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INTEGRODIFFERENTIAL EQUATION VIA S-ITERATION METHOD
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ABSTRACT. In this research chapter, we investigate the existence and uniqueness of the solution to a nonlinear implicit
Fredholm integrodifferential equation. To analyze the problem, we utilize the S— iteration method. As the study of
qualitative properties typically requires differential and integral inequalities, the S— iteration method proves to be
equally important in the analysis of various qualitative properties, such as the continuity dependence and closeness
of solutions. We provide an example that supports the established results.
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1. INTRODUCTION

Consider the nonlinear integrodifferential equation of the type:

b
xz(t) =G(t) + / F(t, s,2(s),2'(s), - ,m(nfl)(s), z(a),2' (a), - ,w(nfl)(a)v x(b),z'(b), - 7x(n71)(b))d8, (1)

for t € I = [a,b]. Let R stand for the set of real numbers, E =R x R x --- X R (n times) be the product space and
R = [0,00) be the given subset of R. We assume F € C(I? x E3,R), G € C(I,R), and n > 1.

Many Iterative methods for certain classes of operators have been introduced by several researchers, including their
convergence, equivalence of convergence, and rate of convergence, etc. (see [1L [3, Bl [8, @} [15] 16l 17, 18| 19 20, 21|
24, 25, 26]). Most of the iterative methods focus on both analytical and numerical approaches. Due to its simplicity

and fastness, the S— iteration method has attracted attention and hence, it is used in this chapter.

There is a sufficient amount of literature that deals with the special and even more general version of the equation
by using a variety of techniques [2] [6, 10, [1T), 12] 13} 14, 22 23] 27, 28] 29, B0, BI] and some of the references
cited therein. Recently, Yunus Atalan, Faik Giirsoy and Abdul Rahim Khan [4] have studied the special version of
equation for different qualitative properties of solutions. Authors are inspired by the work of D. R. Sahu [24] and

influenced by the work in [4].

The primary aim of this chapter is to utilize the normal S—iteration method to establish the existence and uniqueness
of the solution for the problem . Additionally, we provide a result of the data dependence for the solutions of

integrodifferential equation through the normal S—iteration method.
1
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2. EXISTENCE OF SOLUTION VIA S—ITERATION METHOD:

In terms of continuous functions ) : T — R (j=0,1,--- ,n—1), we denote

l2(®)|e =Y 12V @)],
§=0

for (z(t),2'(t), - 2™~ V(t)) € E, t € I. We define B = C"~'(I) = C" (I, R), is the space of all functions = which

are continuously differentiable on I and endowed with the norm

25 = max {|z(t)] p}. (2)
It is easy to note that B with the norm defined by forms a Banach space.
By a solution of equation , it mean a continuous function xz(t), ¢ € I which is (n — 1) times continuously
differentiable on I and satisfies the equation . It is easy to observe that the solution z(¢) of the equation and

its derivatives satisfy the integral equations (see [7], p.318)
x(j)(t) - g(j)(t)

b i
+/a %f(t,s,z(s),m’(s),-.-,x<n*1>(s),x(a),x’(a),.--,x<”*1>(a),x(b),z’(b),.-.,x<”*1>(b))ds, (3)

forteland0<j<n-1

We require the following pair of known results:

Theorem 1. ([24], p.194) Let C be a nonempty closed convex subset of a Banach space X and T : C — C a
contraction operator with contractivity factor k € [0,1) and fized point x*. Let o, and B, be two real sequences in

[0,1] such that o« < oy <1 and 8 < B, <1 for alln € N and for some «, 8 > 0. For given u; = v; = wy € C, define

sequences Uy, vy, and w, in C as follows:

) ) Unt1 = (1 — an)Tup + anTyn,
S-iteration process: nt
p { Yn = (1 = Bn)un + BnTun,n € N.
Picard iteration: Upt1 = Tvp,n € N.

Mann iteration process: wWpt1 = (1 = Bn)wn + BpTwp,n € N.
Then we have the following:
(2) lfunss — %)) < k" [1 = (L= k)| fluy — 2*]|, for all n € N.
b) |lvnt1 — || < k™||vr — z*||, for alln € N.
(©) lluwmsr — ¥l < [1=(1- k)ﬁ}"nwl —2*||, for alln € N.

Moreover, the S-iteration process is faster than the Picard and Mann iteration processes.

