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Abstract: The average symbol error rate (ASER) applying various quadrature amplitude modulation 

(QAM) techniques is analyzed for single input and single output (SISO) system. QAM schemes are more 

useful to increase bandwidth efficiency for 5G and beyond wireless transmission systems. The channel 

of the system is influenced by Fisher-Snedecor F composite distribution. This distribution is commonly 

used to model fading channels due to its high accuracy and mathematical conformity. Various QAM 

schemes like hexagonal QAM, cross-QAM, square QAM and rectangular QAM are employed for ASER 

derivations. ASER expressions are acquired with regard to the Fox H-function which is the most general 

function and Prony approximation for Gaussian Q-function is utilized. Computer simulation is achieved 

to verify the certainty of the analyzed ASER equations. 

Keywords: Fisher-Snedecor F fading, ASER, Quadrature amplitude modulation (QAM), Prony 

approximation. 

 

1. Introduction 

To enhance the bandwidth efficiency for beyond fifth-generation (B5G) cellular broadcasting systems, 

quadrature amplitude modulation (QAM) is a prominent technique. Concerning high-rate data 

communication purposes, different types of QAM methods can be employed. The hexagonal lattice-

positioned signals mostly mentioned like hexagonal QAM (HQAM) is a good solution for its 2-dimensional 

constellations having the advantage of the most favorable Euclidean distance including comparatively 

poor peak-to-average power ratio (PAPR). Although HQAM gets higher-order constellations, it is a highly 

energy-efficient method than square QAM (SQAM). The PAPR of HQAM is lower than SQAM [1]. In the 

case of HQAM constellation, the symbols are located on the center of an equilateral hexagon. The 

applications of HQAM are found in advanced channel coding, multiple-antenna systems, optical 

communications, and multicarrier systems [2]. Cross-QAM (XQAM) obtains a cross shape constellation by 

deleting the outside edge points from rectangular QAM (RQAM) constellation, thereby reducing the peak 

as well as the average energy of the signal, and is appropriate for transmitting the odd count of bits per 

symbol. XQAM is further applied in very high-speed digital subscribers line (VDSL), asymmetric digital 

subscribers line (ADSL) as well as digital video broadcasting-cable (DVB-C) transmission for multimedia 

services [3]. The energy-efficient two-dimensional (2D) structure of XQAM is more suitable than SQAM 

and the odd power of 2 constellations RQAM. RQAM is a common modulation technique that covers 

SQAM, orthogonal binary frequency-shift keying, binary phase-shift keying (BPSK), multilevel amplitude-

shift keying (ASK), quadrature phase shift keying (QPSK) modulation techniques as explicit cases [4], [5]. 

The typical system of the transmission is the single-input and single-output (SISO), where the transmitter 

uses an antenna and a single receiving antenna is employed at the receiver. The benefit of utilizing a SISO 

method is that it is low-cost as well as very simple to model and realize. 

The channel of the system is modelled by Fisher-Snedecor F fading distribution. This distribution is 

appropriate to model the combined response of shadowing and multipath fading in the interest of recent 



wireless broadcasting systems. The Fisher-Snedecor F distribution is a common fading model of 

conventional fading distributions for instance Nakagami- m, one-sided Gaussian, and Rayleigh distribution 

[6] [7]. The Fisher-Snedecor F fading shows the most appropriate for experimental data of channel 

measurements like device-to-device (D2D) communications and wearable communication networks, 

notably at 5.8 GHz to compete with generalized-K fading in the presence of both line-of-sight (LOS) as well 

as non-LOS environments [7]. 

Recently, several research articles have analyzed ASER of QAM schemes considering fading environments. 

