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Abstract:  

In the present chapter, I focused a numerical examination of the possessions dissipation 

of viscous on the thermally radiative of a magneto-hydrodynamics (MHD) movement of an in-

compressible nano-fluid caused by an exponentially stretched sheet subject to heat and mass 

(HMT) fluxes at the boundary layer. To numerically solve the governing PDEs, we first use self-

similarity transformation to convert them into a set of ODEs, which we then solve using the 

shooting technique and a fourth order Runge-Kutta method. The effects of a wide variety of 

limitations are demonstrated with respect to the non-dimensional flow, temperature, percentage 

of nano-particle capacity, and local Nusselt and Sherwood number. Calculated and analysed are 

the friction factor coefficient values, as well as the regional Nusselt (rate of heat transfer) and 

Sherwood (rate of mass transfer) numbers. Graphs have been employed to make a detailed 

comparative analysis at deviatedvalues of governing parameters. This article will help to fill that 

gap by offering a thorough analysis of the exponentially stretched sheet with HMT of nanofluid. 
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1. Introduction  

 

Fluid flow caused by stretched sheets has become an extremely interesting topic over the 

past decade due to its many industrial uses. Several scientists have examined the issue of 

boundary layer flow and heat transmission over a linearly stretched sheet. In reality, linearly 

stretched sheet may not occur always. The pioneering work in investigating the Newtonian flow 
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induced by a stretched sheet was conducted by Crane [1]. Building upon Crane's work, 

subsequent researchers have expanded the understanding of this phenomenon by considering the 

influence of mass transport in deviated contexts. Examples include the contributions of authors 

[2-4]. Exploring the realm of heat conduction, Nadeem et al. [5] delved into the behavior of a 

H2O-based nanofluid using an exponentially stretched sheet. Additionally, Bhattacharyya [6] 

examined the conduction of both heat and mass across a rapidly contracting sheet within the 

edge layer. Mukhopadhyay and colleagues [7] conducted an exploration into the transport of 

high-temperature flow through a permeable exponentially stretched sheet, taking into account 

thermal radiation. Sajid and Hayat [8] delved into the effects of heat generation on the boundary 

layer flow caused by an exponentially stretched sheet. Investigating scenarios involving velocity 

slip and a magnetic field, Zhang et al. [9] centered their research on the heat transport within a 

power-law nanofluid thin film induced by a stretched sheet. Majeed et al. [10] provided a study 

of the boundary layer flow of a ferromagnetic fluid across a stretched surface. Using an unsteady 

stretched sheet, Pal and Saha [11] examined HMT within a thin liquid film, considering the 

influence of nonlinear thermal emission. Stretched surfaces were integrated into Weidman's 

investigation [12], which aimed to establish a incorporated design for stagnation point flows. 

 

Magnetohydrodynamics (MHD) is the study of how electrically conducting fluids interact 

with magnetic fields. This field of study has many important applications, including: Cooling 

nuclear reactors by liquid sodium: MHD can be used to generate a strong magnetic field that can 

guide the flow of liquid sodium through a nuclear reactor. This helps to remove heat from the 

reactor core and prevent it from overheating. Induction flow meters: These devices measure the 

flow rate of a fluid by measuring the potential difference that is created when the fluid flows 

through a magnetic field. "In recent decades, Magnetohydrodynamics (MHD) boundary layer 

flow over a continuously stretching sheet has emerged as a topic of significant interest. This 

heightened attention can be attributed to its wide-ranging applications across deviated industrial 

sectors. Notably, this phenomenon finds utility in processes like aerodynamic extrusion of plastic 

sheets, liquid film formation, hot rolling of metals, wire drawing, glass fiber and paper 

production, plastic film extrusion, metal and polymer extrusion, and metal spinning, 

underscoring its importance in diverse manufacturing contexts." 