In particular, for o, = 1, n € NU {0}, the S-iteration process can be written as:

Ug € C,
Unt1 = TyYn, (4)
Yn = (1= Bn)un + BuTun, n € NU{0}.

Lemma 1. (|26], p.4) Let {5,}52, be a nonnegative sequence for which one assumes there exists ng € NU{0}, such

that for all n > ng one has satisfied the inequality

6n+1 < (1 - ,Un)ﬂn + UnYn, (5)
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where p,, € (0,1), for all n € NU {0}, Z tn, =00 and v, >0, Vn € NU{0}. Then the following inequality holds

n=0
0 <lim sup B, < lim sup ~,. (6)
n—oo n—oo

For our convenience, we list the following hypotheses:

(Hy1) The function F in equation and its derivatives with respect t satisfy the condition

%F(t7 S7x(t)7$,(t)’ Ce ,.’13(”—1) (t)7 aj‘(a)7x’(a)7 A 7$(n_1)(a),$(b),l‘/(b), L. 7x(n—l) (b))
o7
ot

F t, Svy(s)vy/(s)v T 7y(n_1)(8)7 y(a’)vy/(a‘)v e 7y(n—1)(a)’ y(b)ay/(b)v e 7y(n_1)(b))|

/N

1 n—1 n—1
< pi(t,s) [a 2@ (s) =y (s)| + 8 [P (@) =y (@) + 7D [P (b) - y(“(b)l} :
=0 =0

1=

3
|

(=)

for j =0,1,---,n—1, where p;(t,s) € C(I*,Ry) and «, 3,7 > 0.
(Hz) My (a+B+7)(b-a)<1,
where Mz denotes a positive constant such that for all ¢,s € T

Mz = max{nzlpj(t,s) 1 (t,s) € 12}.

=0

The following theorem establishes the existence and uniqueness of the solution of equation 1. .

Theorem 2. Assume that hypotheses (H1)— (Hz) hold. Let {&;}72, be a real sequence in [0,1] satisfying Z & = 0.
k=0
Then the equation has a unique solution x € B and normal S—iterative method ( with uy = x0) converges to
x € B with the following estimate:
k+1
[Mr(a+B+7)b-a)

{1—M}-(Oz+ﬁ+’7)(b—a)i| o

|lzkt1 — x|l < |lzo — || 5. (7)

(&

Proof. For x(t) € B, we define

(Tz)(t) = 6()
+/b]:(t,s,x(s),x’(s),-«- L2V (s), 2(a), 2’ (), -, 2™ V(a), z(b), 2’ (b), - - - ,x("’l)(b))ds, (8)
for t € I = [a, b].
Differentiating (8 on both sides with respect to t (see [7], p. 318), we have
(Tx)(j)(t) — g(j)(t)

b 9j
+/a %f(t,s,z(s),z’(s),--.,x<n*1>(s),x(a),x'(a),-.-,x<”*1>(a),x(b),x'(b),..-,x<n*1>(b))ds, 9)

fortelTand 0<j<n-1.
Let {xx}72, and {x,(cj)},;“;o, (j=1,---,n—1) be iterative sequences generated by normal S—iteration method

for the operators given in and @ respectively.
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We will show that x, — x as k — oo.

From method , equations , @[) and hypotheses, we obtain
[Tk (t) — 2(t)|

_ i o1 9 8) — 29 (1)
— Z (Tyi) (]) Tx)(])( t)|

= Z ’g(j)(t)
=0

o7

b
+/a %}'(t s,y (8), yr(8), -y " (8), wk(a), i (@), - oy ™Y (@), yr(B), v’ (B), - - ,yk("_l)(b))ds
,g(a)( t)

f/a %}"(t s,2(5),2(s), -+, 2 V(s), z(a), 2 (a), - - , 2"V (a), 2(b), 2’ (b), - - ,x“””(b))ds’

7‘F(t7 Svyk(s)a y;c(s)v e ayk(nil)(s)’yk(a%yk/(a)y ce ,yk("fl)(a),yk(b),yk’(b)’ ce 7yk(nfl)(b)>
aa; (t S,(E(S), x/(s)7 . ,x(nfl)(s),l'(a)vx/(a)’ - 7x(’ﬂfl) ((l),fﬂ(b),l'/(b), . x(nfl) b ) ’dS

n—1 b n—

< [ wits)a 31w - o0 |+ﬂZ|yk<Z )~ |+v§j|yk“ (5) = (0)|ds

b n—1
ng/ [0 3 10D s) — 20 s |+/3Z|yk fx<i><a>|+v2\<yk>“><b>fw‘)(b)@ds. (10)
a : =0

