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1 Abstract

In this paper we proposed a prey predator model to study systematically the
dynamical properties of the model with non-linear prey and predator harvesting
. Here we have shown that the system is positive and uniformly bounded by
applying mathematical tools. We also obtained equilibrium points and analyzed
bifurcations at these equilibrium points. The existence and stability of interior
equilibrium point are analyzed. Saddle-node , transcritical , and hopf bifurcation
are shown in this paper by varying values of parameter.Here we analyzed local
and global stability and got different conditions to see the system are stable or
not at equilibrium points.. In this paper we also have shown the permanence of
the system under obtained condition. Numerical simulations using MATLAB
are carried out as supporting evidences of our analytical findings. The main
purpose of the present work is to offer a complete mathematical analysis for the
model.

2 Introduction

Volterra proposed a prey predator model under the assumptions: (1) prey grows
logistically in absence of predators, (2) in the absence of prey , predators die
exponentially and (3) the biomass at which a predator consumes prey is a linear
function of prey density. The model with the above assumption is given by

dx

dt
= rx(1− x

k
)− axy (1)

dy

dt
= maxy − dy (2)
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Where x and y denote the prey and predator density respectively at time t.r and
k are intrinsic growth rate and environmental carrying capacity for prey popu-
lation. a is the encounter rate at which predators kill prey, m is the conversion
rate of eaten prey into new predators. d is the natural death rate of predators.
There are basically three types of harvesting: (1) Constant harvesting where a
constant number of individuals are harvested per unit time, (2) Proportional
harvesting

H(y) = qEy (3)

Which means the number of individuals harvested per unit time is proportional
to current population. (3) (Holling Type 2) nonlinear harvesting

H(y) =
qEy

m1E +m2y
(4)

Where q is the catchability coefficient, E is the effort, m1 and m2 are suitable
positive constants.
In this section we proposed a prey predator model

dx

dt
= rx(1− x

k
)− c1xy −

c2xy

a+ x
− d1x

2 − q1Ex

dy

dt
= mc1xy +

mc2xy

a+ x
− d2y

2 − dy − q2Ey (5)

subject to positive initial conditions

x(0) > 0, y(0) > 0 (6)

Here x(t) and y(t) are prey and predator density at time t.Where r and k are
intrinsic growth rate and environmental carrying capacity for prey population
respectively. c1 is the encounter rate of at which predators kill prey, m is the
conversion rate of eaten prey into new predators. c2 is the maximum value
of the per capita reduction rate of prey. a measures the extent to which the
environment provides protection to prey and predator. d1, and d2 are the in-
traspecific competition for prey and predator respectively. All the parameters
are assumed to be positive due to biological considerations,

3 Mathematical analysis

3.1 Positivity

Theorem 1. All solutions (x(t), y(t)) of system (9) with initial condition (6)
are positive for all t ≥ 0.

Proof. From the first equation of (9), after integrating it is obtained that

x(t) = x(0) exp[

∫ t

0

{r(1− x(s)

k
)− c1y(s)−

c2y(s)

a+ x(s)
− d1x(s)− q1E}ds] > 0
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Since x(0) > 0
Similarly by integrating the second equation of (9) we get that

y(t) = y(0) exp[

∫ t

0

{mc1x(s) +
mc2x(s)

a+ x(s)
− d2y(s)− d− q2E}ds] > 0

as y(0) > 0
Hence all solutions starting from an interior of the first quadrant remain in it
for all future time.

3.2 Boundedness

Theorem 2. All solutions (x(t),y(t)) of system (9) with initial condition (6)
are uniformly bounded.

Proof. Let us consider

W (t) = x(t) +
1

m
y(t)

Then the time derivative along the solutions of system (9) is given by

dW

dt
+H1W ≤ rx+H1x+

H1

m
y

Now considering

rx+H1x+
H1

m
y = H2

We get

dW

dt
+H1W ≤ H2

Therefore

0 ≤ lim
t→∞

W (t) ≤ H2

H1

as t→ ∞
Hence all solutions of (9) initiating from R2

+ are confined in the region
R = {(x, y) ∈ R2

+ : 0 < x(t) + 1
my(t) < H2 + ϕ, foranyϕ > 0} This proves the

result for uniform boundedness of solutions of system (9).