In [8], the expressions for the average symbol error probability (SEP) of the M-ary XQAM technique 

accompanying maximal-ratio combining (MRC) receiver over independent and non-identically distributed 

(i.n.i.d) η-μ fading channels are investigated. In the article [9], the ASER of XQAM as well as RQAM signals 

subject to TWDP fading channels have been analyzed with regard to Appell’s as well as Laureicella’s 

hypergeometric functions. The HQAM is found to be a very useful modulation method for energy 

efficiency and high data rates of beyond 5G as well as 6G wireless broadcasting strategies. The authors in 

[10] propose an expression for the SEP of the HQAM technique. In [11], mathematical equations of ASER 

for general-order RQAM, HQAM as well as 32-XQAM techniques are presented for amplify-and-forward 

relaying networks under i.n.i.d Nakagami-m fading channels. In [12], utilizations of various QAM 

constellations in wireless transmission are presented. In [13], the SEP of HQAM as well as RQAM for a 

dual-input selection combining (SC) receiver subject to η-μ fading channels is investigated for B5G. In [14], 

the expression for the SER of general order M-ary QAM is derived under the influence of the Fisher-

Snedecor F fading channel model. 

Motivated by the usefulness as well as significance, the objective of the work is to perform a mathematical 

investigation for the behaviour of SISO transmission scenario in the presence of Fisher-Snedecor F fading 

distribution operating with different QAM techniques. The contributions of this work are mentioned 

below. 

● A novel SNR PDF derivation at the receiver of the SISO wireless transmission is presented with regard 

to Fox H-function.  

● The useful mathematical derivations of ASER for HQAM, XQAM, RQAM and SQAM are acquired relating 

to Fox H-function, and outcomes are explained. 

● The relative analysis of different QAM constellations are illustrated that reflects the superiority of XQAM 

over alternative QAM constellations in the SISO broadcasting system subject to Fisher-Snedecor F fading 

channels. 

 

2. Channel model 

A SISO network subject to Fisher-Snedecor F fading conditions is investigated. Different QAM schemes are 

deployed in the system. The RV L   is the fading envelope, which observes the Fisher-Snedecor F 

distribution. The PDF of L   is given by [7], 
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Whereby, mean power
2E l     , m is the fading severity parameter. s denotes the amount of 

shadowing whereby s   for no shadowing and 0s  for heavy shadowing,  .,.B  is the beta 

function. Allowing 
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 such that  E   and from (1), the PDF of the instantaneous received SNR 

  is described as [7] 
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With the help of [15, (8.4.2.5)] and thereafter using [15, (8.3.2.21)], the expression of (2) becomes
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Whereby,  . and 
.,.

.,. . .H     denote the Gamma function and Fox H-function respectively. Refining the 

Beta function, the PDF of RV   can be expressed as 
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3. ASER investigation 

The ASER is commonly described as [16], 
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Whereby,  p e   is conditional error probability which depends on the modulation technique used. 

3.1 ASER analysis with HQAM over Fisher-Snedecor F fading channels  

For M-ary HQAM, the CEP is written as [2] [17], 
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the accurate approximation of the Gaussian Q-function  .Q . Prony approximation for the Gaussian Q-



function with two exponential terms can be written as  
2 2

Q e e      [18]. The value of the 

constants are 0.208  , 0.147  , 0.971  ,  and 0.525  . Inserting Prony approximation in (6) 

produces, 
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Pretending (4) and (7) into (5), the ASER can be obtained as 

, 1 2 3ar HQAMP G G G   ,                                                                                                                                          (8) 
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 from [15] and solving the integration 

using [15, (2.25.1.1)], 
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3.2 ASER analysis with XQAM over Fisher-Snedecor F fading channels  

For L M  XQAM, the  Pr e  is written as [19], 
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the Prony approximation in (15),  Pr e  is rephrased as 
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Inserting (16) and (4) into (5), the ASER can be written as 
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Replacing the exponential terms with Fox H-function and solving the integration using [15, (2.25.1.1)], 
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3.3 ASER analysis with SQAM over Fisher-Snedecor F fading channels  

For M-ary SQAM, the  Pr e  can be expressed as [19], 
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Substituting (23) and (4) into (5), the ASER can be obtained as 
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Expressing the exponential terms with Fox H-function and solving the integrals with the help of [15, 

(2.25.1.1)], 
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3.4 ASER analysis for RQAM under Fisher-Snedecor F fading channels  

For L M RQAM, the  Pr e  can be given as [20], 

         PrRQAM XX ZXX XX ZXXe C Q q C Q r C C Q q Q r       .                                          (29) 
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Id

and Qd are in-phase as well as quadrature decision distance, respectively. Again applying the Prony 

approximation in (29),  Pr e  is arranged as 
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Putting (30) and (4) into (5), the ASER can be obtained as 

