
Chapter 3 

Searching Techniques in AI 

In artificial intelligence (AI), searching techniques refer to algorithms and strategies used to 

explore and navigate through problem spaces in order to find solutions or make decisions. These 

techniques are often applied in various AI applications, such as problem-solving, planning, game 

playing, path finding, and more. 

In the field of artificial intelligence, various types of search algorithms are used to explore and 

find solutions in different problem-solving scenarios. These search algorithms can be categorized 

into three main types: uninformed search (blind search) and informed search (heuristic search) 

and adversarial search. 

3.1. Uninformed Search (Blind Search): 

Uninformed search algorithms explore the search space without using any additional information 

about the problem other than the initial state and the available actions. These algorithms are less 

efficient than informed search algorithms, but they guarantee completeness and can be useful 

when no heuristic information is available. 

Some common types of uninformed search algorithms include: 

a. Depth-First Search (DFS): Explores as far as possible along a branch before backtracking. 

It's memory-efficient but might not guarantee the shortest path. 

b. Depth-Limited Search (DLS): A variant of DFS that limits the depth of exploration. 

c. Breadth-First Search (BFS): Explores nodes level by level, moving outward from the start 

node. Guarantees the shortest path. 

d.  

e. Iterative Deepening Search (IDS): Combines features of BFS and DLS by performing a 

series of DLS searches with increasing depths. 

 



3.11 Depth-First Search (DFS): - DFS explores as far as possible along each branch 

before backtracking. It starts at the root node and goes as deep as possible in the tree or graph 

before backtracking to explore other branches. 

Depth-First Search (DFS) is a searching algorithm used in artificial intelligence and 

computer science to explore all the possible paths in a tree or graph data structure. It starts from a 

given source node and explores as far as possible along each branch before backtracking. 

DFS Algorithm Steps:- 

1. Initialize a stack to keep track of nodes to be explored. 

2. Push the starting node onto the stack. 

3. While the stack is not empty: 

a. Pop a node from the top of the stack. This node becomes the current node. 

b. If the current node is the goal node or the desired solution, terminate the search and 

return the solution. 

c. If the current node has not been visited: 

i. Mark the node as visited. 

ii. Expand the current node to find its neighboring nodes or children. 

iii. Push the unvisited neighboring nodes onto the stack. 

d. If all neighbors of the current node have been visited, backtrack by popping the next 

node from the stack and making it the current node. 

Depth-First Search (DFS) is a powerful searching algorithm, but it also has 

several limitations and shortcomings that can affect its performance in certain 

scenarios:  

1. Completeness: DFS is not guaranteed to find a solution if one exists. In certain cases, it might 

get stuck in infinite loops or explore only one branch of the search space. 

2. Optimality: DFS does not guarantee finding the shortest path to the goal. It might find a 

solution but not necessarily the most optimal one. 



3. Memory Usage: DFS can use a lot of memory in deeply branching or infinite search spaces. It 

stores a potentially large number of nodes on the stack during exploration, which can lead to 

stack overflow errors or excessive memory consumption. 

4. Lack of Guidance: DFS does not use any information about the goal or the potential paths to 

the goal. It blindly explores down a path until it reaches a leaf node or encounters a dead-end, 

regardless of how promising that path might be. 

5. Vulnerability to Infinite Paths: If there are infinite paths in the search space, DFS might get 

stuck exploring one of these paths indefinitely, never finding a solution or even terminating. 

6. Non-Uniform Path Costs: In graphs with non-uniform edge costs, DFS may explore paths 

with higher costs before exploring paths with lower costs. This can lead to suboptimal solutions. 

7. Backtracking Overhead: Backtracking in DFS can introduce overhead as nodes need to be 

revisited and re-expanded when alternative paths are explored. This can slow down the search 

process, especially in cases with deep paths. 

8. Lack of Information Sharing: DFS operates independently on each path and doesn't 

communicate information between parallel paths. This can lead to redundancy in exploration and 

suboptimal use of computational resources. 

9. Limited Use in Search Trees: DFS can be problematic in search trees with many levels and a 

wide branching factor. It may exhaustively explore one branch before considering other 

branches, which can lead to inefficient searches. 

10. No Guarantee of Shortest Path: DFS might find a solution early in the search, but that 

solution might not be the shortest path to the goal. It may need to continue searching to 

potentially find a better solution. 

To mitigate these limitations, variations of DFS like Iterative Deepening Depth-First Search 

(IDDFS) and strategies like depth limits, cycle detection, and heuristics can be employed. 

Additionally, for certain problems, other searching algorithms like Breadth-First Search (BFS) or 

informed searches like A* can be more suitable, depending on the problem's characteristics and 

requirements. 



A simple example of using Depth-First Search (DFS) in AI to search for a 

target value in a binary tree data structure. 

Binary Tree Example: 

5 
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DFS Algorithm Steps: 

>Start at the root node (5). 

>Check if the current node's value is the target value we are looking for. If yes, the search is 

successful, and we return the node. 

>If the current node is not the target value, mark it as visited. 

>Recursively apply DFS on the left child of the current node (3). 

>If the left child doesn't contain the target value, backtrack and explore the right child of the 

current node (8). 

>Continue this process until the target value is found or all nodes have been visited. 

 

Searching for Target Value: 

Let's say we are searching for the target value 7 in the binary tree. 

>Start at the root node (5). 

>Check the current node's value (5) - Not the target value, mark it as visited. 

>Move to the left child (3). 

>Check the current node's value (3) - Not the target value, mark it as visited. 

>Move to the left child (2). 

>Check the current node's value (2) - Not the target value, mark it as visited. 

>No left child for node 2, backtrack to the parent (3) and explore its right child (4). 

>Check the current node's value (4) - Not the target value, mark it as visited. 

>No left or right child for node 4, backtrack to the parent (3). 

>No right child for node 3, backtrack to the parent (5). 



>Explore the right child of the root node (8). 

>Check the current node's value (8) - Not the target value, mark it as visited. 

>Move to the left child (7). 

>Check the current node's value (7) - Found the target value (7), the search is successful, and we 

return the node. 

Result: 

The DFS algorithm successfully found the target value 7 in the binary tree and returned the 

corresponding node (7). 

DFS explores as far as possible along each branch before backtracking, which can be efficient in 

certain cases. However, it's essential to consider the structure of the data and the specific 

problem requirements when choosing the appropriate searching algorithm. 