=" [0 =)l 0) =2V (0)] + &l (Te) (1) — (1))

(-6 3 1900~ 01+ 6 3 |70 - @200
: 2
[ 1- &) Z|$k(1) t) — 20 ()]

n—1 n—1
et [ o S 100 906) — 06+ 85 (@) O@) — 0@+ 5 (@O0 - O] as. ()
a =0 =0 =0

Taking the supremum in the above inequalities, we get

b
fowss —ln < Mz [ [at 5+l — lads

= My |a+B+19] (0 - a)ly - oll, (12)
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and
o — @l < [ﬂ—&Wm—xh+&m&/$@+ﬂ+{ﬂm—whw]
= [(1 = &0llex — w5 + &M+ B+ ) (b — )2k — ] 5]
= [ -&) + &Mz (a+5+7) 06— o) lox — 2ln
= [1-& (1= Mr(a+B+2)0 - 0)]lox - 2ll5,
respectively.

Therefore, using in , we get
loksr = alls < (Mr(a+B+7)(b—a))[1 =& (1= Mr(a+B+7)b-a)]lzx - o5

Thus, by applying induction on k, we get

leies — ols < (Mr(a+ 8 +9) - a) f[[lsj(lMf(a+ﬂ+v)(ba>)}||zoxllB.

Since & € [0, 1] for all & € NU {0}, the assumption (Hz) gives

2) 8
<1 and Mr(a+p+9)b-a)<1
ékof(Oé+5+’Y)(b*a)<fk
éfk[lfM}-(aJrﬂJr’Y)(bfa)} <1, VkeN

From the classical theory, we have
l—z<e™ z€l0,1].

Hence, by using this fact with in , we obtain

[0 — 2| 5-

)> k+1e— (1—Mf (a+/3+w) (b—a)) S0t

lopsr = allz < (Mr(a+8+7)(b-
oo
This is . Since ng =00
k=0

— (1—M}— (a+5+’¥) (b—a)) Z?:o &

e —0 as k— oo,

which implies klim |zk+1 — x||p = 0. This gives zx, — x as k — oo.
— 00

(13)

(16)

(17)

(18)

]

Remark: It is notable that inequality gives the bounds in terms of known functions, which majorizes the

iterations for solution xt of equation as well as its derivatives.

3. CLOSENESS OF SOLUTION VIA S—ITERATION METHOD:

Now, we discuss the continuous dependency of solutions of on the functions.

Consider the problem and the corresponding problem

b
T(t) = H(t) +/ ﬁ(t,s,f(s),f’(s),--~ " (s), % (a), T (a), -, 2"V (a), T(b), T (b), - - - ,E("_l)(b))ds,
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for t € I = [a,b], where £ € C(I? x E3,R), H € C(I,R), and n > 1 is an arbitrary integer.

A solution to equation refers to a continuous function T(t), where ¢ belongs to the interval I. This function
must be continuously differentiable for (n — 1) times on I, and it must also satisfy the equation . It is worth
noting that the solution Z(t), along with its derivatives, meets the integral equations (see [7], p.318)
f(j)(t) - H(j)(t)
+ /b —j,ﬁ(t, 5,7(s), 7 (5), - , 7" V(s),7(a), 7 (a), - , 2" V(a),T(b), T (b), - - ,E(”*l)(b))ds, (20)
forteland0<j<n-1

Following steps from the proof of Theorem [2| for Z(t) € B we define the operator for the equation

(Tz)(t) = H(t)

fort € I =la,b).
Differentiating both sides of with respect to t (see [7], p. 318), we get
THO () = 1O ()
b a]
* / %[’(t’ S’E(s)afl(s)v T 7§(n71)(8)7§(a)7§l(a)a e 7f(n71) (a)’f(b)7§/(b)7 U vf(nil) (b))ds’ (22)
forteland 0<j<n-1.

The following theorem addresses the closeness of the solutions for problems and .

