
DECOMPOSABLE OF SINGLE-TIME AND MULTI-TIME GEOMETRIC 

DYNAMICS ON RIEMANN-KAEHLERIAN MANIFOLDS 

 

Preeti Chauhan1 and U.S. Negi2   

1,2Department of Mathematics, 

H.N.B. Garhwal University (A Central University), 

S.R.T. Campus Badshahi Thaul, Tehri Garhwal – 249 199, Uttarakhand, India. 

E-mail: ;  1preetichauhan1011@gmail.com ;  2usnegi7@gmail.com 

 

Abstract:  

Samuelson (1970), has studied the law conservation of capital-output ratio. After that, 

Isvoranu and Udriste (2006), locate fluid flow versus Geometric Dynamics and achieved 

from metrics to dynamics and flows and winds. Also, Gay-Balmaz, Holm and Ratiu (2009) 

stumble on Geometric dynamics of optimization.  In this paper, the author calculated 

decomposable single-time and multi-time dynamics on Riemann-Kaehlerian manifolds.    
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1. Introduction: ` 

The single-time dynamics we identify with an ordinary differential equation related to 

Newton second law. A second-order elliptic partial differential equation elucidates a dynamic 

that occurs across multiple time instances. Any ordinary differential equation is malformed 

addicted to a one-flow or any partial differential equation is malformed addicted to an m-flow 

in any satisfactorily huge dimension. The spatial geometry transforms the mono-flow 

dependency into a geodesic movement within a gyroscope-influenced field of forces. 

Similarly, the dual spatial geometry alters the multi-flow into harmonically mapped 

distortions under the influence of the gyroscopic field of forces. [Udriste (2005); Udriste and 

Bejenaru (2012)]. 

The equations of mechanics might appear differently in terms of their form: �̇�(𝑡) =

𝑋(𝓍(𝑡)), The ordinary differential equations of the form 𝐹(𝓍(𝑡), 𝓍 ̇ (𝑡), �̈�(𝑡), 𝓍(𝑡)) = 0.  

Occasionally termed "jerk equations" involving third-order derivatives have been shown to 

accurately represent the fundamental setup where solutions display chaotic behaviour in a 

mathematically precise fashion. It has been proven that these jerk equations correspond to a 

system of three initial nonlinear first ODE, capturing the most minimal configuration for 

chaotic dynamics. 

�̇�(𝑡) = 𝑦(𝑡),  �̇�(𝑡) = 𝑧(𝑡),  �̇�(𝑡) = ∅(𝓍(𝑡), 𝑦(𝑡), 𝑧(𝑡)). 
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This pertains to a Lagrangian system existing on the jet space defined by coordinates 

(𝑡, 𝓍, 𝑦, 𝑧, 𝓍,̇ 𝑦,̇ �̇�), along with its associated geometric dynamics in relation to the Riemannian 

metric 𝑔𝑖𝑗(𝓍). 

2L1 = (�̇�(𝑡) − 𝑦(𝑡))2 + (�̇�(𝑡) − 𝑧(𝑡))2 + (�̇�(𝑡) − ∅(𝓍(𝑡), 𝑦(𝑡), 𝑧(𝑡)))2 

(�̇� − ∅)∅𝓍 + �̇� − �̇� = 0, (�̇� − ∅)∅𝑦 + �̇� − �̇� = 0, 

(�̇� − ∅)∅𝑧 + 𝐷𝑡(�̇� − ∅)) = 0. 

Further usually, given a set of n Lagrangians: 

 𝐿𝑖(𝑡, 𝓍(𝑡), �̇�(𝑡)),    𝑖 = 1, 𝑛,̅̅ ̅̅ ̅  𝓍(𝑡) = (𝓍1(𝑡), … . , 𝓍𝑛(𝑡)), 𝓉 ∈ 𝐼 ⊂ 𝑅,  

ℒ =
1

2
𝑔𝑖𝑗(𝓍(𝑡))𝐿𝑖(𝑡, 𝓍(𝑡), �̇�(𝑡))𝐿𝑗(𝑡, 𝓍(𝑡), �̇�(𝑡)). 

The solution to a system of ordinary differential equations is given by the Extremely 

Euler-Lagrange method.  