In progressive metallurgic & metal-working activities, the utilization of 

magnetohydrodynamic (MHD) flow of electrically conductive fluids over stretched sheets has 

been creatively adopted. Industrial polymer operations frequently involve the continuous 

extraction of strips and filaments from a moving fluid for cooling purposes. The configuration of 

the boundary layer adjacent to the stretched sheet holds significant influence over the cooling 

rate, consequently exerting a profound impact on the final product. Mukhopadhyay and 

colleagues [13] explored the magnetohydrodynamics flow of a Casson fluid triggered by an 

exponentially stretched sheet with heat emission. Examining the effects of 

magnetohydrodynamics, coupled with second-order slip flow and homogeneous-heterogeneous 

reactions, Hayat et al.[14] conducted a study on bidirectional nanofluid flow. Lin et al. [15] 

focused their investigation on a stretched surface with internal heat generation, studying the flow 

and (heat transfer) HT of an unstable MHD nanofluids of pseudo-plastic within a predictable 

tinny film. To assess the effect of thermal radiation on the flow and heat transfer of 

magnetohydrodynamic nanofluids, Sheikholeslami et al. [16] adopted a two-phase model. In the 

context of an MHD Falkner-Skan nanofluid stream, Farooq et al. [17] showcased the application 

of the HAM-built Mathematica tool BVP h 2.0. Exploring the consequences of thermal emission 

in a 3D Jeffrey nanofluid stream characterized by inner heat generation and a magnetic field, 

Shehzad and colleagues [18] carried out an analytical investigation. 

The significance of radiation in processes conducted under extremely high temperatures 

cannot be overstated. Radiative effects find application in turbines of gas, missiles, airplanes, 

spacecraft, and nuclear power plants. Moradi et al. [19] examined the interplay of emission in a 

thermally convective viscous liquid flow across an inclined surface. Employing a two-phase 

model, Sheikholeslami and their research team, in their work referenced as [20], explored the 

implications of radiation within the context of a viscous nanofluid flow. Their study involved 

examining the behavior of a laminar flow comprising an Oldroyd-B liquid infused with 

nanoparticles while considering the influence of radiation. Hayat et al. [21] conducted their 

study. Ashraf et al. [22] conducted research on a radiative three-dimensional Maxwell fluid flow 

involving thermophoresis and convective conditions. Hayat and colleagues [23] took a close look 

at how heat radiation can shape the flow of a Powell-Eyring nanofluid over a stretched sheet. 

Several studies have been conducted to explore the impact of deviated factors on fluid 

flow and heat transfer in deviatedcontexts. Bidin and Nazar [24] focused on examining the 



influence of thermal emission on a continuously laminar two-dimensional boundary layer flow 

over an exponentially stretched sheet. Hady et al. [25] investigated the effects of emission in a 

viscous nanofluid flow over a nonlinearly stretched sheet, utilizing the fourth-order Runge-Kutta 

method. Hayat and their colleagues [26] delved into the interplay of Joule heating and 

thermophoresis in a stretched stream, modeling it with the Maxwell equations under convection 

conditions. Mustafa et al. [27] addressed the Sakiadis flow of a Maxwell fluid while considering 

convective boundary conditions. In their research, Hayat et al. [28] examined the stagnation 

point flow of a Maxwell fluid in the presence of both thermal emission and convection. 

Additionally, Hayat et al. [29] investigated the effects of an inclined magnetic field on heat 

generation in a nanofluid flow, considering non-linear thermal emission. Finally, Khan and their 

co-authors [30] conducted a study on the nonlinear radiative flow of a three-dimensional Burgers 

nanofluid, incorporating a novel concept related to mass flux. 

Motivated by the aforementioned fruitful studies and the significance of HMT in 

nanofluid flow transport in deviated applications of magnetic field parameters, we are currently 

attempting to present a study that investigates a novel theoretical approach to deliberate the 

temperature- and concentration dependent electrical conductivity effects on the transport of a 

Newtonian nanofluid past an exponentially stretched sheet with considering several physical 

aspects such as viscous dissipation, radiative and porous medium as well as thermal and mass 

convection. This investigation is pertinent to a scenario involving an exponentially stretched 

sheet subjected to heat and mass flux conditions. Similarity transformations are like a magic 

spell that can turn complex PDEs into simple ODEs. Once the PDEs have been transformed, they 

can be solved using the Shooting technique, which is like a guided tour through the solution 

space. Findings are well discussed by usage of both graphical illustrations and tabular 

representation. The forthcoming sections of this study are organized into specific categories. 