Theorem 3. Consider the sequences {xy}rey and {Tr}re, generated by normal S— iterative method associated
with operators T in @D and T in , respectively with the real sequence {&; e in [0,1] satisfying % < & for all
ke NU{0}. Assume that

(i) all the conditions of Theorem[d hold, and x(t) and T(t) are solutions of and respectively.

(ii) there exist non negative constants €; and €; such that

Gt —HI ()| <ej, VEET, (j=0,1,---,n—1), (23)
and
o M) . (=) ") e =D b)Y e (1)
8tj.7-'<t7s7x(t),x ), 2™ D), 2(a),2'(a), -, 2"V (a), z(b), 2’ (B), -, (b))
aj / n— / n— / n—
—@E(t,s,x(t),x(t),-~ ,J?( 1)(t),:c(a),1:(a),--~ ,ZU( U(CL),J?(Z)),SL‘(Z)), ,J?( 1)(b))‘
<pit,s)e, Viel, (j=0,1,---,n—1). (24)

If the sequence {Ty}rey converges to T, then we have
3[Mr (b~ a)e+ ]
M]:(a+5+’y)(b—a)’

Iz~ 75 < — (25)
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n—1 n—1
where € = E €; and € = E €.
=0 7=0

Proof. Suppose the sequences {zy}52, and {Zx};o, generated by normal S— iterative method associated with
operators 7' in (@)and T in (22)), respectively with the real control sequence {£,}3%, in [0, 1] satisfying 3 < & for all
k € NU{0}. From iterative method and equations with @D; with and hypotheses, we obtain

|Zk+1(t) — T ()| B

= Z O R ]

aat] (t 5, yk( ) yk/<s)7"' 7?k(n_1)(S)’yk(a>7yk/(a)a'" Yk (n= 1)( ) Yk (b) Y (b) : ’?k(n_l)(b))‘ds

<nz:ej+M}-n2:/ €;ds
+Z/pj<t,s>[a2|< 0O(s) - 7, |+6Z 9@ = 7O@]+7 3 )0 ) - 7.9 (0) | s
j=0"a i=0 i=0

<e+ Mxe(b—a)
n—1 n—1

b n—1
+Mf/ DDROE |+BZ| 9 V(@) = 7D (@) + 7 D () (0) - 7O (0)] ] ds. (26)
¢ 4 i=0
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Similarly,

(1= &0)lee D (0) = (1)) + &l (T2) D (1) = (Ta) D (1)

<
I

~ 0= X 100 - 50 + & 3 (T2 @) - Tz )]
j=0 7=0

<1-6) Y [0 5D (0)] + e + Mrelb— o)
§=0

b n—1 n—1 n—1
radz [ [a Y @06 - 506+ 3 @) @) - 5@+ 3 @) ) - mOO)]ds. (1)
a i=0 i=0 i=0
Taking supremum in the above inequalities, we get

b
ks = Tusallo < e+ Mrelb— )+ My [ [+ 53] I~ Bl

= e+ Mre(b—a) + My|a+ 8+ 7] (b — @)llye — il (28)
and
b
o= Tl < (1= Ellew ~ Tl -+ € e+ Morelb - a) 4 Mx [ (s 549) o~ i ]
= (1= &)llow = Tellp + &+ Mre(b — a) + My (@ + B+ 7) (b — a)l|ox — Tl
= & (et Mye(b—a)) + 1= & (1= Mr(a+8+7)0 - a) ||~ 7lls, (29)
respectively.

Therefore, using in and using hypothesis (Hz), and § < & for all k € NU {0}, the resulting inequality

become
lorss = Tenallz < [1 =& (1= Mr(a+8+9)0- )| lze - 7ls
+ &k (e + Mxe(b— a)) + 2&; (e + Mxe(b— a))
< [1-&(1- Mr(a+5+7)b-a)|lox - Tlls
+&(1-Mr(a+p+7)0-a)) ; _i\g:@ﬂif;i ;)‘2))_ o (30)
We denote

Br = |l — Tkl > 0,
ke =§k(1 —M;(a+ﬁ+’y)(b—a)) € (0,1),
3(6+M]:E(b—a))

e (I—M}-(a—i—ﬁ—i-v)(b—a)) =0




EXISTENCE VIA S-ITERATION METHOD 9
It is to be observed that inequality (30 satisfies all the conditions of Lemma therefore, we get