1

2

𝜕𝑔𝑖𝑙

𝜕𝓍𝑘
𝐿𝑖𝐿𝑗 + 𝑔𝑖𝑗𝐿𝑖

𝜕𝐿𝑗

𝜕𝓍𝑘
− 𝐷𝑡 (𝑔𝑖𝑗𝐿𝑖

𝜕𝐿𝑗

𝜕𝓍𝑘
) = 0. 

If the Lagrangian Li is connected to ordinary differential equations Li(𝑡, 𝓍(𝑡), �̇�(𝑡)) = 0, then 

the extremals have solutions to the dynamics and that equation is decomposable [Mihlin 

(1983); Stefanescu and Udriste (1993); Furi (1995); Treanta and Udriste (2013)]. 

Let 𝑢(𝓍, 𝑡) be the density of the diffusive material at location 𝓍 ∈  𝑅𝑛 and time 𝑡 ∈

 𝑅. Let 𝑔𝑖𝑗(𝑢(𝓍, 𝑡), 𝓍), 𝑖, 𝑗 = 1, 𝑛,̅̅ ̅̅ ̅ be the collective spreading coefficient for density 𝑢 at 

location 𝓍. The spreading partial differential equations are:  

𝜕𝑢

𝜕𝑡
(𝓍, 𝑡) =

𝜕

𝜕𝓍𝑖 (𝑔𝑖𝑗(𝑢(𝓍, 𝑡), 𝓍)
𝜕𝑢

𝜕𝓍𝑗 (𝓍, 𝑡). 

If the behaviour relies on both density and diffusion coefficient variations, The diffusion 

equation exhibits nonlinearity; otherwise, it remains linear. Moreover, in cases where 

𝑔𝑖𝑗(𝑢(𝓍, 𝑡), 𝓍   forms a symmetric positive definite matrix, the equation characterizes 

anisotropic diffusion. [Arnold (1969); Chorin and Marsden (2000); Udriste and Teleman 

(2004)].  

The equivalent first-order non-linear partial differential equations is diffusion partial 

differential equations  

𝜕𝑢

𝜕𝓍𝑗 = 𝑣𝑗 ,    
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝓍𝑖 (𝑔𝑖𝑗𝑣𝑗),  

The limitation on evolution (𝓍, 𝑡)  occurs in an (𝑛 + 1) - dimensional context. A Riemannian 

metric ℎ𝑖𝑗(𝑢(𝓍, 𝑡), 𝓍)  gives rise to a Lagrangian that minimizes the sum of squares. 

2𝐿2 = ℎ𝑖𝑗 (
𝜕𝑢

𝜕𝓍𝑖
− 𝑣𝑖) (

𝜕𝑢

𝜕𝓍𝑗
− 𝑣𝑗) + (

𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝓍𝑖
(𝑔𝑖𝑗𝑣𝑖))

2

, 

On the jet space of coordinates (𝓍, 𝑡, 𝑢, 𝑣, 𝑢𝑥, 𝑢𝑡 , 𝑣𝑥, 𝑣𝑡). Then Euler-Lagrange equations are 



1

2

𝜕ℎ𝑖𝑗

𝜕𝑢
(

𝜕𝑢

𝜕𝑥𝑖
− 𝑣𝑖) (

𝜕𝑢

𝜕𝑥𝑗
− 𝑣𝑗) + (

𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥𝑖
(𝑔𝑖𝑗𝑣𝑗)) (−

𝜕

𝜕𝑥𝑖
(

𝜕𝑔𝑖𝑗

𝜕𝑢
𝑣𝑗))    

− 𝐷𝑥𝑖 (ℎ𝑖𝑗 (
𝜕𝑢

𝜕𝑥𝑗
− 𝑣𝑗)) − 𝐷𝑡 (

𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥𝑖
(𝑔𝑖𝑗𝑣𝑗)) = 0, 

Or 𝑔𝑙𝑚𝐷𝑥𝑚 (
𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥𝑖
(𝑔𝑖𝑗𝑣𝑗)) = 0. 