 

DFS Program in Python  

 
class TreeNode: 
    def __init__(self, value): 
        self.value = value 
        self.left = None 
        self.right = None 
 
def dfs_search(root, target): 
    if root is None: 
        return None 
 
    if root.value == target: 
        return root 
 
    # Recursive DFS on the left subtree 
    left_result = dfs_search(root.left, target) 
    if left_result: 
        return left_result 
 
    # Recursive DFS on the right subtree 
    right_result = dfs_search(root.right, target) 
    if right_result: 
        return right_result 
 
    return None 
 
# Creating a binary tree: 
#         5 
#       /   \ 



#      3     8 
#     / \   / \ 
#    2   4 7   9 
 
root = TreeNode(5) 
root.left = TreeNode(3) 
root.right = TreeNode(8) 
root.left.left = TreeNode(2) 
root.left.right = TreeNode(4) 
root.right.left = TreeNode(7) 
root.right.right = TreeNode(9) 
 
target_value = 7 
result_node = dfs_search(root, target_value) 
 
if result_node: 
    print(f"Target value {target_value} found in the binary tree.") 
else: 
    print(f"Target value {target_value} not found in the binary tree.") 

OUTPUT 
 

Target value 7 found in the binary tree. 
 
In this example, we define a simple TreeNode class to represent nodes in the binary tree. The 

dfs_search function performs the Depth-First Search by recursively traversing the tree in a depth-

first manner. If the target value is found, it returns the node containing the value; otherwise, it 

returns None. 

Keep in mind that this is a basic demonstration of DFS for a binary tree. In real-world scenarios, 

data structures and algorithms for searching may vary depending on the complexity and structure 

of the problem. 

3.12 Depth-Limited Search: - Depth-Limited Search is a variant of DFS that limits the 

maximum depth of the search. It helps control the search space when infinite paths exist or to 

improve efficiency in large state spaces. 

 Depth-Limited Search (DLS) is a variant of Depth-First Search (DFS), an uninformed 

search algorithm used in artificial intelligence to explore a graph or tree data structure. DLS 

limits the depth of exploration, preventing the algorithm from going beyond a certain depth level 

in the search tree. This limitation helps to avoid infinite loops and ensures that the algorithm 

terminates, even in cases where DFS might get stuck in an infinite branch. 



Depth-Limited Search Algorithm Steps: 

1. Initialize the search with the starting node and set the depth limit. 

2. Perform a DFS up to the specified depth limit. 

3. If the goal node is found within the depth limit, return success. 

4. If the depth limit is reached and the goal is not found, return failure. 

5. If the goal is not found at the current depth limit, increase the depth limit and repeat the 

search. 

Depth-Limited Search Characteristics: 

1. Completeness: DLS is not complete because it might miss a solution if it's beyond the 

specified depth limit. However, increasing the depth limit can increase the likelihood of finding a 

solution, at the cost of increased computational resources. 

2. Optimality: DLS is not guaranteed to find the optimal solution. If the optimal solution is 

beyond the depth limit, DLS might terminate without finding it. 

3. Time Complexity: The time complexity of DLS depends on the branching factor of the search 

tree, the depth limit, and the structure of the problem. Increasing the depth limit can significantly 

impact the time complexity. 

4. Memory Usage: Like DFS, DLS uses memory to store the nodes on the current path. Memory 

usage increases with the depth limit and the depth of the search tree. 

 

 

Applications of Depth-Limited Search in AI: 

1. Solving puzzles and games where solutions are expected to be within a certain depth. 

2. Navigating through decision trees or game trees, where deep exploration is unnecessary or 

impractical. 

3. Exploring paths in situations where DFS might get stuck due to infinite branches. 

Example of Depth-Limited Search: 

Consider a binary tree where each node has two children, and the goal is to find a specific target 

value. Let's say we're performing a depth-limited search with a depth limit of 3: 



1 

/    \ 

2     3 

/   \    /  \ 

4   5  6   7 
 

In this example, if we're searching for the value "7" using a depth limit of 3, DLS would explore 

nodes up to depth 3 and stop once the limit is reached. It would traverse the nodes 1 → 3 → 7 

and successfully find the target value. 

Depth-Limited Search is useful when we have constraints on the depth of exploration, which can 

be common in scenarios where deep exploration is unnecessary or impractical due to time or 

memory constraints. 

3.13 Breadth-First Search (BFS): - Breadth-First Search (BFS) is an most commonly 

used algorithm in artificial intelligence and computer science. Explores the graph or tree, starting 

from its base and expanding the process from layer to layer. BFS ensures that all nodes at the 

same level are checked before moving on to the next level node. 

BFS Algorithm Steps: 

1. Initialize a queue (FIFO) to keep track of nodes to be explored. 

2. Enqueue the starting node into the queue. 

3. While the queue is not empty: 

a. Dequeue a node from the front of the queue. This node becomes the current node. 

b. If the current node is the goal node or the desired solution, the search is successful. 

c. If the current node has not been visited: 

 i. Mark the node as visited. 

 ii. Enqueue all unvisited neighboring nodes of the current node into the queue. 

d. Repeat steps a to c until the queue is empty or the goal is found. 

BFS Characteristics: 

a. Completeness: BFS is guaranteed to find the shortest path in an unweighted graph or tree if 

one exists. 

b. Optimality: BFS finds the shortest path, but it might be less efficient compared to other 

algorithms in terms of memory usage and time complexity. 



c. Memory Usage: BFS uses more memory compared to Depth-First Search (DFS) as it stores 

all nodes at a given level before moving to the next level. 

d. Time Complexity: The time complexity of BFS is generally proportional to the number of 

nodes in the graph or tree. 

Applications of BFS in AI: 

BFS has various applications in AI and computer science, including: 

i. Solving puzzles and games where finding the shortest path is crucial. 

ii. Navigating maze-like environments to find an exit. 

iii. Performing shortest path routing in network systems. 

iv. Traversing hierarchical structures like decision trees in AI planning. 

v. Web crawling and searching in web-related applications. 

Example of BFS: - 

Consider a simple example of using BFS to find the shortest path from the starting point "S" to 

the goal point "G" in a grid: 

S  .  .  .  .  . 

.  #  #  .  #  . 

.  .  #  .  #  . 

#  .  #  .  #  . 

#  .  .  .  #  G 

Starting from "S," BFS will explore the grid layer by layer until it finds the goal "G." The search 

will yield the shortest path in this case. 