Section 2 focuses on the mathematical aspects of modeling Newtonian fluid behavior in two-

dimensional flows. This section also delves into the dynamics of nanofluid motion patterns, 

particularly examining the characteristics of Double Diffusion convection. The procedure of 

numerical method was explained in Section.3. The conceptual framework is highlighted in 

Section 4 along with depicts a graphically reasonable interpretation of the acquired data; and 

Section 5 summarizes the problem's final conclusions. 



The reviewed literature reveals that no single study has shown how to analyze the 

numerical treatment for creeping flow through an exponentially stretched sheet with a magnetic 

flow of nanofluid model saturated in a porous medium with mixed efficiency of diffusion-thermo 

impacts and thermo diffusion while considering variable electrical conductivity, our work will 

help to fill that gap. Moreover, the present research is relevant to electromagnetic biomaterials 

micro-scale pumps that mimic real working fluids and use stretched sheet. Due to their ability to 

circumvent contamination issues, require minimal maintenance, and exhibit superior durability 

and efficiency, these pumps possess significant promise for the development of bio-inspired, 

portable intravenous drip systems, enhancing medical procedures in the 21st century. 

 

2. Mathematical Formulation 

 

An exponentially stretched sheet is employed as a model for a 2D hydromagnetic flow of 

an incompressible fluid. The analysis of heat and mass transport encompasses factors such as 

thermal radiation, viscous dissipation, heat generation, and chemical reactions. Additionally, a 

non-uniform magnetic field denoted as B(x) = B0exp(x/2l) is introduced in the y-direction. In 

scenarios involving low magnetic Reynolds numbers, the contribution of the induced magnetic 

field is neglected. Boundary conditions involving heat and mass flux are applied at the sheet's 

surface. The foundational principles of motion are represented by the following equations: 

(i) Continuousness Equation: 

   0
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(ii) Motion Equations: 
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(iii) Energy:  
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(iv) Nanoparticle volume fraction:  
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The associated boundary conditions are defined as 
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Where the point u & v denote the flow mechanism in the x & y information respectively,   a 

kinematic viscosity, 
p

k

c



 a thermal diffusivity, k  a fluid density,   a thermal conductivity, 

pc a specific heat, T  noted as temperature of fluid, T∞ denotes ambient temperature, N a fluid 

concentration, C∞ a ambient concentration, / pk c    a thermal diffusivity, k a thermal 

conductivity, cp a specific heat, 
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*
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 represents radiative heat flux, k* a mean 

absorption coefficient, *  indicates Stefan-Boltzmann constant, ( ) pc  noted for prominence 

heat capacity of nanoparticles, ( ) fc heat capacity of the base fluid. N is nanoparticle volume,  D 

a mass diffusion  0( ) U exp /wU x x l  is a stretched stream of sheet, U0 a reference stream,   l a 

reference length,  0 0 0( ) T / 2 exp /w wq x q U vl x l

 

the variable heat flux, 

 0 0 0( ) / 2 exp /np npq x q C U vl x l  a variable surface nanoparticle flux, 0U , 0T , 
0wq , 0npq , 0N , 

are the reference stream, temperature and heat flux, surface nanoparticle flux, nanoparticle 

capacityfraction respectively,  0( ) exp /V x V x l a special type of stream at the wall is 

considered (Bhattacharyya [30]) where 0V  is a constant. Here ( ) 0V x   is the stream of suction 

and ( ) 0V x  is the stream of injection. 

 

Applying similarity transformations as follows 
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The continuity equation is inherently satisfied, and upon implementing a similarity 

transformation, equations (2), (3), and (4) evolve into 
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is a thermophoresis constraint, respectively.   

  

The converted frontier conditions (5a) and (5b) are given by  
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Wherever 0

/ 2

v
S

c l


 is injection/suction restraint. Here the constraint is positive S >0 ( 0v <0) 

for mass suction and negative S <0 ( 0v >0) for mass injection. 



Furthermore, researchers have taken a keen interest in the intriguing parameters of the 

skin friction coefficient (Cf), the local Sherwood number (Shx), and the local Nusselt number 

(Nux). These parameters serve as indicators of the shear stress on the surface and the mass and 

heat transfer characteristics related to fluid flow 
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As of the temperature distribution, we be able to examine the heat transport rate, which is 

expressed as: 
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As of the concentration retrieve, we will be able to illustrate the rate of mass transportation 

which is specified by
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where 
0Rex U x   the confined Reynolds numbers. 