0 <lim sup S < lim sup

k—o0 k—oc0

3(6+MfE(b— a))
= 0 <lim sup |zx — Tl|p < lim sup
ko0 ko0 (1 — Mr(a+B8+7)(b— a))

3(6 + Mzre(b— a))

= 0 <lim sup |z — Tlls < . (31)
koo (1= Mr(a+6+)0-a)
By (i), we have lim zp = . Using this fact and the assumption lim T} = T, we get from that
k— o0 k— o0
3[M;(b— a)?—ke}

r—7|p < . 32

| ||B_1—M;(a+6+7)(b—a) (82)

|

Remark: The inequality shows how the solutions of the problems and are related. If the functions F
and G are close to £ and H, respectively, then not only are the solutions of the problems and closer to each
other (i.e. ||z —Z||p — 0), but they also depend continuously on the functions involved. Additionally, this inequality

estimates the derivatives of the solutions.

Now, we focus on analyzing how solutions depend continuously on certain parameters.

Consider the problems

b
x(t) - g(t) +/ ]:(ta s,x(s),x/(s), e ax(nil)(s)ax(a%m/(a)» e ax(nil)(a)’l'(b)vx/(b)v e ,x(nil)(b%ﬂl)d*ga (33)

=
—~

~
~—

|

b
g(t) + / }—<t7 Svf(s)vfl(s)a e 7E(n71)(8)7f(a)’f/(a)v T af(nil)(a)’f(b)vfl(b)v e ’T(nil)(b)v M2>d57 (34)

for t € I = [a,b]. The functions F, G are defined as in and pq, o are real parameters.

A solution to equation is a continuous function z(t) defined on the interval I, which is differentiable (n — 1)
times and satisfies the equation . We can observe that both z(t) and its derivatives satisfy integral equations.
(see [7], p.318)

x(j)(t) - g(j)(t)

b gi
+ /a @}'(t, s,2(s),2'(s), -, "V (s),z(a), 2’ (a), - , 2"V (a), z(b), 2’ (), -- , 2"~V (b), ul)d&
(35)

forteland 0<j<n-1.
Now, following steps from the proof of Theorem [2| for z(t) € B, we define the operator for the equation

(Tx)(t) = G(t)

b
+ / f(t, s,2(s),2'(s), -, 2" V(s),x(a), ' (a), - -, "V (a), z(b), 2’ (), -,z (b), /“)ds7 (36)
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fort € I = [a,b].
Taking derivatives on the both sides of with respect to ¢ (see [7], p. 318), we get

(T2)9(t) = 69 1)

b i
+/a %}"(t s,2(s),2'(s), -+, 2 V(s),z(a), ' (a), - ,a™ D (a), z(b), 2’ (b), - - ,x<n*1>(b),m)ds,

fortelTand 0<j<n-1.

Similarly, for the equation , we define
79 () = gl (1)
b aj
+ / @E(ta 5,5(8),5’(8)7 e 7f(n_1)(5)af(a)7§/(a)v e 75(71_1)(0‘)75({))’5/(())’ e 75(’”_1)({))’ /142>d57 (38)

forteland0<j<n-1

Again, following steps from the proof of Theorem [2| for Z(t) € B, we define the operator for the equation
(Tz)(t) = G(t)

b
+ / ]:(t, s,i(s),i'(s), o af(n_l)(s),f(a),f/(a), .. af(n_l)(a),f(b),f(b% .. ,E("_l)(b),/m)ds, (39)
fort € I =la,b)].
Taking derivatives on the both sides of with respect to ¢ (see [7], p. 318), we get

(Tf) () (t) = gl ()

b gi
+A %}—(t s :L’( ) T (8)7"' af(nil)(s)af(a)»f/(a)v'" ’T(nil)(a)af(b)vf/(b)v”' ’T(nil)(b) M2>d8

forteland 0<j<n-1.

The next theorem asserts that the solutions depend continuously on the parameters.

Theorem 4. Consider the sequences {zi}rey and {Tr}ie, generated by normal S— iterative method associated
with operators T in (3T)and T in ([A0), respectively with the real sequence {&k}ieq in [0,1] satisfying & < &, for all
ke NU{0}. Assume that

(i) the hypothesis (Hs) holds.