4 Equilibria

In order to find the equilibria of the system (9), we consider

dx

dt
= 0 (7)

dy

dt
= 0 (8)
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By simple calculation we get the axial equilibria of the system (9) as follows:
(1) Trivial equilibrium point E0 = (0, 0)
(2) Predator free equilibrium point E1 = (x1, 0) where

x1 =
r − q1E
r
k + d1

which exist if r > q1E
(3) interior equilibrium point E∗(x∗, y∗)
where x∗ and y∗ satisfies the following system of equation:

dx

dt
= rx(1− x

k
)− c1xy −

c2xy

a+ x
− d1x

2 − q1Ex = 0

dy

dt
= mc1xy +

mc2xy

a+ x
− d2y

2 − dy − q2Ey = 0

4.1 Local stability analysis

The Jacobian matrix for system is

J =

(
r − 2rx

k − c1y − ac2y
(a+x)2 − 2d1x− q1E −c1x− c2x

a+x

mc1y +
amc2y
(a+x)2 mc1x+ mc2x

a+x − 2d2y − d− q2E

)
So here
tr(J) = r − 2rx

k − c1y − ac2y
(a+x)2 − 2d1x− q1E +mc1x+ mc2x

a+x − 2d2y − d− q2E

and
det(J) = (r− 2rx

k − c1y− ac2y
(a+x)2 −2d1x−q1E)(mc1x+

mc2x
a+x −2d2y−d−q2E)−

(−c1x− c2x
a+x )(mc1y +

amc2y
(a+x)2 )

So if
|det(J)| < 1 then the system is dissipative dynamical system and if |det(J)| = 1
then the system is conservative dynamical system, and is an undissipated system
ottherwise

4.1.1 Stability and dynamic behaviour of E0

At E0(0, 0)

JE0
=

(
r − q1E 0

0 −d− q2E

)
Therefore

E0(0, 0) is
(a) sink if |r − q1E| < 1 and| − d− q2E| < 1
(b)source if |r − q1E| > 1 and| − d− q2E| > 1
(c) saddle if |r−q1E| > 1 and |−d−q2E| < 1, or |r−q1E| < 1 and |−d−q2E| > 1
(d) Non-hyperbolic if |r − q1E| = 1 or | − d− q2E| = 1

4.1.2 Stability and dynamic behaviour of E1

At E1(x1, 0)
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JE1
=

(
r − 2rx1

k − 2d1x1 − q1E −c1x1 − c2x1

a+x1

0 mc1x1 +
mc2x1

a+x1
− d− q2E

)
So here we get the two eigen values which are
r − 2rx1

k − 2d1x1 − q1E and mc1x1 +
mc2x1

a+x1
− d− q2E

So E1(x1, 0) is a
(a) sink if |r − 2rx1

k − 2d1x1 − q1E| < 1 and |mc1x1 + mc2x1

a+x1
− d− q2E| < 1

(b) Source if |r − 2rx1

k − 2d1x1 − q1E| > 1 and |mc1x1 + mc2x1

a+x1
− d− q2E| > 1

(c) Saddle if |r − 2rx1

k − 2d1x1 − q1E| > 1 and |mc1x1 + mc2x1

a+x1
− d − q2E| < 1

or |r − 2rx1

k − 2d1x1 − q1E| < 1 and |mc1x1 + mc2x1

a+x1
− d− q2E| > 1

(d) Non-hyperbolic if |r− 2rx1

k −2d1x1−q1E| = 1 or |mc1x1+mc2x1

a+x1
−d−q2E| = 1

4.1.3 Dynamical behaviour of interior equilibrium point E∗(x∗, y∗)

At E∗(x∗, y∗)