3. Method of solution: 

In this section, we employ Mathematica software to derive the non-linear ordinary 

differential equations (ODEs) represented by equations (7), (8), and (9), which govern the 

primary partial differential equations (PDEs) given by equations (2), (3), and (4). These 

equations are transformed using non-dimensional variables to enhance their simplicity, 

facilitating numerical solutions. The subsequent portion of this section will provide an in-depth 

explanation of the implementation of the Shooting technique for addressing the current problem 

A step size of 0.01   was selected to be satisfactory for a convergence criterion of 10-6 in all 

cases. You can visually obtain the grade results from Figures (1) through (7), and these 

visualizations will lead to conclusions regarding the stream field and deviated other significant 

physical parameters of interest 

4. Discussion and graphical illustrations: 

 



We have developed a mathematical framework to assess the combined effects of thermal and 

mass convection, as well as variable electrical conductivity, in a two-dimensional MHD 

nanofluid flow over an exponentially stretched sheet. In this section, we analyze the flow 

variables presented in Figures 7-19, which are based on numerical results generated using 

Mathematica symbolic software. Our investigation focuses on understanding how key 

electromagnetic and hydrodynamic parameters influence these flow variables. It's essential to 

keep in mind that all of the derived figures have typical parameter values that are Ha = 1.0, S = 

3.0, Le = 1.3, R = 0.1, Pr = 0.71, Ec = 0.1, Nt = 0.8, and Nb = 0.5 are the leading restrictions that 

are held constant throughout the computations. Suction constraint Hartmann numbers, Eckert 

numbers Ec, Lewis numbers Le, emission constraint R, thermophoresis numbers Nt, and 

Brownian motion constraints Nb all have an impact on the stream, temperature, and friction 

profiles of nano-sized particles. In Figures 1(a) and (b), we see the profiles of the stream, 

temperature, and nanoparticle capacity friction for deviatedvalues of the suction constraint. 

As can be seen in Fig. 1(a), when the suction constraint is raised, the stream profiles go up. when 

can be seen in Figure 1(b), the temperature decreases when the suction constraint is tightened. 

Frictional profiles of streams, temperatures, and nanoparticles, as a result of the Hartmann 

numbers (i.e. the magnetic field constraint Ha), are displayed in Figs. 2(a) and (b). As 

demonstrated in Fig. 2(a), the stream patterns increase as Hartmann numbers are increased. 

Physically increasing the magnetic field also increases the Lorentz force. When greater force is 

used to stop the flow of a fluid, the fluid's velocity increases. As can be seen in Fig. 2(b), as the 

Hartmann numbers increases, the temperature decreases. 

 

Figure 3(a) and (b) display the effects of the dissipative constraint, Eckert numbers Ec, on the 

stream and temperature profiles. As the dissipation constraint Ec is raised, the stream and 

temperature profiles of the stream are shown to expand. Generally speaking, higher viscosities 

result in higher stream profiles because their enhanced heat conductivity. Figure 4(a)-(b) displays 

the results of the thermophoresis constraint Nt on the temperature and the nano-particle capacity 

percent. As shown in Figure 4(a), as the thermophoresis constraint is tightened, both the 

temperature and nano-particle capacity fraction profiles rise. The thermophoresis constraint Nt is 

quantified as the ratio of nanoparticle diffusion rate to thermal diffusion rate within the 

nanofluid. 



As the thermophoresis constraint Nt increases, the thermal boundary layer expands due to a 

greater temperature differential between the sheet and the surrounding fluid. With an increasing 

Nt, the thermophoresis force intensifies, allowing nanoparticles to migrate from hotter to cooler 

regions. Consequently, this migration leads to a higher nano-particle concentration. Figure 5(a)-

(b) illustrates how the emission constraint R influences the temperature and nano-particle 

concentration profiles. It's important to remember that a better temperature profile results from a 

higher R value. This is because the average absorption coefficient drops with increasing R. As 

can be shown in Fig. 5(b), the fractional capacity of nanoparticles rises with increasing R. 