Python program 

Simple Python program to that demonstrates the Breadth-First Search (BFS) algorithm to find 

the shortest path between two points in a grid-based environment. In this example, we'll consider 

a grid where "S" is the starting point and "G" is the goal point. We'll use BFS to find the shortest 

path from the starting point to the goal point. 

 
from collections import deque 
 
# Define the grid with "S" as the starting point and "G" as the goal point 
grid = [ 
    ['S', '.', '.', '.', '.'], 



    ['.', '#', '#', '.', '#'], 
    ['.', '.', '#', '.', '#'], 
    ['#', '.', '#', '.', '#'], 
    ['#', '.', '.', '.', 'G'] 
] 
 
# Define the dimensions of the grid 
rows = len(grid) 
cols = len(grid[0]) 
 
# Define possible moves: up, right, down, left 
moves = [(-1, 0), (0, 1), (1, 0), (0, -1)] 
 
def is_valid(x, y): 
    return 0 <= x < rows and 0 <= y < cols and grid[x][y] != '#' 
 
def bfs(start_x, start_y, goal_x, goal_y): 
    queue = deque([(start_x, start_y)]) 
    visited = set([(start_x, start_y)]) 
    parent = {} 
 
    while queue: 
        x, y = queue.popleft() 
 
        if x == goal_x and y == goal_y: 
            break 
 
        for dx, dy in moves: 
            new_x, new_y = x + dx, y + dy 
            if is_valid(new_x, new_y) and (new_x, new_y) not in visited: 
                queue.append((new_x, new_y)) 
                visited.add((new_x, new_y)) 
                parent[(new_x, new_y)] = (x, y) 
 
    if (goal_x, goal_y) not in parent: 
        return None  # No path found 
 
    path = [(goal_x, goal_y)] 
    while (goal_x, goal_y) in parent: 
        goal_x, goal_y = parent[(goal_x, goal_y)] 
        path.append((goal_x, goal_y)) 
 
    return path[::-1]  # Reverse the path to start from "S" 
 
# Find the shortest path from "S" to "G" using BFS 
start_x, start_y = 0, 0 
goal_x, goal_y = 4, 4 
shortest_path = bfs(start_x, start_y, goal_x, goal_y) 
 
if shortest_path: 



    print("Shortest path:") 
    for x, y in shortest_path: 
        print(f"({x}, {y})", end=" ") 
else: 
    print("No path found.") 

 

OUTPUT 

Shortest path: 

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) 

In this example, the BFS algorithm explores the grid layer by layer, starting from "S," and finds 

the shortest path to the goal "G." The resulting path is printed, showing the sequence of 

coordinates that make up the shortest path. 

Breadth-First Search (BFS) is a powerful searching algorithm with many 

advantages, it also comes with its own set of limitations and drawbacks that 

can impact its performance in certain scenarios: 

 

1. Memory Usage: BFS can consume a significant amount of memory, especially in search 

spaces with a high branching factor or deep levels. It stores all nodes at a given level before 

moving on to the next level, which can lead to high memory requirements. 

 

2. Time Complexity: In some cases, BFS can be slower than other algorithms due to its need to 

explore all nodes at each level before moving deeper. The time complexity can increase 

exponentially with the branching factor and depth of the search space. 

 

3. Infinite Spaces: BFS is not suitable for infinite search spaces or spaces with cycles. It can get 

stuck in an infinite loop if there are cycles, which prevents it from finding a solution or 

terminating. 

 

4. Lack of Guidance: BFS explores all nodes at the current level before moving to the next 

level. It doesn't take into account any information about the potential paths to the goal, which can 

lead to suboptimal paths in cases where some paths seem more promising. 

 



5. Non-Uniform Path Costs: BFS treats all edges as having equal weight. In graphs with non-

uniform edge costs, BFS might find a solution, but it might not be the shortest path. 

 

6. Space for Explored Nodes: BFS keeps all explored nodes in memory until the search is 

complete, which can lead to memory constraints, especially if the search space is large. 

 

7. Complex Data Structures: Implementing BFS efficiently often requires the use of data 

structures like queues, which can introduce overhead in terms of memory and computational 

resources. 

 

8. Delayed Solutions: BFS might not find a solution quickly if the goal is located far away from 

the starting point. It needs to explore nodes layer by layer, and the shortest path may be located 

at a deeper level. 

 

9. Lack of Parallelism: BFS doesn't naturally lend itself to parallel processing, as it relies on the 

sequential exploration of levels. This can limit its use in scenarios where parallelism is desirable. 

 

To address these limitations, it's important to carefully consider the characteristics of the 

problem at hand and choose the appropriate searching algorithm. For problems with large search 

spaces, deep levels, or infinite paths, BFS might not be the optimal choice. In such cases, other 

algorithms like Depth-First Search (DFS), Iterative Deepening Depth-First Search (IDDFS), or 

informed searches like A* might provide better solutions or performance 

3.13 a: Beam Search: - Beam Search is a variant of BFS that only keeps a fixed number of 

best candidates (called the beam width) at each level. It is commonly used in AI applications 

with large search spaces. 

Beam Search is a heuristic search algorithm used in artificial intelligence and natural 

language processing. It's a search strategy that focuses on exploring a limited set of the most 

promising paths, aiming to find a solution more efficiently compared to traditional uninformed 

search algorithms like Breadth-First Search (BFS) or Depth-First Search (DFS). 

Beam Search Algorithm Steps: 



1. Initialize the search with the starting node or state. 

2. Create a beam or set that can hold a limited number of nodes or states, typically called the 

"beam width." 

3. Generate successor nodes or states from the current node. 

4. Evaluate the successor nodes using a heuristic function and select the top "beam width" nodes 

to keep in the beam. 

5. If a goal state is found among the successor nodes, terminate and return the solution. 

6. Repeat steps 3 to 5 for each level of the search tree, gradually expanding the search. 

Beam Search Characteristics: 

1. Completeness: Beam Search is not guaranteed to find a solution. It can miss solutions that are 

not among the top nodes in the beam. 

2. Optimality: Beam Search does not guarantee finding the optimal solution. It often sacrifices 

optimality to gain efficiency by focusing on a limited set of paths. 

3. Memory Usage: Beam Search limits memory usage by only keeping a small set of nodes in 

the beam. This can be advantageous in memory-constrained situations. 

4. Time Complexity: The time complexity of Beam Search is influenced by the beam width and 

the branching factor of the search space. A wider beam explores more paths but also increases 

computational requirements. 

5. Heuristic Dependency: The effectiveness of Beam Search relies on the quality of the 

heuristic function used to evaluate successor nodes. A good heuristic helps select promising 

paths. 

Applications of Beam Search in AI: 

1. Natural language processing tasks like language generation and machine translation. 

2. Speech recognition, where hypotheses can be explored more efficiently using a limited set of 

possibilities. 

3. Some optimization problems where exploring a large search space is impractical. 

Example of Beam Search: 

Consider a scenario where you are trying to find the shortest path from the starting city "S" to the 

goal city "G" in a graph. Each city is connected by edges with associated distances. 



S --3-- A --2-- B 

 \          |            | 

  \         4          5 

   \        |            | 

    \      C --1-- G 

In this example, if you're using Beam Search with a beam width of 2, you would start from the 

"S" node, generate successor nodes, evaluate them using a heuristic, and select the top 2 nodes to 

keep in the beam. The algorithm would continue to explore the path that leads to "A" and "C," 

and eventually, it might find the optimal path "S" → "A" → "C" → "G." 

Beam Search is a useful technique when you want a balance between exploring multiple 

paths and efficiency. However, keep in mind its limitations in terms of completeness and 

optimality. 

3.14 Uniform Cost Search (Dijkstra's Algorithm): - Uniform Cost Search explores 

nodes based on their path cost from the start node. It guarantees finding the shortest path in a 

graph with non-negative edge weights. 

