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ABSTRACT
In this paper, the authors established the generalized Ulam-Hyers stability of system of quadratic
functional equations which originating from Leibniz formula in Euclidean Geometry and median of a triangle in
intuitionistic fuzzy Banach space using Hyers direct method.
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I. INTRODUCTION

The revision of stability problems for functional equations is coupled to a query of Ulam [36,37]
concerning the stability of group homomorphisms and confidently responded for Banach spaces by Hyers [20].
It was supplementary generalized and outstanding results was attained by number of authors see
([3,18,26,29,32]). The general solution and generalized Ulam-Hyers-Rassias stability of quadratic functional
equation was investigated by Cholewa [15], S. Czerwik [16], Jung [23]. Ravi [30,31].

During the last eight decades, the overhead problems was attempted by numerous authors and its
solutions via various forms of functional equations were discussed one can refer [1-2,4-14,17,21-22,24-25,27-
28] and references cited there in.

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape,
size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of
mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century,
geometry was almost exclusively devoted to Euclidean geometry, which includes the notions
of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Originally developed to model the physical world, geometry has applications in almost all sciences, and
also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas
of mathematics that are apparently unrelated. The geometry that underlies general relativity is a famous
application of non-Euclidean geometry.

During and late the 19th century several discoveries enlarged dramatically the scope of geometry has
been greatly expanded, and the field has been split in many subfields that depend on the underlying methods
differential geometry, algebraic geometry, computational geometry, algebraic topology, discrete geometry.
Also, the properties of Euclidean spaces that are disregarded projective geometry that consider only alignment
of points but not distance and parallelism, affine geometry that omits the concept of angle and distance, finite
geometry that omits continuity, and others. This enlargement of the scope of geometry led to a change of
meaning of the word space, which originally referred to the three-dimensional space of the physical world and
its model provided by Euclidean geometry; presently a geometric space, or simply a space is a mathematical
structure on which some geometry is defined. For more detailed see [38].

The main aim of this paper is to convert the geometrical properties into functional equations which
satisfies the properties via its solutions.
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A MEDIAN OF A TRIANGLE

In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposing
side. Every triangle has exactly three medians: one running from each vertex to the opposite side. In the case of
isosceles and equilateral triangles, a median bisects any angle at a vertex whose two adjacent sides are equal in
length.

midpoint

x
z1 a 1

In a above triangle with the sides a,b and c the median drawn to the side c has the length of
2 L1y o oy 1,
mg _E( +b )_ZC . (1.1)

B. LEIBNIZ QUADRATIC FORMULA IN EUCLIDEAN GEOMETRY
Let M be an arbitrary point lying on the plane of the triangle ABC and G is the centroid (= Gravity
center) of ABC, then

IMAP +IMB[* +|MCf =3|MG +(||GA|2 +|lGBf +|.6C? ) (12)

The above equation (1.2), can be transformed into quadratic functional equation of the median from z
is given by

(B =S (0 () e () ). 3)

Also, equation (1.4), can be transformed into quadratic functional equation of the centroid G is set by
fL(Xz _S)+ fL(yZ _S)+ fL(ZZ _S)
3¢ (xz +Y,+2, —s)+ ; (ZX2 -V, —22]+ ; (—xz +2y, _22]+ ‘ (—xz—y2+222)l (14
) 3 ) 3 ) 3 ) 3

In this paper, the authors established the generalized Ulam-Hyers stability of system of quadratic
functional equations (1.3) and (1.4) which originating from Leibniz formula in Euclidean Geometry and median
of a triangle in intuitionistic fuzzy Banach space using Hyers direct method.




11 BASIC DEFINITIONS RELATED TO INTUITIONISTIC FUZZY NORMED SPACES

In this section, we provide some basic definitions and notations related to intuitionistic fuzzy normed
spaces as in [34,35,36].
Definition 2.1. A binary operation * : [0,1]x[0,1] -[0,1] is said to be a continuous t-norm if it satisfies the

following conditions :
(*1) *is associative and commutative,

(*2) *is continuous,

(+3) axl=a forall a[0,1],

(*4) axb<c+d whenever a<cand b<d for each a,b,c,d €[0,1].