JE∗ =

(
M11 M12

M21 M22

)
Where

M11 = r − 2rx∗

k
− c1y

∗ − ac2y
∗

(a+ x∗)2
− 2d1x

∗ − q1E

M12 = −c1x∗ −
c2x

∗

a+ x∗

M21 = mc1y
∗ +

amc2y
∗

(a+ x∗)2

M22 = mc1x
∗ +

mc2x
∗

a+ x∗
− 2d2y

∗ − d− q2E

Here T = tr(JE∗) =M11 +M22 and D = det(JE∗) =M11M22 −M12M21

If 1− T +D > 0, then interior equilibrium point is a
(a)Sink if 1 + T +D > 0 and D < 1
(b) Source if 1 + T +D > 0 and D > 1
(c) Saddle if 1 + T +D < 0
(d) Non-hyperbolic if 1 + T +D = 0 and T ̸= 0 or T 2 − 4D < 0 and D = 1

4.2 Global Stability Analysis

Theorem 3. The positive interior equilibrium point is globally asymptotically
stable if

c2
(a+ x∗)2

<
r

y∗k
+
d1
y∗

+
d2
x∗

(9)

Proof. To prove the global stability of positive interior equilibrium point E∗(x∗, y∗)
we construct a function L(x, y) = 1

xy
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Clearly L > 0 if x > 0 and y > 0.
Let,

h1(x, y) = rx(1− x

k
)− c1xy −

c2xy

a+ x
− d1x

2 − q1Ex

h2(x, y) = mc1xy +
mc2xy

a+ x
− d2y

2 − dy − q2Ey

So,

∂(h1L)

∂x
+
∂(h2L)

∂y
=

−r
yk

+
c2

(a+ x)2
− d1

y
− d2

x
(10)

So if at E∗(x∗, y∗)
∂(h1L)

∂x + ∂(h2L)
∂y < 0

that is if
−r
y∗k

+ c2
(a+x∗)2

− d1

y∗
− d2

x∗
< 0

Then E∗(x∗, y∗) is globally asymptotically stable

4.3 Permanence

Theorem 4. The system (9) is permanent if
(a) p1(r − q1E) + p2(−d− q2E) > 0
(b)p1[r − rx1

k − d1x1 − q1E] + p2[mc1x1 +
mc2x1

a+x1
− d− q2E] > 0

(c)p1[r(1− x2

k )−c1y2− c2y2

a+x2
−d1x2−q1E]+p2[mc1x2+

mc2x2

a+x2
−d2y2−d−q2E] > 0

Proof. Let the average Lyapunov function for system (9) be

σ(x, y) = xp1y
p
2 (11)

Clearly , σ(x, y) is a non-negative C1 function defined in R2
+ and each pi is

assumed to be positive.Then

ψ(x, y) =
σ(̇x, y)

σ(x, y)
(12)

= p1
(̇x)

x
+ p2

(̇y)

y
(13)

= p1[r(1−
x

k
− c1y −

c2y

a+ x
− d1x− q1E] + p2[mc1x+

mc2x

a+ x
− d2y − d− q2E](14)

At E0(0, 0)

ψ(x, y) = p1(r − q1E) + p2(−d− q2E) (15)
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At E1(x1, 0)

Ψ(x, y) = p1[r −
rx1
k

− d1x1 − q1E] + p2[mc1x1 +
mc2x1
a+ x1

− d− q2E] (16)

At E2(x2, y2)

ψ(x, y) = p1[r(1−
x2
k
)− c1y2 −

c2y2
a+ x2

− d1x2 − q1E] + p2[mc1x2 +
mc2x2
a+ x2

− d2y2 − d− q2E] (17)

Therefore if at E0(0, 0) , E1(x1, 0) and E2(x2, y2)
ψ(x, y) > 0 , that is if

p1(r − q1E) + p2(−d− q2E) > 0 (18)

p1[r −
rx1
k

− d1x1 − q1E] + p2[mc1x1 +
mc2x1
a+ x1

− d− q2E] > 0 (19)

p1[r(1−
x2
k
)− c1y2 −

c2y2
a+ x2

− d1x2 − q1E] + p2[mc1x2 +
mc2x2
a+ x2

− d2y2 − d− q2E] > 0 (20)

Then the system is permanent.