UCS Algorithm Steps: 

1. Initialize a priority queue (usually implemented with a min-heap) to keep track of nodes to be 

explored, with their path cost as the priority. 

2. Enqueue the starting node with a path cost of 0 into the priority queue. 

3. While the priority queue is not empty: 

a. Dequeue the node with the smallest path cost from the priority queue. This node 

becomes the current node. 

b. If the current node is the goal node, the search is successful. 

c. Otherwise, if the current node has not been visited: 

  i. Mark the node as visited. 

ii. Enqueue all unvisited neighboring nodes with their updated path costs into the 

priority queue. 



d. Repeat steps a to c until the goal is found or the priority queue is empty. 

UCS Characteristics: 

1. Completeness: UCS is complete and will find the shortest path if one exists, as long as the 

edge costs are non-negative. 

2. Optimality: UCS guarantees finding the optimal solution, i.e., the shortest path with the 

lowest total cost. 

3. Memory Usage: UCS stores nodes in the priority queue, which requires more memory than 

uninformed search algorithms like BFS or DFS. 

4. Time Complexity: The time complexity of UCS can vary depending on the implementation, 

but in general, it's higher than BFS. 

Applications of UCS in AI: 

1. Pathfinding in games and robotics. 

2. Network routing and transportation planning. 

3. Shortest route computation in maps and navigation systems. 

4. Resource allocation and scheduling problems. 

Example of UCS (Dijkstra's Algorithm): 

Consider a weighted graph where nodes represent cities, and edges represent distances between 

cities. We want to find the shortest path from the starting city "S" to the goal city "G." The edge 

weights represent distances between cities. 

S --3-- A --2-- B 

 \          |            | 

  \         4          5 

   \        |            | 

    \      C --1-- G 



     \      | 

      \     2 

       \    | 

         D 

In this example, the UCS algorithm would prioritize exploring paths with lower costs, leading to 

the shortest path from "S" to "G" being found. The optimal path would be "S" -> "A" -> "C" -> 

"G" with a total cost of 6. 

Dijkstra's Algorithm is a foundation for more advanced algorithms like A* and can be applied to 

various problems where finding the shortest path is crucial. 

Python program 

Simple Python program that implements Uniform Cost Search (Dijkstra's Algorithm) to find the 

shortest path between nodes in a graph. In this example, we'll represent the graph using an 

adjacency list and find the shortest path from a starting node to a goal node. 

import heapq 
 
# Define the graph as an adjacency list 
graph = { 
    'S': [('A', 3), ('D', 2)], 
    'A': [('S', 3), ('B', 2), ('C', 4)], 
    'B': [('A', 2), ('G', 5)], 
    'C': [('A', 4), ('G', 1)], 
    'D': [('S', 2), ('C', 2)], 
    'G': [('B', 5), ('C', 1)] 
} 
 
def dijkstra(start, goal): 
    # Priority queue to store nodes to be explored, with their path cost 
    priority_queue = [(0, start)] 
    # Dictionary to keep track of the shortest path distances 
    shortest_distances = {node: float('inf') for node in graph} 
    shortest_distances[start] = 0 
    # Dictionary to store parent nodes for constructing the path 
    parents = {} 
 
    while priority_queue: 



        cost, current = heapq.heappop(priority_queue) 
 
        if current == goal: 
            break 
 
        if cost > shortest_distances[current]: 
            continue 
 
        for neighbor, edge_cost in graph[current]: 
            new_cost = cost + edge_cost 
            if new_cost < shortest_distances[neighbor]: 
                shortest_distances[neighbor] = new_cost 
                heapq.heappush(priority_queue, (new_cost, neighbor)) 
                parents[neighbor] = current 
 
    # Construct the shortest path 
    path = [] 
    node = goal 
    while node != start: 
        path.insert(0, node) 
        node = parents[node] 
    path.insert(0, start) 
    return path 
 
# Find the shortest path from 'S' to 'G' using Dijkstra's Algorithm 
start_node = 'S' 
goal_node = 'G' 
shortest_path = dijkstra(start_node, goal_node) 
 
print("Shortest path:", shortest_path) 

OUTPUT 

Shortest path: ['S', 'D', 'C', 'G'] 

In this example, the graph is represented as an adjacency list, where each node is associated with 

its neighboring nodes and the corresponding edge costs. The dijkstra function implements 

Dijkstra's Algorithm using a priority queue to explore nodes with the lowest path cost. The 

shortest path is constructed by tracing back from the goal node to the start node using the parents 

dictionary. 

This program demonstrates the basic principles of Dijkstra's Algorithm for finding the shortest 

path in a graph. Keep in mind that this example uses a simplified graph, and in real-world 

scenarios, more complex data structures and optimizations might be needed. 



Uniform Cost Search (UCS) also has certain limitations and drawbacks that 

can affect its applicability in specific scenarios: 

1. Non-Negative Edge Costs: Dijkstra's Algorithm requires that all edge costs in the graph be 

non-negative. If negative edge costs are present, the algorithm can produce incorrect results. 

2. Limited Applicability in Negative Weight Graphs: While Dijkstra's Algorithm can handle 

non-negative edge costs, it's not suitable for graphs with negative edge costs or cycles containing 

negative total costs. Negative edge costs can lead to incorrect shortest path calculations. 

3. Infeasible for Large Graphs: Dijkstra's Algorithm can be inefficient for graphs with a large 

number of nodes and edges. Its time complexity is influenced by the number of nodes and edges, 

which can result in slow performance for large-scale problems. 

4. Memory Usage: Dijkstra's Algorithm uses a priority queue to store nodes, which can require 

significant memory, especially in graphs with many nodes. In scenarios with limited memory, 

this can be a drawback. 

5. Time Complexity: Although Dijkstra's Algorithm guarantees finding the shortest path, its 

time complexity can be relatively high in dense graphs with many nodes and edges. More 

efficient algorithms like A* can be more suitable in such cases. 

6. Lack of Heuristics: Dijkstra's Algorithm doesn't utilize heuristics to guide the search. This 

means it might explore paths that appear promising due to lower edge costs, even if those paths 

lead further away from the goal. 

7. Complex Edge Costs: In some scenarios, edge costs might not accurately represent the true 

cost or time of traversal. For example, in real-world transportation networks, traffic congestion 

and delays can impact the actual traversal time. 

8. Pathfinding in Dynamic Environments: Dijkstra's Algorithm assumes a static graph with 

fixed edge costs. In dynamic environments where edge costs change over time (e.g., real-time 

traffic updates), the algorithm may not produce optimal results. 

9. Efficiency in Sparse Graphs: In graphs with low branching factors and sparse connectivity, 

Dijkstra's  Algorithm can be overkill. Other algorithms like BFS or A* might provide 

comparable or better performance. 