Again, consider an orientable manifold denoted as T, with the coordinates 𝑡 =

(𝑡1, … . , 𝑡𝑚) and let M be another manifold with coordinate  𝑥 = (𝑥1, … . , 𝑥𝑛). Utilizing a set 

of m smooth vector fields, denoted as 𝑋𝛼(𝑡, 𝓍) of class 𝑐∞ on T × 𝑀, we can represent the 

spreading by means of pfaff equations. 

𝑑𝓍𝑖(𝑡) − 𝑋𝛼
𝑖 (𝑡, 𝓍)𝑑𝑡𝛼 = 0,     𝑖 = 1, 𝑛̅̅ ̅̅ ̅,   𝛼 = 1, 𝑚.̅̅ ̅̅ ̅̅  

Constructing a least squares Lagrangian for non-decomposable dynamics involves utilizing 

the metric tensors ℎ𝛼𝛽(𝑡), 𝑔𝑖𝑗(𝑡) along with the components 
𝜕𝓍𝑖

𝜕𝑡𝛼
(𝑡) − 𝑋𝛼

𝑖 (𝑡, 𝓍)  of the 

pullbacks. 

𝐿 =
1

2
𝑔𝑖𝑗ℎ𝛼𝛽 (

𝜕𝑥𝑖

𝜕𝑡𝛼
(𝑡) − 𝑋𝛼

𝑖 (𝑡, 𝑥)) (
𝜕𝑥𝑗

𝜕𝑡𝛽
(𝑡) − 𝑋𝛽

𝑗(𝑡, 𝑥)) √𝑑𝑒𝑡(ℎ𝛼𝛽) > 0 

Further generally being given n, m Lagrangians from: 

 𝐿𝛼
𝑖 (𝑡, 𝑥(𝑡), 𝑥𝛾(𝑡)) , 𝑖 = 1, 𝑛̅̅ ̅̅ ̅,   𝛼 = 1, 𝑚.̅̅ ̅̅ ̅̅  𝑥(𝑡) = 

                                      (𝑥𝑖(𝑡), … . 𝑥𝑛(𝑡)) , 𝑡 = (𝑡1, … . , 𝑡𝑚) ∈ 𝐼 ⊂ T, 

Subsequently, the corresponding Lagrangian density for least squares in related to the 

Riemannian metrics 𝑔𝑖𝑗(𝑥)ℎ𝛼𝛽(𝑡), ℎ𝛼𝛽(𝑡) is formulated as follows: 

ℒ = 
1

2
𝑔𝑖𝑗(𝑥(𝑡))ℎ𝛼𝛽(𝑡)𝐿𝛼

𝑖 (𝑡, 𝑥(𝑡), 𝑥𝛾(𝑡)) 𝐿𝛽
𝑗

(𝑡, 𝑥(𝑡), 𝑥𝛾(𝑡)). 

If we consider a subset T ⊂ 𝑅𝑚, the solutions that extremize the Euler-Lagrange 

partial differential equation system can be described as follows: 

1

2

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
ℎ𝛼𝛽𝐿𝛼

𝑖 𝐿𝛽
𝑗

+ 𝑔𝑖𝑗ℎ𝛼𝛽𝐿𝑖
𝜕𝐿𝛽

𝑗

𝜕𝑥𝑘
− 𝐷𝛾 (𝑔𝑖𝑗ℎ𝛼𝛽𝐿𝛼

𝑖
𝜕𝐿𝑗

𝜕𝑥𝛾
𝑘) = 0. 

If the Lagrangian  𝐿𝛼
𝑖  is associated to the partial differential equation 𝐿𝛼

𝑖 (𝑡, 𝑥(𝑡), 𝑥𝛾(𝑡)) = 0, 

The solutions of that equation are given by the extremals, and the decomposability property 

holds for the dynamics [Lovelock and Rund (1975)]. 