Definition 2.2. A binary operation ¢ : [0,1]x[0,1] —[0,1] is said to be a continuous t-conorm if it satisfies the

following conditions :
(01) ¢ is associative and commutative,

(02) ¢ is continuous,

(03) a®t0=a forall a€[0,1],

(04) adb<cod whenever a<cand b<d foreach a,b,c,d €[0,1].

Definition 2.3. The five-tuple (X, &, 0,%,9) is said to be an intuitionistic fuzzy normed space (for short, IFNS) if
X is a vector space, * is a continuous t-norm, ¢ is a continuous t-conorm, g, v are fuzzy sets on X x (0, )
such that for all x,y e X and s,t > O satisfying the following conditions :

[IFNS1] z(x,t)+0(x,1) <1,

[IFNS2] w(x,t) >0,

[IFNS3] u(x,t)=1 ifand only if x=0,

[IFNS4] u(ax,t) = /{x,lt—J for each a = 0;
(04

[IFNS5] (X, t) * 2(y,S) = (X +y,t+5),
[IFNS6] £(x,.):(0,00) —[0,1] is continuous,
[IFNS7] lim_, z(x,t) =1land lim _,u(x,t) =0
[IFNS8] v(x,t) <1,

[IFNS9] v(x,t) =0 ifand only if x=0,

[IFNS10] v(ax,t) :U(X'ﬁj foreach a #0;
[0/

[IFNS11] u(x,t)0v(Y,s) <v(X+Y,t+5),

[IFNS12] v(x,.):v(0,00) —[0,1]is continuous,

[IFNS13] lim, ,, u(x,t) = 0and lim_,o(x,t) =1.

In this case (u,v) is called an intuitionistic fuzzy norm

Example 2.3. Let (X,[/]) be a normed space, a*b=ab and adb=min{a+b,1} for all a,be[0,1]. Forall,

t 4
—— if t>0 —_
xe X, t>0, consider u(xt):=1{t+|x| " and o(%1) =1 t+]x] then (X, z,0,%90)is an IFNS.

0 if t<0 0 if t<0
Definition 2.5. Let (X, g, 0,%,0) be an IFNS. Then, a sequence{x,} is said to be intuitionistic fuzzy convergent
to Le X jf lim__u(x,—Lt)=1and lim__o(x,—L,t)=0 forall t>0.
Definition 2.6. Let (X, x,0,%0) be an IFNS. Then, a sequence{x } is said to be intuitionistic fuzzy Cauchy
sequence if lim __u(x . —X,t)=1and lim _ o(x,, —X,,t)=0forall t>0and p=12,...
Definition 2.7. Let(X,,0,%90) be an IFNS. Then, (X, 0,%9) is said to be Banach space if every
intuitionistic fuzzy convergent in (X, z,0,%90).

n+p



11 INTUITIONISTIC FUZZY STABILITY
From now on (X, x,v) be an Intuitionistic Fuzzy normed space (Y,x',v") be an Intuitionistic Fuzzy

Banach space respectively. In this section, using an idea of Gavruta. We prove the stability of in the spirit of
Hyers, Ulam and Rassias. For convenience we use the following abbreviation for a given mapping f. : X —>Y

and f_ : X Y by

+ 1 1
AfT (X, y,z): fT (Xi % _Z1j__(fT (ZI_X1)+ fT (Zl_yl))+z fT (X1_y1);

2 2
and
Af (X, y,2,t) = fL(%, =)+ f (Y, =)+ f (z,-9)

-3f, (%_SJ_ fL[ZXZ _;/2 _sz_ fL[_xz +23Yz _sz_ fL(_xz _)éz +222J;

forall x,v,,2,.%,,Y,,2,,S€ X .
Theorem 3.1 : Let e {-11} be fixed and let A; : X* - (0,1;A, : X* —(0,1] are mappings for some a >0