To mitigate these limitations, it's important to carefully consider the characteristics of the 

problem and the graph structure. Depending on the nature of the problem, the presence of 



negative edge costs, and the available resources, other algorithms like A* (informed search) or 

Bellman-Ford (for graphs with negative edge costs) might be more appropriate choices. 

3.2. Informed Search (Heuristic Search): 

Informed search algorithms make use of additional information beyond the current state and the 

goal, typically provided by a heuristic function. This extra information guides the search toward 

more promising paths and is particularly useful in solving complex problems efficiently. 

Some common types of informed search algorithms include: 

a. Greedy Best-First Search: Expands nodes based solely on the heuristic value (h-value), 

aiming to reach the goal quickly. Might not guarantee optimal solutions. 

b. A Search:* Combines the cumulative cost to reach a node (g-value) and the heuristic estimate 

of the cost to reach the goal (h-value). It finds optimal solutions when using admissible and 

consistent heuristics. 

c. IDA (Iterative Deepening A): A memory-efficient variant of A* that uses depth-first search 

while keeping the memory usage under control. 

d. RBFS (Recursive Best-First Search): Expands nodes using a best-first approach but 

maintains backup values for efficient backtracking. 

3.21 Greedy Best-First Search: - Greedy best first search is a search algorithm used in 

artificial intelligence and computer science. It differs from the best first search algorithm, which 

uses a heuristic function to estimate the distance from the current source to the destination. 

Heuristic function is used to guide the search towards the goal. It selects the node that appears to 

be closest to the goal based on the heuristic, without considering the path cost. 

Greedy Best-First Search Algorithm Steps: 

1. Initialize a priority queue with the starting node, where the priority is determined by the 

heuristic value (h) of the node (h(n)). 

2. While the priority queue is not empty: 

a. Dequeue the node with the highest heuristic value. 

b. If the current node is the goal node, the search is successful. 

c. Otherwise, expand the current node by generating its child nodes. 



d. Enqueue the child nodes into the priority queue, ordered by their heuristic values. 

e. Repeat steps a to d until the goal is found or the priority queue is empty. 

Greedy Best-First Search Characteristics: 

1. Completeness: Greedy Best-First Search is not guaranteed to find a solution, as it can get 

stuck in local optima and ignore promising paths that might lead to the goal. 

2. Optimality: Greedy Best-First Search is not guaranteed to find the optimal solution, even if a 

solution is found. It tends to prioritize nodes that appear promising based solely on the heuristic, 

which can lead to suboptimal paths. 

3. Memory Usage: Similar to other informed search algorithms, Greedy Best-First Search stores 

nodes in a priority queue. The memory usage can be high, particularly if the heuristic values 

don't provide effective guidance. 

4. Time Complexity: The time complexity of Greedy Best-First Search can vary significantly 

depending on the quality of the heuristic function. In some cases, it might converge to a solution 

quickly, while in others, it might exhaustively explore parts of the search space. 

Applications of Greedy Best-First Search in AI: 

1. Path finding algorithms in games and robotics, where finding a solution quickly is more 

important than ensuring optimality. 

2. Certain optimization problems where a local optimum is acceptable. 

Example of Greedy Best-First Search: 

Consider a simple graph where nodes represent cities, and the goal is to find the shortest path 

from the starting city "S" to the goal city "G." The edges between cities have weights 

representing distances. 

S --3-- A --2-- B 

 \          |            | 

  \         4          5 

   \        |            | 



    \      C --1-- G 

     \      | 

      \     2 

In this example, Greedy Best-First Search would prioritize exploring paths that seem closer to 

the goal based on the heuristic (e.g., straight-line distance), even if the total path cost is higher. 

The algorithm might choose to explore "S" -> "A" -> "B" -> "G," which might not be the optimal 

path. 

Python program that demonstrates the Greedy Best-First Search algorithm. 

In this example, we'll use a graph represented as an adjacency list and a 

heuristic function to estimate distances between nodes. We'll find the path 

from a starting node to a goal node using the Greedy Best-First Search 

algorithm. 

import heapq 
 
# Define the graph as an adjacency list 
graph = { 
    'S': [('A', 3), ('D', 2)], 
    'A': [('S', 3), ('B', 2), ('C', 4)], 
    'B': [('A', 2), ('G', 5)], 
    'C': [('A', 4), ('G', 1)], 
    'D': [('S', 2), ('C', 2)], 
    'G': [('B', 5), ('C', 1)] 
} 
 
# Define the heuristic function (estimated distance to goal) 
heuristic = { 
    'S': 7, 
    'A': 5, 
    'B': 2, 
    'C': 1, 
    'D': 8, 
    'G': 0 
} 
 
def greedy_best_first_search(start, goal): 
    priority_queue = [(heuristic[start], start)] 
    visited = set() 
 
    while priority_queue: 



        _, current = heapq.heappop(priority_queue) 
 
        if current == goal: 
            return visited 
 
        visited.add(current) 
 
        for neighbor, _ in graph[current]: 
            if neighbor not in visited: 
                heapq.heappush(priority_queue, (heuristic[neighbor], 
neighbor)) 
 
    return visited 
 
# Find the path using Greedy Best-First Search 
start_node = 'S' 
goal_node = 'G' 
visited_nodes = greedy_best_first_search(start_node, goal_node) 
 
print("Visited nodes:", visited_nodes) 

OUTPUT 

Visited nodes: {'S', 'A', 'B', 'G'} 

In this example, the heuristic function estimates the distance from each node to the goal node 

"G." The greedy_best_first_search function uses the heuristic values to prioritize exploring nodes 

that appear to be closer to the goal. The algorithm explores nodes in a greedy manner, which can 

lead to a suboptimal path, as it doesn't consider the total path cost. 

Keep in mind that this program uses a simplified graph and heuristic function. In practice, the 

quality of the heuristic and the characteristics of the graph can significantly impact the 

performance and quality of the solution produced by Greedy Best-First Search. 

Limitations and drawbacks that can impact GBFS applicability and 

performance: 

1. Completeness: Greedy Best-First Search is not guaranteed to find a solution, even if one 

exists. It can get stuck in local optima or follow paths that seem promising based on the heuristic 

but lead to dead ends. 

2. Optimality: Greedy Best-First Search does not guarantee finding the optimal solution. It tends 

to prioritize nodes that have low heuristic values, but these nodes might not necessarily lead to 

the best overall path. 



3. Lack of Information: The algorithm relies heavily on the heuristic function, often ignoring 

other important factors such as the actual path cost or constraints. This can lead to suboptimal 

solutions if the heuristic is inaccurate or doesn't capture the full problem complexity. 

4. Heuristic Dependency: The effectiveness of Greedy Best-First Search heavily relies on the 

quality of the heuristic function. If the heuristic function doesn't accurately estimate distances or 

costs, the algorithm's performance can be compromised. 