(ii) the function F satisfy the conditions:
7j]:(t’ 5, [E(t), xl(t)7 e am(nil)(t% x(a)’ x’(a), e 7x(n71)(a)’ ‘T(b)v l'l(b), e am(nil)(b)v ﬂl)
0 _ n— n—
- wf<t787y(s)7y/(3),"‘ ’y(n 1)(8)ay(a’)7y/(a’)7"' 7y( 1)(a)uy(b)>y,(b)7 ay( 1)(b)7M1)‘

n—1
< pj(ts [ Z 20 (s) =y (s)| + B (@) =y (a)] + Z 20 (b) — ¢y (b >|}7 (41)
=0

pre (t, s,z(t), 2’ (t), -, 2" V() z(a), 2 (a), -, 2"V (a), z(b), 2’ (b),--- , 2"V (), ul)
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- %f<t7 va(t)axl(t)a T ,x(”fl)(t),x(a),x’(a), e 7$(n71)(a)7x(b)a {E/(b), T 7x(n 1)(b) /142) ’

< pj(t, s)|pr — pel, (42)
forj=0,1,--- ,n— 1, where p;(t,s) € C(I*,Ry) and a, 3,7 > 0.

Suppose x(t) and T(t) are solutions of and respectively and if the sequence {Ty}re, converges to T, then

we have

3[ Ml = pial (b~ o)
1—Mr(a+B8+7)(b—a)

lz =7 < (43)

Proof. Suppose the sequences {zy}52, and {Zx};o, generated by normal S— iterative method associated with
operators T in (37)and T in (40), respectively with the real sequence {{}32, in [0,1] satisfying 3 < & for all
k € NU{0}. From iterative method and equations with ; with and hypotheses, we obtain

|zk+1(t) — Trra(t)| B

- HZ:: w19 () — Tard D (2)]
_ Z (Ty) 9 (1) — (T5) 9 1)
- ié 99(1) - D)
+/ab gtjﬂ F (b5 () i) m" () r(@), (@), -+ w0 @), (0), 0 B)s -+ "D (B), 1 ) ds
_/a 68; (£330 (), 70 9), Tl@), 3 (@) -+ 7 @), 1), 5 (), -+, 5" (0), iz ) |
<Z/ ’%f(t,s,yk@),y;(s),m " (), ), e (@), e (@), (0), 0, I (B), g )

o - - — (n— - - — (n— - - -~ (n—
- %I<t7s7yk(s)7yk/(s)v'” 7yk( 1)(S)ﬂyk(a’)7yk,(a) Yk ( 1)( )7yk(b)ﬂyk/(b)7"' 7yk:( 1)(b)a,u2)‘d3

]
7]:(t, S7yk(8)a y;g(s)a U ayk(n_l)(s)ayk(a)ayk/(a)7 e ayk(n_l)(a)7yk<b)7 yk/<b)a o 7yk:(n_1) (b)7 ,U/l)

o / — (n=1)( o\ = — — =)\ = (1 = 1 — (n—1)
8t-7 (t s yk‘( ) yk (S)a Yk (S)ayk(a)ayk (a)7' Yk (a’)7yk(b)vyk (b)7 Yk (b)aUI) ’ds

t $,7k(8), T (), T (), Tk (@), T (@), -+, 7" (@), B (0), T (B), - ayk(nfl)(b)aﬂl)

a = = = (n— — = = (n— — — = (n—
- %f(ta&yk(s)vyk/(s)v'” 7yk( 1)(S)ayk(a)ayk/(a)7"‘ »yk( 1)<a)7yk(b)ayk/(b)7"‘ 7yk( 1)(b)aﬂ2)’ds

< M]—‘/ |1 — palds

- Z::O/a pj(t,s) {ag [(ye) P (s) = 5, ()] + B ; ()P (@) — 5,9 (a)] +72 () () —?k(i)(b)qu

< Mzlpy — p2|(b—a)



12 HARIBHAU L. TIDKE AND GAJANAN S. PATIL

b n—1 n—1 n—1
+ My / [0 1)) = 7D )+ 8 1) @) =7 D@+ Y 1) O ®) - 7,0 0)]] ds.
a i=0 i=0 i=0

Similarly, we have

~—

—Uk(t)le
1

lyn(t

n

lye 9 (1) = 7,9 (1))

(]