B
with 0 < (%j <1 satisfying the conditions

,u'(AT (2ﬂX1:2ﬁ yl’zﬁ 21)1t)2 ﬂl(aﬂAT (X Yas Zl)'t)‘
U'(AT 2’2"y, 2’ zl),t) < u‘(aﬂAT (X, Yy zl),t) ,

31
y'(AL(Zﬂ x,,2"y,,272,.2" s),t) > y‘(a'BAL(XZ, Y, zz,s),t)
v'(A(27%,,2"y,,272,,2°5),t) <0 (@ A (%, Y50 2,,9),) ’

lim '(A; (27,2 y,,2" ,),47't) =1
limo'(A; (2 %,2"7 y,,27 2,),4"t) = 0
lim u'(A (27 %,,2"y,,2" 2,,2"'s),47't) =1
limo'(AL(27%,27y,,272,,275),47t) = 0
and f, : X —Y;f_ :X =Y are functions satisfying the inequalities
,U(A fr (%, i, 21)«t) 2 /u'(AT (% Yas 21)«t).
O(A £ (0,0, 2), 1) S0 (A (%, Y 2)t)
33)

{/J(A fL(leY2’2215)vt)2,ul(A|_(X21y2'zzvs)nt)_
O(A T (%, Y52, 8),1) S0 (AL (%, V5. 2,,9),1)
for all x,v¥,,2,%,Y,,2,,5€ X and all t>0. Then there exists a unique quadratic mappings
Q X >Y;Q, : X >Y satisfying (1.3) and (1.4) such that

4—
#(Qr 06) = Fr (). 1) > ﬂ‘(AT (&,—&,O),%j

4qalt)’
o(Qr (%)~ £, (x).1)< v'[AT (xi,—xi,ox%] (3.4)
IU(QL(XZ) - fL(XZ)!t) = :Ll'(AL(ZXZ' X2’010)1|4_a|t)'
0(QL0%) — fL (). 1) U (AL(2%,%,0,0),|[4-alt)
forall x,x, € X and all t >0. The mappings Q;(x,);Q,(x,) are obtained by

ng ng
Q00 = ()~ lim T 280, () = ) i LB (35)

forall x,x, e X.



Proof : Assume B =1.Replacing (X, V;,2 );(X,, ¥, 2,,8) by (%,—%,0);(2x,,%,,0,0) in (3.3), using

evenness of f and [IFNS4], one can get

(3 5 @06 00 2 (4 0 %,010)

o3 (20)= 1 ()t 20 (8 0,001

(3.6)
1 t ,
,u(z f (2x,) - fL(xz),ij;z (AL(2%,,%,,0,0),t).
1 t , ’
u(z f(2x,) - fL(xz),ngu (AL(2%,,%,,0,0),t)
forall x,x, e X andall t>0. Replacing (x,x,) by (2"x,2"x,) in (3.6), one can obtain
ﬂ( - (2"%,), J>,u'(AT(2”X1,—2”X1,O),t)
1 ' n n ,
U[4f Xl),thU (AT(2 X11_2 Xlao)yt)
(3.7)
f L(2"%,) - 4] (AL (2.2"%,,2"%,,0,0),t)
f (2"%,) - lj (AL (22"%,,2"%,,0,0),t)
forall x,x, e X andall t>0. Usmg [IFNS4], (3.1) in (3.7), one can arrive
1 . 1. ay & . ny _on . t
lu(4n+1 fr (2 Xi)__n fr (2 X1)74_nj2ﬂ (AT(2 Xy, =2 Xl,O),t)Zy [AT(le_XivO)ij
lf2n t A2” =2"x,0),t)<v'| A Ot,
0|z fr xi) ) |20 (A @, L) <o Ar (e =x,00 -
(3.8)
( — f (2nX ) ) % 4 ) A (2 2”X ,2"X2,O,O),t)2y'(AL(2X2,X2,0,0),Lnj
)Lt (2n). 2 2 "y on ’
( 7)) - (2'x, Z4—j<u (AL(22%,,2"%,,0,0), t)<u(A (2,,%,,0,0), j
forall x,x, e X andall t>0. Replacing t by «"t in (3.8), one can have
1 . 1 aoy a't ,
(4“*1 (2 Xl)‘4—nfT(2 X1)14—njzﬂ (A7 (4, =x,0),1)
1 vl at) ’
U{W fT(Z xl)—4—nfT(2 xl), T jgu (A7 (x,=%,0),t)
(3.9)
f.(2"x,) - Ly (2”X2> 1 a’t > 41'(AL(2%,,%,,0,0),)
4H+l 4n 4 4n
n " 1 at . '
(4“1 fL@%)- 5 (2 xz),z. - ]SU (AL (2%,,%,0,0),t)
forall x,x, € X andall t>0. One can easy to see verify that
%) ¢y §RE%) @)
4 — 4(|+1) 4|
L(2'%) LL200%)  f(2%) o
f I+ X |X
—_f (%) = Z - 40+D) 4 :