5 Bifurcation

5.1 Transcritical and Saddle node bifurcation

In this subsection, we are interested in transcritical bifurcation of system (9)
using Sotomayor’s theorem.

Theorem 5. (1) System (9) undergoes a transcritical bifurcation around E0(0, 0)
if r − q1E = 0
(2) System (9) undergoes transcritical bifurcation around E1(x1, 0) if x1 = kand
x1 ̸= k

2 , and saddle node bifurcation if x1 ̸= k.

Proof. (1) To prove that the model (9) undergoes a transcritical bifurcation
around E0(0, 0), We use Sotomayor’s theorem by considering r as the bifurca-
tion parameter.
At E0(0, 0)

JE0 =

(
r − q1E 0

0 −d− q2E

)
. (21)

According to Sotomayor’s theorem at E(0, 0) transcritical bifurcation occurs if
one of the eigen values of the jacobian at E0(0, 0) must be zero and the other
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eigen value must have negative real part i.e if r = q1E. Here

FrE0 =

(
x− x2

k
0

)
So at E0(0, 0)

FrE0 =

(
0
0

)
So
WTFrE0 = 0
Let V and W are eigen vectors coresponding to zero eigen value of J(E0) and
J(E0)

T respectively. After simple calculation we get

V =

(
v1
v2

)
≡
(

1
0

)
(22)

Similarly, we get

W =

(
w1

w2

)
≡
(

1
0

)
(23)

Also after easy calculation, we get

WTDFrE0V = 1 ̸= 0 and

WTD2FrE0(V, V ) = −2r
k − 2d1 ̸= 0

So a transcritical bifurcation occurs around E(0, 0).
(2) At E1(x1, 0)

let V and W are eigen vector coresponding to zero eigen value of J(E1) and
J(E1)

T respectively , where

V =

(
v1
v2

)
≡
(

1
0

)
(24)

Similarly we get

W =

(
w1

w2

)
≡
(

1

−Q1

Q2

)
(25)

where

Q1 = −c1x1 −
c2x1
a+ x1

Q2 = mc1x1 +
mc2x1
a+ x1

− d− q2E (26)
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FrE1 =

(
x1 − (x1)

2

k
0

)
and we get

WTFrE1 = x1 −
(x1)

2

k

WTDFrE1V = 1− 2
x1
k

(27)

WTD2FE1
(V, V ) = −2

r

k
− 2d1

Therefore we get if x1 = k and x1 ̸= k
2 , then transcritical bifurcation occurs at

predator free equilibrium E1(x1, 0), and if x1 ̸= k then saddle node bifurcation
occurs at E1(x1, 0).

5.2 Existence and stability of Hopf bifurcation

At E∗(x∗, y∗) if
(a) tr(JE∗) = 0
(b) det(JE∗) > 0
(c) d

dr tr(JE∗) ̸= 0
then the system undergoes a hopf bifurcation at interior equilibrium point.
So if
(a) M11 +M22 = 0
(b) M11M22 −M12M21 > 0
(c) x∗ ̸= k

2
then the system undergoes a hopf bifurcation. Now if A > 0 then the periodic
orbit is unstable i.e the bifurcation is subcritical and if A < 0 then the periodic
orbit is stable i.e the bifurcation is supercritical.
where

A =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16w
[fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + gyyfyy]

Here

A =
1

16w
[d1(c1 +

ac2
(a+ x)2

) + d2(mc1 +
mac2

(a+ x)2
)]

which implies that A > 0.So the hopf bifurcation is subcritical.
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