2. SINGLE-TIME GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN 

MANIFOLDS: 

Consider a differentiable manifold denoted as M, and let I be a nontrivial interval 

contained with the real number, R. we define a non-autonomous first order differential 



equation on the manifold M as the mapping of a non-autonomous 𝐶∞  vector field X ∶ 𝑉 →

𝑅𝑛, where V represents an open subset of R × 𝑀. This vector field remains consistently 

aligned with M for all values of t in the real numbers, for any all 𝑡 ∈ R, the map 𝑋𝑡: 𝑉𝑡 →

𝑅𝑛 holds, defined as  𝑋𝑡(𝑥) = 𝑋(𝑡, 𝑥), signifying a tangent vector field on the open subset 

𝑉𝑡 = {𝑥 ∈  𝑀 | (𝑡, 𝑥)  ∈  𝑉} of 𝑀. [Furi (1995] 

�̇� = 𝑋(𝑡, 𝑥), (𝑡, 𝑥)  ∈  𝑉.                                                                                                     (2.1) 

The solution to differential Equation (2.1) corresponds to a function  𝑥: 𝐼 → 𝑀 that 

belongs to the class 𝐶1 . the function has the property that for every t in the interval I, the 

point  (𝑡, 𝑥(𝑡))  ∈  𝑉. additionally, the derivative of 𝑥(𝑡), denoted as �̇�(𝑡) =

𝑋(𝑡, 𝑥(𝑡)) for all 𝑡 in I. Specifically considering the Cauchy problem, a resolution to the 

ordinary differential equation (2.1) is sought, which adheres to the original condition 

 𝑥(𝑡0) = 𝑥0. Under these circumstances, it can be concluded Then the solution of this Cauchy 

problem not only exists but is also unique. 

Let 𝐹: 𝑅 × 𝑇𝑀 → 𝑅𝑛   be a 𝐶∞  map. An equality of the type: 

�̇� = 𝐹(𝑡, 𝑥, �̇�), (𝑡, 𝑥, �̇�)  ∈  𝑅 × 𝑇𝑀.                                                                                  (2.2) 

Designated as a second-order differential equation on M, given the condition of a connected 

vector field. [Furi (1995)]: 

𝐺: 𝑅 × 𝑇𝑀 → 𝑅𝑛 × 𝑅𝑛, 𝐺(𝑡, 𝑥, 𝑦) = (𝑦, 𝐹(𝑡, 𝑥, 𝑦)) 

is tangent to TM, i.e., (𝑦, 𝐹(𝑡, 𝑥, 𝑦))  ∈ 𝑇(𝑥,𝑦)𝑇𝑀 ∀ (𝑡, 𝑥, 𝑦) ∈ 𝑅 × 𝑇𝑀.  A solution of the 

differential Equation (2.2) is a 𝐶2 curve 𝑥: 𝐼 → 𝑅𝑛, in such a way that 𝑥(𝑡) ∈ 𝑀  and �̈�(𝑡) =

𝐹(𝑡, 𝑥(𝑡), �̇�(𝑡)),  identically on I. In the case of The Cauchy problem, a solution of the 

ordinary differential equation (2.2) which satisfies the preliminary conditions   𝑥(𝑡0) =

𝑥0,   �̇�(𝑡0) = 𝑣. The solution to this initial value problem exists and is singular. When 

employing the constituents, the equations (2.1) and (2.2) are referred to as first-order and 

second-order systems of ordinary differential equations, respectively.  

Let’s begin with the triple (M, g, X), where M  represents a manifold with a 

dimension of 𝑛, 𝑔(𝑥) = (𝑔𝑖𝑗(𝑥)) , for i, j ranging from 1 to n, is a smooth, time-dependent 

vector field in the manifold M. Consider that the Levi-Civita connection ∇ associated with 

the (𝑀, 𝑔) pair is described by the components 𝐺𝑗𝑘
𝑖 , where  𝑖, 𝑗, 𝑘 take value from 1 𝑡𝑜 𝑛. 

Definition 2.1 Use the notations: 

𝐹𝑗 = (𝐹𝑗
𝑖), 𝐹𝑗

𝑖 = ∇𝑗𝑋𝑖 − 𝑔𝑖ℎ𝑔𝑘𝑗∇ℎ𝑋𝑘,   𝑓 =
1

2
𝑔(𝑋, 𝑋).  

A function 𝐹: 𝑅 × 𝑇𝑀 → 𝑅𝑛 is consider to be produced by the pair (𝑋, 𝑔) if it can be 

expressed in the following manner:  

𝐹 = −𝐺𝑗𝑘�̇�𝑗�̇�𝑘 + 𝐹𝑗�̇�𝑗 + ∇f +
𝜕

𝜕𝑡
𝑋. 