i=0

forall x;,x, € X . From equatlons (3.9) and (3.10), we have.



fT " 1 1§ (p(i+D) f i
;U{ (4n Xi)_ fT (X1) ZOCZ-_JZ#(Z T(42(i+1) Xl) (2 X1) Z J

i=0

o (i+1) i i
H/‘[f (2%) (2 XJ,“_fJZ#'(AT(xl,—xpO)vt)

\%

4(|+1) 4| 4

=0
f(2'%) Ghat] (§HEX) 6@x) Sat

: js 0'(A; (%,—%,0),t)

17, f (2"”)x1) f:(2'x) o't
- j:l 4('*1) 4i ! 4|
fL(Z” ) 102 ot n—lf(z(i+1)x) f(2'X) 102 it
- 7 f X - > L i 2
;{ 4 : )42;‘4 : Zo 40 4 4.2;‘ 4
n-1 f (2(i+1)X1) f (2|X1) 1 ait .
I P ST

f (2"%,) 122 it Gf21x,) f(2'%) 184t
I WV =Y 2 < L\Z 2
U[ 4" L(XZ) 42 4 v Z 4(|+l) 4| 42 4|

i=0 i=0 i=0

. .n U[ f; (2(.”1))(1) f (2|X1) 1 (04 tJ_ U'(AL(ZXZ,XZ,O,O),t) (3.11)

4(I+1) 4I 4 4I

forall x,x, e X and t>0 where [ Ja, =a, *a, *.....xa, Ha =a,0a,0.....0a,
j=1

=1

forall x,x, e X andall t>0. Replacing x by o"x in (3.11) and using (3.1), [IFNS4], one can obtain

f; (mex‘l) 2"x) & a't t
,U[ 4mm Z4l+m ] ( Xl _Xl’O)’_m)

i= a
fT (2n+mX1) m n-1 0!it t !
- 10 "
U[ 4 |:0 4|+m [ X1 Xl ) amj
( ) (3.12)
fL 2n+mX2 l t
- (2x,,%,,0,0),—
,Ll[ 4n+m 424}%] [ 2172 )(Z j
f|_ (2n+m ) m 1 n-1 i !
(2x,,%,,0,0
U[ 4n+m 4§ i+m ( ) j
forall x,x, e X andall t>0 andall m,n>0.Replacing t by a"t in (3.12), one can get
f ZnerX1 f 2m n-1 ai+mt .
,U[ T(4n+m )_ T(4m Xl),z E > (A (%, ~%,0),t)
i=0
f 2n+mX1 f 2m n-1 ai+mt ' !
U[ T (4n+m )_ T(4m X1),Z o <v (AT (Xp—xllo),t)
i=0
(3.13)

4n+m 4m 4 = 4|+m

f(2""% ) f(@2"x) 122" ,
u[ i 2)- ( 2),224%]SU(AL(ZXZ,XZ,O,O)J)

£ (ommy m n-1 . i+m
ﬂ[ (27) 1 %) 1$ha t]zy'(AL(sz,xz,O,O),t)

l

4n+m 4m =

forall x,x, e X andall t>0 andall m,n>0 . Using [IFNS4] in (3.13), one can obtain



B(2""%) f(2"x) t
— JdIzu'l A ,—X%,,0), .
'u[ 4n+m 4m H T(X1 X1 ) n—lﬂ
— 4+ .
f 2ﬂ+|‘ﬂ m
| (@) f@) | A Gt Ot
4n+m 4 Zl
- (3.14)
) fL(2"+mx2)_fL(2mx2) N 00);
4n+m 4m ’ 21721 72 i+m
4|+m

f 2n+mx m
o L27) 8@ ) ) (2%,,%,,0,0),———
4n+m 4m Z]_

i=0

forall x,x, e X andall t>0andall mn>0.