5. Informed Bias: Because Greedy Best-First Search prioritizes nodes solely based on heuristic 

values, it might ignore paths that are initially more costly but ultimately lead to a better solution. 

This can result in suboptimal paths in some cases. 

6. Sensitivity to Initial State: The initial state of the search can significantly affect the path 

chosen by the algorithm. Slight changes in the starting point can lead to entirely different paths 

being explored. 

7. No Backtracking: Greedy Best-First Search does not backtrack or reconsider previously 

explored paths. Once it chooses a path, it doesn't reassess its decisions, which can lead to missed 

opportunities for finding better paths. 

8. Exploration Imbalance: The algorithm can exhibit an exploration imbalance, favoring 

certain parts of the search space while ignoring others. This can lead to inefficient exploration 

and overlooked potential solutions. 

9. High Memory Usage: Similar to other informed search algorithms, Greedy Best-First Search 

requires memory to store nodes and their heuristic values in the priority queue. This can lead to 

high memory usage, particularly in large search spaces. 

10. Inefficiency in Certain Graphs: Greedy Best-First Search might not perform well in graphs 

with complex structures or when there are many paths to consider. It can focus on a single path 

and miss better alternatives. 

Greedy Best-First Search is a quick heuristic-based algorithm that might work well in situations 

where fast decision-making is more important than finding the absolute best solution. However, 

its limitations, especially its lack of completeness and optimality guarantees, should be carefully 

considered when choosing it for a specific problem. 

3.22 A Algorithm: - A* is an informed search algorithm that combines elements of Uniform 

Cost Search and Greedy Best-First Search. It uses a heuristic function to guide exploration while 



considering both the path cost and the estimated cost to the goal. A* guarantees finding the 

shortest path if the heuristic is admissible. 

A algorithm* in the context of artificial intelligence. A* (pronounced "A star") is a 

widely used informed search algorithm that efficiently finds the shortest path from a starting 

node to a goal node in a weighted graph. It combines the strengths of Dijkstra's Algorithm and 

Greedy Best-First Search by considering both the actual cost from the start node (the "g" value) 

and a heuristic estimate of the cost to reach the goal node (the "h" value). 

A Algorithm Steps:* 

1. Initialize two lists: an open list (to store nodes to be explored) and a closed list (to store nodes 

that have been visited). 

2. Enqueue the starting node to the open list with a "g" value of 0 and calculate its heuristic "h" 

value. 

3. While the open list is not empty: 

a. Dequeue the node with the lowest "f" value (f = g + h) from the open list. This node 

becomes the current node. 

b. If the current node is the goal node, the search is successful. 

c. Otherwise, generate the child nodes of the current node and calculate their "g" and "h" 

values. 

d. For each child node, if it's already in the open list with a lower "f" value or in the 

closed list, skip it. 

e. If the child node is not in the open list or has a higher "f" value, enqueue it to the open 

list. 

f. Move the current node to the closed list. 

4. If the open list becomes empty and the goal node is not reached, there's no path. 

A Algorithm Characteristics: 

1. Completeness: A* is complete and will find the shortest path if one exists, as long as the 

heuristic is admissible (never overestimates the actual cost). 



2. Optimality: A* guarantees finding the optimal solution if the heuristic is both admissible and 

consistent (satisfies the triangle inequality). 

3. Memory Usage: A* uses memory to store nodes in the open and closed lists. Its memory 

usage can be influenced by the branching factor and graph size. 

4. Time Complexity: The time complexity of A* depends on the efficiency of the heuristic 

function. In practice, it's often faster than uninformed search algorithms like Dijkstra's 

Algorithm. 

5. Heuristic Requirement: A* requires a heuristic function that provides a reasonable estimate 

of the cost from a given node to the goal. The quality of the heuristic can greatly impact the 

algorithm's performance. 

Applications of A Algorithm in AI: 

1. Pathfinding in games, robotics, and navigation systems. 

2. Route planning for transportation networks. 

3. Resource allocation and scheduling problems. 

4. Graph-based optimization problems. 

The A* algorithm efficiently combines informed and uninformed search strategies to find 

optimal solutions in a variety of scenarios. Its performance and effectiveness depend on the 

quality of the heuristic function and the characteristics of the problem's search space. 

Python program that demonstrates the A* algorithm.  

S --3-- A --2-- B 

 \          |            | 

  \         4          5 

   \        |            | 

    \      C --1-- G 

     \      | 



      \     2 

       \    | 

         D 

In this example, we'll use a graph represented as an adjacency list, and we'll 

find the shortest path from a starting node to a goal node using the A* 

algorithm. The heuristic function used here estimates the straight-line 

distance between nodes. 

import heapq 
 
# Define the graph as an adjacency list with edge costs 
graph = { 
    'S': [('A', 3), ('D', 2)], 
    'A': [('S', 3), ('B', 2), ('C', 4)], 
    'B': [('A', 2), ('G', 5)], 
    'C': [('A', 4), ('G', 1)], 
    'D': [('S', 2), ('C', 2)], 
    'G': [('B', 5), ('C', 1)] 
} 
 
# Define the heuristic function (straight-line distance to goal) 
heuristic = { 
    'S': 7, 
    'A': 5, 
    'B': 2, 
    'C': 1, 
    'D': 8, 
    'G': 0 
} 
 
def a_star(start, goal): 
    open_list = [(heuristic[start], 0, start)]  # (h, g, node) 
    closed_list = set() 
    parent = {start: None} 
    g_value = {node: float('inf') for node in graph} 
    g_value[start] = 0 
 
    while open_list: 
        _, g, current = heapq.heappop(open_list) 
 
        if current == goal: 
            return reconstruct_path(parent, goal) 
 



        closed_list.add(current) 
 
        for neighbor, edge_cost in graph[current]: 
            tentative_g = g + edge_cost 
            if tentative_g < g_value[neighbor]: 
                parent[neighbor] = current 
                g_value[neighbor] = tentative_g 
                f_value = tentative_g + heuristic[neighbor] 
                if neighbor not in closed_list: 
                    heapq.heappush(open_list, (f_value, tentative_g, 
neighbor)) 
 
    return None  # No path found 
 
def reconstruct_path(parent, goal): 
    path = [goal] 
    while parent[goal] is not None: 
        goal = parent[goal] 
        path.insert(0, goal) 
    return path 
 
# Find the shortest path using A* algorithm 
start_node = 'S' 
goal_node = 'G' 
shortest_path = a_star(start_node, goal_node) 
 
if shortest_path: 
    print("Shortest path:", shortest_path) 
else: 
    print("No path found.") 
 

OUTPUT 

Shortest path: ['S', 'A', 'C', 'G'] 

In this example, the A* algorithm uses the given heuristic function and edge costs to find the shortest path 

from the starting node "S" to the goal node "G." The priority queue open_list is used to prioritize nodes 

based on their "f" values, which are the sum of the actual path cost ("g" value) and the heuristic estimate 

("h" value). The parent dictionary is used to reconstruct the shortest path once the goal is reached. 