If F arises from the combination of X and g, then the differential equation (2.2) represents a 

form of geometric dynamics occurring at a specific time, akin to motion along a geodesic 

path within a gyroscopic force field. Drawing an analogy to the way force systems are 

simplified in mechanics, involving resultants and momentum, the breakdown of the solution 

set leads back to the concepts of flow and motion within the gyroscopic force field. [Udriste 

(2000); Udriste (2004); Udriste (2005); Isvoranu, and Udriste (2006) and Udriste and 

Bejenaru (2012)]. 

Theorem 2.1 If  𝐹: 𝑅 × 𝑇𝑀 → 𝑅𝑛  is generated by the pair (𝑋, 𝑔), then the set of maximal 

solutions of ODE (2.2) is decomposable into a subset corresponding to the initial values 

𝑥(𝑡0) = 𝑥0,   �̇�(𝑡0) = 𝑋( 𝑡0, 𝑥(𝑡0)), 

results which are reducible to solutions of the ordinary differential equation (2.1), and a 

subset of solutions corresponding to the preliminary values 

𝑥(𝑡0) = 𝑥0, �̇�(𝑡0) = 𝑊 ≠ 𝜆𝑋(𝑡0, 𝑥(𝑡0)), 𝜆 > 0, 

transversal to the solutions of the ordinary differential equation (2.1).  converse is also true. 

Proof. According to the theorem of existence and uniqueness, any solution x(t) derived from 

a second-order continuous or first-order ordinary differential equation (ODE) system 

possesses the following characteristic: 

�̇�(𝑡0) = 𝑋(𝑡0, 𝑥(𝑡0))  ⇒   �̇�(𝑡) = 𝑋(𝑡, 𝑥(𝑡)), ∀ 𝑡 ∈ 𝐼. 

A Riemannian metric g and a flow X together give rise to a Lagrangian of least squares 

nature. 

𝐿(𝑡, 𝑥, �̇�) =
1

2
𝑔(�̇� − 𝑋(𝑡, 𝑥), �̇� − 𝑋(𝑡, 𝑥)). 

The Euler-Lagrange ordinary differential equations represent a seamless extension of 

the trajectory in a geometric sense. These equations effectively describe a separable and 

dynamic motion along geodesic paths within fields of forces akin to gyroscopic effects. These 

geodesic paths are interwoven with additional trajectories that are influenced by the spatial 

geometry. 

Theorem 2.2 If the function   𝐹: 𝑇𝑀 → 𝑅𝑛 is generated by X and g, X is an autonomous 

vector field then the set of maximal solutions of ordinary differential equation (2.2) divides 

into three parts i. e. Curves [𝑥(𝑡), 𝐻(𝑥(𝑡))] = 𝑐𝑜𝑛𝑠𝑡 = 0; > 0; < 0.  

Proof.  We have from Hamiltonian: 

𝐻(𝑡, 𝑥, �̇�) =
1

2
𝑔(�̇� − 𝑋(𝑡, 𝑥), �̇� − 𝑋(𝑡, 𝑥)) =

1

2
(𝑔(�̇�, 𝑥)̇ − 𝑔(𝑋, 𝑋)) = 𝐻(𝑥, �̇�), 

The curves 𝑥(𝑡)  with 𝐻(𝑥(𝑡)) = 𝑐𝑜𝑛𝑠𝑡 = 0 are solutions of ordinary differential equation 

(2.1). The solutions with  𝐻(𝑥(𝑡)) = 𝑐𝑜𝑛𝑠𝑡 ≠ 0, are transversal to solutions of ordinary 

differential equation (2.1).  



For any given ordinary differential equation, the resulting flow within the phase space creates 

a geometric dynamic when combined with the inherent phase space geometry. However, 

complications arise when dealing with a flow that is subject to constraints. 

Let's examine the elements (M, X, g, Γ) where M represents a Riemannian manifold, 

X stands for a flow within M, g corresponds to a fundamental tensor field, and Γ represents a 

symmetric connection. Together, these components (X, g, Γ) give rise to an expanded 

geometric motion on M, which is defined by systems of ordinary differential equations 

(ODEs). 