Since O<a <4 and Z(%j < oo, the Cauchy Criterion for convergence in IFNS, it shows that

[ )

are Cauchy sequences in (Y,ux',v0") and it is complete, this sequences converges to some point
Q (x) eY;Q.(x,) €Y . So, one can we define the mapping Q : X ->Y;Q_: X oY by

Qr (%) =(1,0) - llq%:xl);

QL<x2)=<u,u)_m%;

forall x,x, € X . Letting m=0 in (3.14), one can get

f n
ﬂ[ﬂ—f (xl)t}u Ar (g, 0),
4 Sia
i—0 4

U(#_ﬁ(&),t}u A7 (%, =%,0), =
Z

- (3.15)

f (2"x
!{M_f Ot |2 1) AL(2%,,%,,0,0), —=— :

4n L\72 1n1a
ey
f (2"x
o 12%) Ot | <0'| AL 2%,,%,,0,0),——
& jj

forall x,x, € X and all t>0. Letting n — oo in (3.15) and using [IFNS6], one can arrive.



1(Qr (%) - (),t) > (A (%, (4_40’“]

0(Qr (%)~ f, (X)) < ( 0,45 “)tj

H(QU(%) = TL0)t) 2 1 (AL (2%, %,,0,0), (4 - a)t)

v(Q (%)= fL(X%,) 1) SU'(AL(2%,,%,,0,0),(4—a)t)

(3.16)

forall x,x, e Xand t>0.
Now, we need to prove Q; satisfies (1.3) and Q_ satisfies (1.4), replacing (X, ¥;,2);(X,, ¥,:2,,8) by
(2'%.,2"y,,2'2,)3(2'%,,2"y,,2"2,,2"s) " in (3.3) respectively, one can obtain

e R e

> 1'(Ar (2%, 2"y,,2'2,),4%)
. (318)

U{;ln{‘? [Z"Xl%znyl_zlj_%(n (2'z,-2"%)+ f, (2", 2" yl))+% fr(znxi—znyl)}vtj

<v'(Ar(2'%,2'y,,2'2,),4")

#(%{fL(Z”XZ—Z”sH f(2"y,-2"s)+ fL(Z"ZZ—Z”s)_SfL(z X2+23y2+2 2 _2nSJ

i [2.2"x2—2”y2—2“z2J_f [—2”x2+2.2”y2—2”22j_f [—2”x2—2”y2+2.2”22j} t]
L 3 L 3 L 3 !

> y'(AL(2”x2,2”y2,2”zz,2”s),4”t)

(3.19)

u(%{fL(Z”xz—Z”s)+ f 2"y, -2"s)+ fL(Z“zz—Z”s)—3fL(2 X2+23y2+2 % —2”sJ

i [2.2”xz—2”y2—2”22J_f [—2”x2+2.2”y2—2”22j_f [—2”x2—2”y2+2.2”22j} t]
L 3 L 3 L 3 !

<v'(A(2'%,2",,2'2,,2"s),4't)

forall x,v,,2,%,Y,,2,,5€ X and all t>0. Now
1 1
(QT[Xi 5 }—;(QT( %)+Qr (2= %))+ 7Qr (% - )j
+ 2"x, +2"
[QT(Xl yl lj_4_nfT[ X12 yl le,t]*
1 1 1 n n n n *
ﬂ(_E(QT(Zl_Xl)+QT (21_Y1))+4_n§(fT (2 Z1_2 X1)+ fT (2 Z1_2 W))JJ
1 11 n 0 *
/J(ZQT (X1_y1)_4_nz fT (2 X1_2 yl)’tj
1 2nX1+2ny n 1 n n n n 1 n n
,u[4—n{fT [Tl_z zl]—a(fT (22, -2"%)+ 1, (22, -2 yl))+ZfT (2%, -2 yl)},tJ