This program demonstrates the basic principles of the A* algorithm for finding optimal paths in a 

graph. Keep in mind that the effectiveness of A* heavily depends on the quality of the heuristic function 

and the characteristics of the problem's search space. 



A* algorithm is a widely used and effective informed search algorithm, it's 

important to be aware of its limitations and potential drawbacks in certain 

scenarios: 

1. Heuristic Quality: A* heavily relies on the quality of the heuristic function. If the heuristic is 

inaccurate or doesn't provide a good estimate of the actual cost, A* might not perform as 

expected. An admissible and consistent heuristic is crucial for optimality guarantees. 

2. Completeness: A* is not guaranteed to find a solution if the search space is infinite or if there 

are cycles with negative edge costs. Additionally, if the heuristic overestimates the true cost, A* 

might not find a solution even if one exists. 

3. Optimality and Heuristic Influence: A* guarantees optimal solutions when the heuristic is 

admissible and consistent. However, if the heuristic is not well-tuned or if it overestimates the 

true cost, A* might not produce the optimal path. 

4. Time Complexity: The time complexity of A* can be high in some cases, particularly if the 

branching factor of the search space is large. The performance can be impacted by the heuristic 

quality and the structure of the graph. 

5. Memory Usage: A* uses memory to store nodes in the open and closed lists. The memory 

consumption can be significant, especially for large search spaces, as it stores all generated nodes 

until a solution is found. 

6. Duplicating States: A* can potentially generate and explore duplicate states (nodes with the 

same configuration). Proper handling of duplicate states is important to avoid inefficiencies. 

7. Tie-Breaking: When multiple nodes have the same "f" value, A* requires a tie-breaking 

strategy to determine which node to expand first. The choice of tie-breaking strategy can impact 

the search's behavior. 

8. Complex Heuristic Design: Designing a good heuristic function can be challenging. In some 

cases, obtaining accurate heuristics might be difficult or even impossible, limiting A*'s 

effectiveness. 

9. Limited Exploration: A* focuses on exploring the most promising paths based on the 

heuristic. This can lead to limited exploration of other paths that might yield better solutions in 

certain cases. 



10. Dynamic Environments: A* assumes a static environment where edge costs remain 

constant. In dynamic environments with changing costs, A* might not perform optimally. 

11. Performance Trade-offs: In some cases, algorithms like Dijkstra's Algorithm or Greedy 

Best-First Search might be more suitable, depending on the specific problem's characteristics and 

requirements. 

To address these limitations, it's important to carefully select or design an appropriate heuristic 

function and consider the nature of the problem at hand. In some cases, alternative search 

algorithms or modifications to A* might be better suited to overcome these limitations. 

3.3. Adversarial search 

Adversarial search, also known as game tree search, is a type of search algorithm used in 

artificial intelligence to make decisions in competitive environments, such as games. It involves 

predicting the opponent's moves and making optimal decisions to maximize one's own chances 

of winning. Adversarial search algorithms are particularly relevant in two-player games where 

opponents take turns to make moves. 

The goal of adversarial search is to find the best move for the player in consideration, 

assuming the opponent will make moves that are strategically beneficial for them. The 

algorithms aim to explore the possible moves and outcomes in the game tree to make informed 

decisions. 

Some common algorithms for adversarial search include: 

a. Minimax Algorithm: The minimax algorithm is a fundamental technique in adversarial 

search. It works by recursively evaluating the possible outcomes of each move and assigning a 

value to each state. The player aims to maximize their own utility while assuming that the 

opponent aims to minimize it. The algorithm selects the move that leads to the maximum 

possible utility, considering the opponent's best responses. 

b. Alpha-Beta Pruning: Alpha-beta pruning is an optimization technique used with the 

minimax algorithm to reduce the number of nodes that need to be evaluated. It eliminates 



branches in the game tree that are guaranteed to not affect the final decision. This technique 

significantly speeds up the search process. 

c. Monte Carlo Tree Search (MCTS): MCTS is an adaptive algorithm that combines random 

simulations and tree search. It is used in games with large state spaces and complex decision 

trees. MCTS has been particularly successful in games like Go and Chess. 

d. Negamax Algorithm: Negamax is a simplification of the minimax algorithm. It takes 

advantage of the fact that the values of the game tree nodes have the same sign and are 

essentially negations of each other. Negamax simplifies the computation of the value of each 

node. 

Adversarial search algorithms play a crucial role in game-playing AI systems, allowing them to 

make strategic decisions by considering both the player's and the opponent's potential moves and 

outcomes. These algorithms are used in games ranging from traditional board games to modern 

video games, and their principles have applications in various decision-making scenarios beyond 

gaming. 

These search algorithms form the basis for solving a wide range of problems in AI, including 

pathfinding, puzzle solving, game playing, optimization, and more. The choice of algorithm 

depends on factors such as problem characteristics, available heuristic information, 

computational resources, and the desire for optimality or efficiency. 

3.4 Iterative Deepening Depth-First Search (IDDFS): - IDDFS is a combination of 

DFS and BFS. It repeatedly applies DFS with increasing depth limits until the goal is found. It 

has the advantages of both BFS (completeness) and DFS (space efficiency). 

IDDFS Algorithm Steps: 

1. Initialize the depth limit to 0. 

2. Perform a DFS search with the given depth limit. 

3. If the goal is not found at the current depth, increment the depth limit and repeat step 2. 

4. Continue increasing the depth limit and performing DFS searches until the goal is found or a 

maximum depth is reached. 



IDDFS Characteristics: 

1. Completeness: IDDFS is complete, meaning it will find a solution if one exists, just like BFS 

and DFS. 

2. Optimality: IDDFS, like BFS, guarantees finding the shortest path if one exists in an 

unweighted graph or tree. 

3. Memory Usage: IDDFS uses memory comparable to DFS due to its depth-first nature and 

limited memory requirements. 

4. Time Complexity: The time complexity of IDDFS is generally similar to BFS but can be 

higher in practice due to multiple iterations. 

Advantages of IDDFS: 

1. IDDFS combines the advantages of both DFS (memory efficiency) and BFS (optimal 

solution). 

2. It gradually explores the search space, making it suitable for problems where the depth of the 

solution is unknown. 

3. It avoids the excessive memory usage of BFS for deep search spaces. 

Python program that demonstrates the Iterative Deepening Depth-First 

Search (IDDFS) algorithm. In this example, we'll use IDDFS to find the 

shortest path between a starting point "S" and a goal point "G" in a grid-

based environment. 