, 1 2 3ar RQAMP K K K    .                                                                                                                                     (31) 

Where, 
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And 
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Writing the exponential terms with Fox H-function and simplifying the integrals by means of [15, 

(2.25.1.1)], 
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4. Numerical outcomes and analysis 

The analytical expressions of the previous section are evaluated and illustrated here. In Figure 1, the ASER 

vs. average SNR curves have been presented for 16-HQAM and 32-HQAM schemes over different values 

of fading parameter m and shadowing parameter s.  It can be realized that ASER performance is poor with 

32-HQAM in compared to 16-HQAM, which is owing to the evidence that the limited constellation size is 

less affected by fading effects. The ASER performance improves with the increase in the amount of fading 

parameter m, signifying that the channel fading develops into less stringent. In addition, at high average 

SNR, the ASER performance enhances, along an increment in shadowing parameter s, referring that the 

channel turns into lower shadowing.  

In Figure 2, ASER vs. average SNR has been analyzed for 4x4 XQAM as well as 8x4 XQAM techniques subject 

to different values of m and s. It is observed that ASER performance is better with 4x4 XQAM compared 

to 8x4 XQAM, since large constellation size is more affected by channel fading. Moreover, the ASER 

performance boosts with an addition of fading parameter m, signifying the betterment of fading situation. 

At a high average SNR, the ASER reduces as s enhances because the large value of s indicates the influence 

of minor shadowing.   

In Figure 3, ASER vs. average SNR has been analyzed for 16-SQAM and 32-SQAM techniques by varying 

the values of m and s respectively. ASER performance becomes better with 16-SQAM as compared to 32-

SQAM since the small constellation size may overcome the fading effect much better. The ASER increases 

while the amount of fading parameter m decreases for a certain constellation size. This is by reason of the 



lower the amount of m, more is the fading issue. Likewise, ASER deteriorates while the shadowing 

parameter s decrease, which is because of heavy shadowing.  

In Figure 4, ASER vs. Average SNR has been illustrated for 4x4 RQAM and for 8x4 RQAM over different 

values of m and s.  Here decision distance ratio β=1. ASER value is much less for 4x4 RQAM than 8x4 

RQAM. Large constellation size suffers more fading effects. ASER performance becomes better with an 

increase in m due to less fading effect. ASER performance improves at high average SNR with an increase 

in s due to light shadowing. 

In Figure 5, the ASER plots have been shown considering different QAM schemes with m = 2 and s = 0.5. 

ASER performance improves with XQAM as compared to RQAM since the XQAM technique has less peak 

as well as average signal power than RQAM. 

 

Figure 1. ASER vs. Average SNR (dB) of the explored SISO system using HQAM for different m and s. 

 



 

Figure 2. ASER vs. Average SNR (dB) of the investigated SISO system using XQAM for different m and s. 

 

 

Figure 3. ASER vs. Average SNR (dB) of the examined SISO system using SQAM for different m and s. 



 

Figure 4. ASER vs. Average SNR (dB) of the observed SISO system using RQAM for different m and s. 

 

Figure 5. Comparison of ASER vs. Average SNR (dB) of the analysed SISO system utilizing different QAM 

techniques and for m = 2, s = 0.5. 



5. Conclusions 

The ASER of the SISO communication system subject to Fisher-Snedecor F fading channels is investigated 

in this article. Various types of QAM techniques like HQAM, XQAM, SQAM and RQAM are applied to find 

the ASER. The most accurate Prony approximation is utilized for Gaussian Q -function. The expressions of 

ASER are conferred with regard to the Fox H-function. The arbitrary value of shadowing parameter, and 

fading parameter are considered for the analysis. The arbitrary number of constellation sizes for different 

QAM techniques are utilized to illustrate the ASER. The use of the low value of constellation size gives a 

better ASER performance in general since the number of symbols get affected by the operating 

environment is less. Again when the channel is influenced by less fading i.e. for the large fading parameter 

the ASER performance improves and for the high value of the shadowing parameter i.e. for the light 

shadowing environment the ASER performance improves. Finally, computer-simulated data have been 

included to determine the accuracy of the derived analytical formations. 
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