begum, Doubt fuzzy bi-ideals of BSalgebras, International Journal of Emerging Technologies and Innovative Research(JETIR), Vol.6(3), 20-24, 2019.
- Y.Imai and K.Iseki, On Axiom System of Propositional Calculi, 15 Proc.Japan Academy, Vol. 42,19-22,1966.
- [3] J.Neggers and H.S.Kim, On B-algebras ,Math. Vensik, Vol.54,21-29, 2002.
- [4] L.A. Zadeh, Fuzzy sets Information and control, 8(1965), 338-353.
- [5] L.A. Zadeh, Toward a generalized theory of uncertainity(GTU)-an outline, Inform.Sci., Vol. 172, 1-40,2005.