�̈�𝑖(𝑡) = (𝛿𝑘
𝑖 𝛿𝑗

𝑙 − 𝑔𝑘𝑗𝑔𝑙𝑖)𝑋,   𝑙
𝑘 �̇�𝑗(𝑡) +

𝜕𝑋𝑖

𝜕𝑡
𝑔𝑘𝑗𝑔𝑙𝑖𝑋,   𝑙

𝑘 𝑋𝑗. 

In Riemannian manifold ((0,∞), 𝑔(𝑥) = 1), take the flow �̇� = 1. We assign the least 

squares lagrangian 𝐿1 = (�̇� − 1)2, with Euler-Lagrange equation �̈� = 0. On any other 

Riemannian manifold ((0,∞), 𝑔(𝑥)), we find the least squares Lagrangian 𝐿2 =

𝑔(𝑥)(�̇� − 1)2, with Euler-Lagrange equation �̈� =
𝑔′(𝑥)

2𝑔(𝑥)
(1 − �̇�)(1 + �̇�). Here, Γ(𝑥) =

𝑔′(𝑥)

2𝑔(𝑥)
  is  a linear connection. We have the option to broaden the preceding ordinary 

differential equation into a system of ordinary differential equations. 

�̈�𝑖(𝑡) = 𝑎0
𝑖 (𝑥(𝑡)) + 𝑎𝑗

𝑖(𝑥(𝑡))�̇�𝑗(𝑡) + 𝑏𝑗𝑘
𝑖 (𝑥(𝑡))�̇�𝑗(𝑡)�̇�𝑘(𝑡), 𝑖, 𝑗, 𝑘 = 1, … , 𝑛, 

with possible disorder in velocities. 

Consider a differentiable manifold of dimension n, denoted as M, and let I⊂R 

represent a nontrivial interval. In the case where the ordinary differential equation system 

(2.2) corresponds to a Euler-Lagrange system on the manifold M, with respect to a regular 

Lagrangian function 𝐿(𝑡, 𝑥, �̇�), then there exists a fundamental tensor field 𝑔 = (𝑔𝑖𝑗)  on TM 

s.t.: 

𝑔𝑖𝑗(𝑡, 𝑥, �̇�) =
1

2

𝜕2𝐿

𝜕�̇�𝑖𝜕�̇�𝑗
(𝑡, 𝑥, �̇�), 𝑖, 𝑗 = 1, … . , 𝑛. 

On the other hand, when provided with 𝑔𝑖𝑗(𝑡, 𝑥, �̇�),  the task is to find 𝐿(𝑡, 𝑥, �̇�). Under these 

circumstances, by employing two consecutive line integrals of the second kind, we are able to 

express 

𝐿(𝑡, 𝑥, �̇�) = ∫ ∫ 𝑔𝑖𝑗(𝑡, 𝑥, �̇�)
𝛾�̇�0�̇�

𝑑�̇�𝑖𝑑�̇�𝑗 + 𝑎𝑖(𝑡, 𝑥)�̇�𝑖 + 𝑏(𝑡, 𝑥).
𝛾�̇�0�̇�

  

The pair (𝑀, 𝑔) is called a Lagrangian manifold. 

3. MULTI-TIME GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN 

MANIFOLDS. 

We start with an operator ((𝑇, ℎ), (𝑀, 𝑔),  𝑋𝑛), where:  

(i) (𝑇, ℎ) represents an oriented Riemannian manifold with a dimension of m. It 

possesses local coordinates denoted as 𝑡 = (𝑡𝛼), where α ranges from 1 to m. The manifold is 

equipped with a metric tensor denoted as ℎ𝛼𝛽, along with Christoffel symbols given by 𝐻𝛽𝛾 
𝛼 .  



(ii) Consider the Riemannian manifold (M, g) with dimension n, where 𝑥 = (𝑥𝑖) 

represents the local coordinates, 𝑔𝑖𝑗 is the metric tensor, and 𝐺𝑗𝑘
𝑖  denotes the Christoffel 

symbols. 

