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ABSTRACT:   

            Simon, (1977) has studied the Economics of Population Growth. After then, Boserup 

(1981) has studied Population and Technological Change: A Study of Long-Term Trends. Also, 

Turchin, (2003) has studied Complex Population Dynamics: a Theoretical/Empirical Synthesis. 

And Pastor (2008) has studied Mathematical Ecology of Populations and Ecosystems. In this 

paper, we have studied Geometric modeling for human population growth, introducing the 

fundamental principles of population growth and various mechanisms that regulate population 

growth. 
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1. INTRODUCTION: 

A Geometrical model is a explanation of a classification with Mathematical concepts, 

geometry along with language. The progression of mounting a geometrical model is termed as 

Mathematical modeling. The model may well facilitate to elucidate a structure and to study the 

effect of dissimilar component and to create prediction concerning manners. 

Population describes a collection of individuals of some variety occupying a particular 

area at definite time. A few characteristic of population that is importance to biologist take in the 

population solidity, birth rate and death rate. If there is immigration into the population, or 

emigration out of it, then the immigration and emigration rate are also of interest together these 

population parameters or characteristic, describe how the population density changes over time. 

The ways in which population densities fluctuate increasing, decreasing or both over time is a 
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subject of population dynamic. Population dynamics is a branch of life science that studies the 

age and size composition of population as dynamical system and the biological and 

environmental process driving them such as birth and death rate and by immigration and 

emigration.           

Change in population density = (Birth + Immigration) – (Death + Emigration).  

Thomas R. Malthus (1766-1834) introduced the concept of exponential population 

growth in Europe, suggesting that the rate of population increase outpaces food production, 

potentially leading to worldwide famine in the future. While he couldn't anticipate the impact of 

modern technological advancements on food supplies, his recognition of the rapid geometric 

growth of the population (1, 2, 4, 8…) rather than linear growth (1, 2, 3, 4…) underscores the 

swift potential for numerical escalation. So, he propounded exponential growth model for human 

population in the first edition of his famous book entitle “An essay on the principle of 

population” published in 1798.       

2. FORMULATION OF THE MODEL: 

       During formulating the population growth model, Malthus made the following three 

assumptions:  

            (i)   The population is sufficiently large. 

           (ii)  Population is homogeneous, that is, it is evenly spread over the living space. 

           (iii) There is no limitation to growth i.e., no limitations of food, space and so on.  

                   Population changes only by the occurrence of births and deaths. 

 

           Let x (t) be the size of the population at that time t which is taken to be positive integer 

with x (0) = xo. Let us assume that all changes in the population result from births and deaths, 

therefore, there is no immigration or emigration. Let B (t) and D (t) denote respectively, the 

numbers of births and deaths at time t. Then per capita birth rate b and per capita death rate m are 

given by  

      𝑏  =  
1
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𝑑𝐵(𝑡)
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                                                                                             (2.1) 

and       𝑚  =  
1

𝑥(𝑡)

𝑑𝐷(𝑡)

𝑑𝑡
                                                 (2.2) 



            Therefore per capita growth rate of the population at any time t is given by: 
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The difference between the per capita birth and death rates 𝛼 =  𝑏 –  𝑚, plays a particularly 

important role and is known as the intrinsic rate of growth or net growth rate. Separating the 

variables of (2.4), we get  

      
𝑑𝑥

𝑥
= α 𝑑𝑡   

On integrating both side, we get  

    𝒍og x  =  𝛼𝑡 +  𝐶, where C is a constant. 

Initially,   when   𝑡 =  0,  𝑥 =  𝑥0 ,  so that  𝐶 =  𝑙𝑜𝑔 𝑥0 

Therefore,      𝑙𝑜𝑔 𝑥 =  𝛼𝑡 +  𝑙𝑜𝑔 𝑥0  

or            𝑙𝑜𝑔 (𝑥/𝑥0)  =  𝛼𝑡  

or           𝑥 (𝑡)  =  𝑥0  𝑒
𝛼𝑡                                               (2.5) 

Equation (2.5) gives the population size at any time. 