=0
= 3 [0 - 0l @) - OO + (T V) - T )]
§=0
— [1-6) T w0 - B0 + & 3 (TP 1) - T) V)]
j=0 j=0

n—1
< (1-6) Y [ (1) = 3D )] + & [ Mrlr — pal (b —
j=0

n—1

a

b n—1 n—1
+ &M / 0> 1@ D) = D) + B ) P (a) = 7D (@) +7 D 1) D 6) = 7D (0)] ] ds.
=0 i=0 i=0

Taking supremum in the above inequalities, we get
b
foxss =Tl < Ml = pal(b =)+ M [ [as 549 I~ 5l s
a

= Myl — p2l(b— a) + Mz o+ B+ ] (0 = 0)llys — Tl s,

and
b
o= Tl < (1= 0llox ~Tulle -+ & (Mol — (b= a) + M [ (a5 5+7) o~ ]
= (1= &0)llow = Tl + & [ Morlr — pal (b = 0) + Mie (@ + B+ ) (b = @) — T ]
= & (Mrlin = a0 = @) + [(1 = &) + &M (a + B+7) 6 = ) |lax = Tl
= & (Mrli — pal(b = @) + |1 = & (1= My (a+ B+9) (b~ a)) | lox — 7l15,
respectively.

(46)

(47)

Therefore, using in and using hypothesis (Hz), and 3 < & for all k € NU {0}, the resulting inequality

become
lonss = Trsallp < [1= & (1= Mr(a+8+7) 06— a)] o —7ls
+ & (Morlpns — pizl(6 = 0)) + 260 (Morlus = pal (b — )
<[1-a(1-Mr(a+8+9)0-a)|lon -7l
3(Melpus = pial(b — a)
+a{1 - r(a )0 -0) (1 —(Mf(a+5+v)(b )a))'
We denote

Br = ||lex — Tkl|lB > 0,

Ik :ék(l —M;(a+ﬂ+7)(bfa)) €(0,1),

(48)
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3(Mzlin — 12l (0~ )
Ve = > 0.
(1 — Mp(a+B+7)(b— a))
Now, it is to be observed that, the inequality satisfies all the conditions of Lemma |1} therefore, we get

0 <lim sup B < lim sup

k—o0 k—oc0

3(Mf\u1 — p2|(b— a))
= 0 <lim sup ||z — T||p < lim sup
k—oc0 k— o0 (1 — M}.(a +5+ 7) (b— a))

3(Mzlim — 2l (b — )

= 0 <lim sup |zr — Tlls < . (49)
koo (1= Mr(a+B+9)0b-0)
By (i), we have lim xp = z. Using this fact and the assumption lim Ty = T, we get from that
k—o0 k—o0
- 3 Ml — 1zl (b — )] )
r—T|p < . 50
B = 1—Mz(a+B+7)(b—a)
|

Remark: The concept of ”dependence of solutions on parameters” refers to how the properties of a solution change
when certain scalar parameters are varied. It is important to note that the initial conditions do not involve any

parameters. However, the dependence on parameters plays a crucial role in many physical problems.

4. EXAMPLE

We consider the following integral equation:

o(t) = t4e ! +/1 3t — 2s [s — sin(z(s))
0

- ds, t € [0,1]. (51)

3 5 2
Comparing this equation with proposed equation for n =1, we get
ttet
3

z(0) + x(l)]
3

G(t)

3t —2s1s—sin(x(s)))  2(0)+ (1)
-5 { 2 - 3

e C(I=1[0,1],R);

F(t,s,x(s),x(0),2(1))

} € C(I? x R3,R).
Now, we have

Ft,s,,2(0), 2(1)) = F(t, 5,y(s). y(0), y(1)|
_ ‘St —2s [s —sin(z(s))) n x(0) + x(l)] 3t —2s [s —sin(y(s))) = y(0)+ y(l)} ‘
5

2 3 5 2 + 3
3t —2s|11s —sin(z(s s —sin(y(s x(0 z(1 0 1
g\ . m 2()))_ 2(9())’+‘();(>_y()§y()u
<[22 5 sintats)) — sinyt))| + 5]2(0) — w(0)] + 3]1) )] (5

Taking sup norm, we obtain

|7 5.2 20) 200) = 7t ,005). 000 v < sp [P (54 54 5) |

<5 ()l

; (53)

- 1olle ]
“ 10l TY
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3 1 1 1
WhereM}-:g, a=g, ﬁ:§’ 7=
Therefore, we the estimate
3,1 1 1 7 7
M b—a)=—-(-+-+-)1-0)=—-x1=—<1. 54
Flatsra)l-a)=5(3+3+3)a-0=5x1=15< (54)
We define the operator T': B = C(I,R) — B = C(I,R) by
t4et 13t —2s1s—si 1
(Ta)(t) = 2£€ +/ 5 -2 sin(z(s) | 2(0) + 2 )}ds,te[o,u. (55)
3 s 5 2 3

Since, all the conditions of Theorem [2| are satisfied, we can conclude that the sequence {zj} associated with the
normal S—iterative method for the operator T in converges to a unique solution = € B..