(iii) 𝑋𝛼(𝑡, 𝑥) = (𝑋𝛼
𝑖 (𝑡, 𝑥)), 𝛼 = 1, … , 𝑚; 𝑖 = 1, … , 𝑛 are 𝐶∞ vector fields on M, 

dependent on  (𝑡, 𝑥) which describe the first order PDE system: 

𝜕𝑥

𝜕𝑡𝛼
(𝑡) = 𝑋𝛼(𝑡, 𝑥(𝑡)).                                                                                                       (3.1) 

Theorem 3.1 The existence of a unique solution for the Cauchy problem, which includes the 

partial differential equation system (3.1) and the initial condition 𝑥(𝑡0) = 𝑥0 , is guaranteed 

only when the system is completely integrable. This equivalence holds: 

ℎ𝛼𝛽 𝜕2𝑥

𝜕𝑡𝛼𝜕𝑡𝛽
(𝑡) = 𝐹 (𝑡, 𝑥(𝑡), 𝑥𝛾(𝑡)) , (𝑡, 𝑥, 𝑥𝛾)𝐽1 ∈ (𝑇, 𝑀)                                              (3.2) 

is called a second order elliptical partial differential equation on M. 

Proof: Consider a hypersurface Γ: G(t) = 0 within T, which passes through the point 𝑡0 . Let 

⋀(t) represent a unit vector field along Γ that intersects it in a transversal manner. Let 𝜑0(𝑡) 

and 𝜑1(𝑡)  be vector functions with n components defined on Γ. The first function belongs to 

class 𝐶1, while the second function is of class 𝐶0. We are concerned with the Cauchy 

problem associated with partial differential equation (3.2) [Mihlin (1983)] and find in a 

unilateral neighbourhood of Γ, the solution of the PDE (3.2) satisfying the Cauchy 

conditions: 

𝑥(𝑡)|Γ = 𝜑0(𝑡), 𝐷ᴧ𝑥(𝑡)|𝛤 = 𝜑1(𝑡).                                                                                 (3.3) 

Hence the solution of this Cauchy problem exists and it is unique. 

From, Cauchy conditions at function 𝑥(𝑡) on the Cauchy surface  Γ, initially, 

 

∂x

∂tα
|
Γ

=
∂φ

0

∂tα
(t), α = 1, … , m − 1 

 

and then the equalities: 

𝜑1(𝑡) = 𝐷ᴧ𝑥(𝑡)|𝛤 =
𝜕𝑥

𝜕𝑡𝛼
(𝑡)⋀𝛼(𝑡), 

Together with ⋀𝑚 ≠ 0, 𝑔𝑖𝑣𝑒 

 
𝜕𝑥

𝜕𝑡𝑚
(𝑡)|𝛤 =

1

⋀𝑚(𝑡)
[𝜑1(𝑡) − ∑

𝜕𝜑0

𝜕𝑡𝛼 (𝑡)𝑚−1
𝛼=1 ⋀𝛼(𝑡)].  

The preliminary conditions (3.3) are equivalent either to the preliminary conditions: 

𝑥(𝑡)|𝛤 = 𝜑0(𝑡),
𝜕𝑥

𝜕𝑡𝑚
(𝑡)|𝛤 = 𝑊𝑚(𝑡) and 

𝑥(𝑡)|𝛤 = 𝜑0(𝑡),
𝜕𝑥

𝜕𝑡𝛼
(𝑡)|𝛤 = 𝑊𝛼(𝑡), 𝛼 = 1, … , 𝑚. 



Regarding the complete set of integrability conditions and the compatibility condition with 

respect to 𝜑0. 

Definition 3.2 Using the vector field 𝑋𝛼, the metric tensor ℎ𝛼𝛽, 𝑔𝑖𝑗, and the Christoffel 

symbols 𝐻𝛽𝛾
𝛼 ,  𝐺𝑗𝑘

𝑖 , we define:  

𝐹𝑗𝛼
𝑖 = ∇𝑗𝑋𝛼

𝑖 − 𝑔𝑖ℎ𝑔𝑘𝑗∇ℎ𝑋𝛼
𝑘,    𝑓 =

1

2
ℎ𝛼𝛽𝑔𝑖𝑗𝑋𝛼

𝑖 𝑋𝛽
𝑗
 

and 

∇𝑗𝑋𝛼
𝑖 =

𝜕𝑋𝛼
𝑖

𝜕𝑋𝑗
+ 𝐺𝑗𝑘

𝑖 𝑋𝛼
𝑘,     𝐷𝛽𝑋𝛼

𝑖 =
𝜕𝑋𝛼

𝑖

𝜕𝑋𝑗
− 𝐻𝛼𝛽

𝛾
𝑋𝛾

𝑖 . 