          Also, let us assume that, increase     𝛼 >  0, at time 𝑇1 population will become double of 

its initial population i.e.,   𝑥 (𝑇1)  =  2𝑥0,   then from (2.5), we have  

                    2x0 = x0  𝑒𝛼𝑇1             𝑜𝑟             𝑒𝛼𝑇1 = 2  

or         T1  =  
1

𝛼 
 𝑙𝑜𝑔2                          (2.6) 

This time T1 is called doubling period of population and it is independent from initial population. 

It depends on net growth rate. Thus greater the value of α1, smaller the doubling period.   



          In case 𝛼 <   0, let us assume that at time  𝑇2, the population will become half its initial 

value 𝑥0 i.e.   𝑥  (𝑇2)  =  
1

2
 𝑥0,   then from (2.5), we have  
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         This time 𝑇2 is also important from initial population and also 𝑇2 > 0. This time 𝑇2 is called 

half-life period of the population and greater the value of  𝛼, smaller the value of  𝑡2 , 

         (i)  Now if we plot  
1

𝑥

𝑑𝑥

𝑑𝑡
  against x, we get a straight line parallel to   𝑡 − 𝑎𝑥𝑖𝑠 

         (ii) If we plot 
 𝑑𝑥

𝑑𝑡
 against x, we get straight line through the origin. 

EFFECTS OF IMMIGRATION AND EMIGRATION ON POPULATION:  

           First of all we define Immigration and Emigration. The process, in which some individual 

are added from outside to the population is known as Immigration. The process, in which some 

individual went out of the population, is known as Emigration. If immigration into the population 

from outside is at a rate proportional to the population size, the effect is equivalent to increasing 

the birth rate. Similarly, if emigration from the population is at rate proportional to the 

population size, the effect is equivalent to increasing in the death rate.  

          If emigration and immigration take place constant rate I and e respectively, then the rate of 

change in population is given by  
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         This equation gives the population at time 𝑡 in the presence of immigration and emigration. 

We see that the growth the of the population depend upon two terms: first the exponential 

function x0 𝑒𝛼𝑡, which depend upon α alone, and second 
𝛽

𝛼
 (𝑒𝛼𝑡 − 1), which is also rapidly 

increasing but depends on both α and β and the contribution of due to net immigration.  

APPLICATIONS OF THE MODEL:  

         The applications of this geometric model possibly will facilitate to elucidate an 

organization and nature phenomena likely, Microbiology (growth of bacteria), Conservation 

biology (restoration of disturbed population), Insects rearing (Prediction of yield), Plant or insect 

quarantine (population growth of introduced species), Fishery (prediction of fish dynamics). 

Some other applications are military campaigns, resource allocation for water distribution, 

dispatch of distributed generators, lab experiments, transport problems, communication 

problems, among others. 

LIMITATIONS OF THE MODEL: 

          In an ideal scenario where the availability of space, food, and resources doesn't limit 

growth, biological populations typically exhibit initial exponential growth. However, as the 

population size increases significantly, overcrowding begins to impede growth. Consequently, 

the net growth rate is not constant; instead, it varies depending on the population's size. 



PROPOSITIONS OF THIS MODEL: 

   The principles outlined by Malthus can be concisely captured in the ensuing statements: 

1. "Food is an indispensable requirement for human survival, and consequently, it serves as 

a significant constraint on population growth. In simpler terms, the population is 

inherently restricted by the availability of sustenance (i.e., food)." 

2. "The rate of population growth surpasses that of food production. While the population 

expands exponentially, food production grows at a linear rate." 

3. "Population tends to rise when the resources for sustenance increase, unless it is 

restrained by significant checks”. 

 

CONCLUSIONS:  

The Malthusian theory suggests that, during the agricultural stage of development, social 

surpluses beyond the maintenance of subsistence consumption was channeled primarily into 

population growth with negligible lengthy sprint ejects on income per capita. As such, at any 

point in time, population density in a given region would have largely reflected its carrying 

capacity, determined by the effective resource constraints that were binding at that point in time. 

The Malthusian theory predicts that provincial deviation in population solidity in the lengthy 

sprint would eventually reproduce variations in earth production and biogeographic attributes.  
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