Further, we also have for any zo € B

[Mr(atB+)06-a)] "

|z — z||B < lzo — |
e{lfo(a+B+’Y)(b*a)} PR
4]
10
< lzo — ||
[1-%] oo
e
(2)"
10
< ———||xzo — ||
e
(l>k+1
10
< ——F——||zo — z||
(&) oios
e
(l)k+1
10
< A ey, (56)
8 )yk 1
e(w) i=0 T+7

for & = l%ﬂ € [0,1]. The estimate obtained from is a bound for the truncation error at the k-th iteration of

computation.

Next, we consider the perturbed integral equation:

_ t42et L3t —2s1s —sin(@(t)) Z(0) + (1) 1
= — — 1].

z(t) . +/O - [+ . s+ 7](15, te0,1] (57)
Similarly, comparing it with the equation for n = 1, we have

b+ 27! PN _ 3t—2s1s—sin(z(t)) | T(0) + (1) 1

Ht) = ——5—, L(t,s,x(s),x(O),az(l)) == [ : + = —s—&—?]
Now, we define the mapping T : B = C(I,R) — B = C(I,R) by
—t 1o, e _ _
Ta)(t) = t+2e +/ 3t — 2s [s sin(z(t)) N z(0) +z(1) ot l}ds, te0.1]. (58)
3 s 5 2 3 7

According to Theorem [2] all conditions of the perturbed integral equation are satisfied. Consequently, the sequence
{Z1} related to the normal S—iterative method for the operator T in converges to a unique solution = € B.

The estimates below are what we have now:
t+et t+2€_t‘_‘t+2€_t—t—2€_t‘_e_t

<
3 3 3 3 ~

=€, tel=10,1], (59)

W =

‘G(t) - ’H(t)‘ = ‘
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F(t,s,z,2(0),2(1)) — L(t, s, x(s), x(O),a:(l))‘

3t —2s1s —sin(z(s)))  x(0) + z(1) 3t —2s7s —sin(z(t))  x(0) + z(1) 1
’3 52[ I P - [ T 78+?”
=557
< % —z. (60)

Let us consider two sequences {z1}72, and {Zj };°, generated by the normal S— iterative method associated with
operators T' in and 7T in 7 respectively. Here, xj approaches a limit  as k — co and Zj approaches a limit =
as k — oo. Let {£,}72, be a real sequence in the interval [0, 1] such that 3 < & for all k € NU{0}. From Theorem
we can conclude that:

3 [M;(b - a)€1 + 61]

T 1-Mr(a+B+7)(b—a)

3|201-0)3 + 3]

A

I — 7|5

IN

= |z =75

29
== 458
- 175
= |z — s _ =2 61
H:E xHB = % 105 ( )

The statement highlights the extent to which solutions are influenced by the functions involved and how closely

related these solutions are.

Now, we demonstrate how the solutions are dependent on real parameters.

Let’s examine the integral equations that involve real parameters.:

_ t+et . /01 3t —2s {s —sin(z(s)) n x(0) —;x(l)}

x(t) ds + 1, t €[0,1] (62)

3 5 2

and

z(t)

_tket /1 3t — 2s [s — sin(z(s)) I(O)ng(l)]ds+uz, t€[0,1]. (63)
0

3 5 2 +
Therefore, by using similar arguments and referencing Theorem [4] one can have
- 8 Ml = pal(b— o)
T—T|p <
| B_lfM]:(a+ﬂ+’y)(bfa)
34l — pa(1 - 0)]

= [lz—zZ|p < 3
10
32|y — po
o e — 7|y < S5l 2l
10
7 32w —pel 910
= o —7lp < == =5 X gl — el
10
= |z = Z|lp < 6[p1 — pal. (64)

Acknowledgement: The authors express their sincere gratitude to the referees for their valuable feedback and
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