The function 𝐹: 𝐽1(𝑇, 𝑀) → 𝑅𝑛 is said to be generated by the operator (𝑋𝛼, ℎ, 𝑔) if it is of the 

form:  

𝐹 = ℎ𝛼𝛽 (−𝐺𝑗𝑘𝑥𝛼
𝑗

𝑥𝛽
𝑘 + 𝐻𝛼𝛽

𝛾
𝑥𝛾 + 𝐹𝑗𝛼𝑥𝛽

𝑗
+ 𝑔𝑘𝑗(∇𝑋𝛼

𝑘)𝑋𝛽
𝑗

+ 𝐷𝛽𝑋𝛼). 

Theorem 3.2 If 𝐹: 𝐽1(𝑇, 𝑀) → 𝑅𝑛 is created by the triplet (𝑋𝛼, ℎ, 𝑔) then the set of maximal 

solutions of partial differential equation (3.2) is decomposable into a subset corresponding to 

the preliminary values: 

𝑥(𝑡)|𝛤 = 𝜑0(𝑡),
𝜕𝑥

𝜕𝑡𝛼
(𝑡)|𝛤 = 𝑋𝛼(𝑡, 𝑥(𝑡)), 

solutions which are reducible to solutions of partial differential equation (3.1), and a subset of 

solutions corresponding to the preliminary values: 

𝑥(𝑡)|𝛤 = 𝜑0(𝑡),
𝜕𝑥

𝜕𝑡𝛼
(𝑡)|𝛤 = 𝑊𝛼(𝑡) ∉ 𝐾+{𝑋𝛼(𝑡, 𝑥(𝑡))}, 

A transversal intersecting the solutions of Partial Differential Equation (3.1) demonstrates the 

same truth in reverse. 

Proof. Let solution 𝑥 = 𝑥(𝑡) of any second order continuation of the first order partial 

differential equation system has the property: 𝑋𝛼(𝑡0) = 𝑋𝛼(𝑡0, 𝑥(𝑡0)) implies 𝑋𝛼(𝑡) =

𝑋𝛼(𝑡, 𝑥(𝑡)), ∀ 𝑡 ∈ 𝑇. Any m-flow 𝑋𝛼  and two Riemannian metrics h and g determine a least 

squares Lagrangian density: 

𝐿(𝑡, 𝑥, 𝑥𝛾) =
1

2
ℎ

𝛼𝛽𝑔𝑖𝑗(𝑥𝛼
𝑖 − 𝑥𝛼

𝑖 (𝑡, 𝑥)) (𝑥𝛽
𝑗

− 𝑥𝛽
𝑗
(𝑡, 𝑥)). 

The Euler-Lagrange Partial differential equations denote a continuation of the m-flow 

and just a decomposable dynamic. Once again, a typical partial differential equation 

generates a multi-dimensional flow within the phase space. This, in conjunction with the 

geometry of the phase space, results in a dynamic with a distinct geometric interpretation. 

This principle holds for all partial differential equations; however, complications arise when 

dealing with a multi-dimensional flow subject to constraints. 

Let's explore the tuple (T, h, H), where T signifies a Kahlerian manifold, h represents 

a fundamental tensor field, and H indicates a symmetric connection. Introducing the operator 

(𝑀, 𝑋𝛼, 𝑔, 𝐺), where M stands for a Kahlerian manifold,   𝑋𝛼   denotes an m-flow on M, g is a 

fundamental tensor field, and G is a symmetric connection (derivation). The pentad 

 (𝑋𝛼; ℎ, 𝐻; 𝑔, 𝐺) gives rise to an expanded geometric dynamic on T×M. 
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