# Define the grid with "S" as the starting point and "G" as the goal point 
grid = [ 
    ['S', '.', '.', '.', '.'], 
    ['.', '#', '#', '.', '#'], 
    ['.', '.', '#', '.', '#'], 
    ['#', '.', '#', '.', '#'], 
    ['#', '.', '.', '.', 'G'] 
] 
 
# Define the dimensions of the grid 
rows = len(grid) 
cols = len(grid[0]) 
 
# Define possible moves: up, right, down, left 
moves = [(-1, 0), (0, 1), (1, 0), (0, -1)] 
 
def is_valid(x, y): 



    return 0 <= x < rows and 0 <= y < cols and grid[x][y] != '#' 
 
def iddfs(start_x, start_y, goal_x, goal_y, max_depth): 
    for depth_limit in range(max_depth + 1): 
        visited = set() 
        if dls(start_x, start_y, goal_x, goal_y, depth_limit, visited): 
            return True 
    return False 
 
def dls(x, y, goal_x, goal_y, depth_limit, visited): 
    if depth_limit == 0 and x == goal_x and y == goal_y: 
        return True 
    if depth_limit > 0: 
        visited.add((x, y)) 
        for dx, dy in moves: 
            new_x, new_y = x + dx, y + dy 
            if is_valid(new_x, new_y) and (new_x, new_y) not in visited: 
                if dls(new_x, new_y, goal_x, goal_y, depth_limit - 1, 
visited): 
                    return True 
    return False 
 
# Find the shortest path from "S" to "G" using IDDFS 
start_x, start_y = 0, 0 
goal_x, goal_y = 4, 4 
max_depth = 10  # Maximum depth limit 
path_found = iddfs(start_x, start_y, goal_x, goal_y, max_depth) 
 
if path_found: 
    print("Path found!") 
else: 
    print("No path found.") 

OUTPUT 
Path found! 
 

In this example, the IDDFS algorithm iteratively performs Depth-Limited Search (DLS) with 

increasing depth limits. It searches for a path from the starting point "S" to the goal point "G" in 

the grid. The dls function implements the Depth-Limited Search, and the iddfs function 

orchestrates the iterative process. 

Keep in mind that IDDFS is generally useful for scenarios with large or unknown depths, 

where the goal might be located deep within the search space. The max_depth parameter sets an 

upper limit on the depth explored by the algorithm. It's important to choose an appropriate value 

for max_depth based on the problem's characteristics to balance exploration and performance. 



Limitations of IDDFS: 

1. IDDFS might revisit nodes multiple times, leading to potentially slower exploration compared 

to BFS. 

2. It can be less efficient than other optimized search algorithms like A* if heuristics are 

available. 

IDDFS is particularly useful in scenarios where memory is limited, and you want to ensure an 

optimal solution while avoiding the high memory requirements of BFS. However, its efficiency 

depends on the branching factor of the search tree and the specific problem at hand. 

 

Implementing IDDFS often involves integrating DFS with a loop that iteratively increases the 

depth limit until a solution is found or a maximum depth is reached. This allows the algorithm to 

gradually explore the search space while maintaining low memory usage.  

 

3.5 Some of the recently used algorithms in AI are 

1. Monte Carlo Tree Search (MCTS): While MCTS has been around for a while, it continues 

to be an active area of research and is widely used in game-playing AI systems. MCTS is 

particularly effective in domains with large state spaces and complex decision trees. It's used in 

game AI, robotics, and other decision-making applications. 

2. Reinforcement Learning (RL) and Deep Learning: Recent advancements in deep 

reinforcement learning have led to the development of more sophisticated search algorithms. 

These algorithms combine the power of deep neural networks with reinforcement learning 

techniques to search for optimal policies in complex environments. 

3. AlphaGo and AlphaZero: These breakthrough algorithms, developed by DeepMind, 

combine Monte Carlo Tree Search with deep neural networks and reinforcement learning. They 

have demonstrated exceptional performance in playing complex games like Go and Chess, and 

they showcase the potential of combining different search and learning techniques. 

4. Neural Architecture Search (NAS): While not a traditional search algorithm, NAS involves 

the automated design of neural network architectures. It uses search techniques to explore the 

vast space of possible network architectures to find those that perform well on specific tasks. 



5. Differential Evolution: This optimization technique has gained popularity in solving complex 

optimization problems. It involves iteratively improving a population of candidate solutions by 

combining mutation, crossover, and selection operations. 

6. Particle Swarm Optimization (PSO): PSO is a population-based optimization technique that 

simulates the social behavior of birds or fish to explore solution spaces. It's used in optimization 

tasks and has potential applications in various AI domains. 

7. Hyperparameter Optimization: While not strictly a search algorithm, hyperparameter 

optimization techniques, such as Bayesian optimization and genetic algorithms, are used to find 

the best hyperparameters for machine learning models. These techniques aim to efficiently 

explore the hyperparameter space to improve model performance. 

 

It's important to note that the latest advancements in search algorithms often leverage the power 

of machine learning and AI techniques to create more effective and efficient approaches. 

Research is ongoing, and new algorithms or improvements to existing ones can emerge rapidly 

in this field. If you're looking for the very latest developments, I recommend checking recent 

research papers, conference proceedings, and AI-related news sources. 

3.6 Logic in AI 

In artificial intelligence, logic forms the foundation for representing and reasoning about 

knowledge and information. There are two main branches of logic used in AI: propositional logic 

and predicate logic (also known as first-order logic). 

1. Propositional Logic: 

Propositional logic deals with propositions, which are statements that are either true or false. It 

involves creating logical expressions using logical connectives such as AND, OR, NOT, and 

implications (IF-THEN). In propositional logic, variables represent propositions, and truth values 

(true or false) are assigned to these variables. 

Propositional logic is useful for representing simple relationships and making logical 

inferences, but it lacks the expressive power to handle more complex scenarios involving 

quantification and relationships between objects. 

2. Predicate Logic (First-Order Logic): 



Predicate logic is a more expressive form of logic that allows for the representation of 

relationships between objects, quantification, and more complex logical statements. It extends 

propositional logic by introducing predicates, functions, variables, and quantifiers. 

>Predicates: Predicates represent relationships between objects. For example, "Larger(x, y)" 

could represent that "x" is larger than "y." 

>Quantifiers: Quantifiers allow you to express statements about all or some objects. The two 

main quantifiers are: 

>>Universal Quantifier (∀): "For all" or "Every." For example, ∀x Cat(x) represents 

"Every x is a cat." 

>>Existential Quantifier (∃): "There exists" or "Some." For example, ∃x Dog(x) 

represents "There exists an x that is a dog." 

>Functions: Functions can take objects as inputs and produce other objects as outputs. For 

example, Age(john) = 30 represents "The age of John is 30." 

Predicate logic is more expressive and can represent complex relationships, make more 

nuanced inferences, and model a wider range of scenarios, making it a crucial tool in AI 

knowledge representation and reasoning. 

Both propositional and predicate logic are used in various AI applications, such as knowledge 

representation, natural language processing, expert systems, automated reasoning, and more. The 

choice between the two depends on the complexity of the domain being modeled and the types of 

relationships that need to be captured. 

 

 

 