 

Finally, the impact of the Lewis numbers Le and the Brownian motion constraint Nb on the 

capacity fraction profiles of nano-particles is depicted in Figs. (6) and (7). when can be seen in 

Fig. (6), when the Lewis numbers improves, the distribution of the nano-particle capacity 

fraction narrows. This is because the Brownian diffusion coefficient Nb drops with increasing 

Le, making it harder for nano-particles to disperse throughout the fluid. Therefore, the capacity 

percentage of nano-particles decreases as the Lewis statistic Le increases. In addition, the 

fractional capacity of nanoparticles in the profile falls as the Brownian motion constraint Nb is 

increased. The thermal boundary layer may become more substantial as a result of this. The 

physical mechanism by which an increase in Brownian motion decreases the concentration inside 

the frontier layer is an increase in nano-particle diffusion. 

 

The numerical values for the friction factor term, Nusselt numbers, and Sherwood numbers are 

presented in Tables 1 and 2. Table 1 indicates that an increase in either the Nusselt numbers (N) 

or the Eckert numbers (Ec) leads to a reduction in the skin friction coefficient. In contrast, Table 

2 reveals that the confined Nusselt and Sherwood numbers decrease with an increase in the 

significance of the Hartmann number (Ha), while the reverse trend is observed for higher values 

of the Schmidt number. 

 

Table 1: Statistical values of  friction factor term and confined Nusselt numbers for deviated 

values of Ec and R when Ha=2.0, Nt=0.5, Nb=0.8, Pr=0.73, R=0.5, Ec=0.5 and Le = 1.5. 

 

  Constraints(fixed values)                                            Constraints             (0)f                  
1/2Rex xNu

  



 Nt=0.5, Nb = 0.8, S=5.0, Pr=0.73, R=0.5, Le=1.5        R=0.20          1.2205578            0.560558 

                                                                                              0.25          1.216655           0.566655 

                                                                                              0.30          1.197775           0.567775  

                                                                                         Ec=0.0          1.265308           0.559308 

                                                                                               0.3           1.220558           0.560558 

                                                                                               0.5           1.208727              0.568727 

 

 

Table 2: Statistical values of  confined Nusselt numbers and confined Sherwood numbers for 

discrete values of Ha and S when Ha=2.0, Nt=0.5, Nb=0.8, Pr=0.73, R=0.5, Ec=0.2 and Le = 1.5. 

  Constraints(fixed values)                                            Constraints           1/2Rex xNu
            

1/2Rex xSh
  

 Nt=0.5, Nb = 0.8, S=5.0, Pr=0.73, R=0.5, Le=1.5      Ha=2.0             0.551146             0.394789 

                                                                                               2.5            0.538588             0.387825 

                                                                                               3.0            0.503747             0.367843 

                                                                                          S=0.1             0.515308             0.351434 

                                                                                               0.3            0.523404             0.362578 

                                                                                               0.5            0.540727             0.378441 
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                  Fig 6. Prominence of Le  on ( )                     Fig 7. Prominence of Nb  on ( )   

 

 

Conclusion:  

 

This work outlines a study on heat transport involving an exponentially stretched sheet under 

conditions of heat and mass flux, while accounting for viscous dissipation. The investigation 

explores the significance of both thermal emission and Magnetohydrodynamics (MHD) in the 
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flow of a dissipating viscous nanofluid. The initial system of governing partial differential 

equations underwent a transformation, resulting in a set of nonlinear coupled ordinary 

differential equations. These equations were then tackled through a numerical solution approach 

employing the fourth-order Runge-Kutta shooting method. The research investigates pertinent 

constraints affecting coefficients associated with friction, skin friction, heat, and mass transfer. 

These constraints are analyzed in the context of flow behavior, temperature distribution, and 

nanoparticle concentration, and their implications are graphically depicted and summarized in 

tables. The primary discoveries of this study are succinctly outlined below: 

(i) The suction constraint causes the stream profile and frontier layer thickness to grow. The 

Hartmann Numbers The Eckert-Harrington numbers Ec. 

(ii) Larger suction constraints and Hartmann numbers lead to a lower temperature profile and 

thinner thermal boundary layer. Ha, but the emission parameter R and Eckert numbers Ec 

both go down as their values rise. 

(iii) When the radiation constraint R and the thermophoresis constraint Nt are both high, the 

nano-particle capacity fraction rises. 

(iv) As the values of R and Ec are constrained, the skin fraction coefficient decreases.  

(v) Local Nusselt numbers is increasing function of ,S  R and Ec. 

(vi) Local Sherwood numbers is increasing function of .S  
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