2
su(QT (Xlzyl —zlj—%n f; [w—kjlt}

1 11 n n n n *
“[‘E(QT(zl—xl)wT(zl—v1>>+4—n§(fT (2'2,-2"% )+ (22, -2 yl))"j

“(QT (Xlerl _le_%(QT (z-%)+Q (zl—yl))+%QT (Xi_yl)j

1 11 N n
U(ZQT (Xl_yl)_4_nz fT (2 X =2 yl)'tj*
1 2n +2ny n 1 n n n n 1 n n
U(4—n{fT [%_2 zlj—z(fT(Z 7,-2"% )+ f (22, -2 yl))+ZfT (2"x,-2 yl)},tj
Letting n — oo in (3.18) and using (IFN7), (IFN13), (IFN3), (IFN9), we can see that Q, satisfies (1.3).
Similarly, we can prove the another result.
To prove the uniqueness of Q, : X -Y;Q, : X —Y, assume there exists a mapping Q; ': X —Y satisfies

(1.3), Q ": X =Y satisfies (1.4) and (3.4). Hence,
1(Qr (%) =Q; '(x),t) > ,u[

, (4-a)t), , B (4-oalt
2 u (AT (Xl,—X10), 8 4" J H [AT (X1’ X10), 8.4" j

Q(2"x) £ (2"x) 3]*0[ f(2"x;) Q '(2"x) 3]
4" ’ ’

Q@%) £@%) t), [H@x) Q@) t
4 o 2T 42

U(QT (X1) _QT l(Xl)'t) < U[ 4 2 40 4" 2
sU'[AT(xi,—xlox (48‘4‘1‘)t]*u'[m (%, -%,0), (48‘4‘1‘)‘j
Q%) -QL (). zu(QL(jn %) LE Xz)é}w[ W) 9 Xz)é]

> /LII(AL(ZXZ,XZ,O,O), (42_46:)tj*ﬂl(AL(2X2, Xzio,o)l (42_4an)tJ

SU(QL(zn"xz)_ nwm;}u[ L@'%) Q IQHXZ)’%}

4 4" 2 4" 4"

. (4-at , (4-alt
<v'l A, (2X%,,%,,0,0),—— [*v'| A, (2x,,X,,0,0),

U( L (2%, %, ) o Ol AL(2%,, %, ) VL

0(QL (%) -QL'().1)

(3.20)

forall x,x, e X andall t>0. Since,
(4-a)t — o lim (4-a)t —w
4" e 24"

lim
n—ow 8.
forall t>0 and by [IFNS5] and [IFNS13], one can arrive
. . (4-alt
limu'| A;(%,—%0),
nﬁwﬂ[ 1 (%, —x,0) 84"

mu'[m (%, -%0), (48_4f)tj

1

0

(4—a)t]:1
2.4"

. (4-a)t
limA, (2x,,X,,0,0),
v [n%w L( 2 2 ) 24”

y'[limAL(sz,xz,O,O),

0

forall x,,x, € X and all t>0. Therefore



{u(QT(xl)—@ '(x),t) =1

o(Qr (x)—Q; ‘(X)) =
{#(QL (%) —Q'(x,),t) =
v(QL(%)—QL'(X).t)=

forall x,x, € X and all t >0.Hence,
Qr(x) =Qr '(%); Q%) =QL'(%), ¥V X, % €X.
Therefore Q; (x,); Q,(x,) are unique. So, the proof holds for g =1.

Now, (x,,,) by (ﬁ X?j in (3.6) and using [IFNS4], one can get
o(ro0-an 3 Jafzu{n (53 0)e)
ORI |

- e)zuln ( o0)s)
fioe ol s 2

forall x,,x, € X and all t>0. The rest of the proof is analogous to that of prior case. So, the proof holds for

|'—>< N|F?<
|3< N|2<

f =-1. This concludes the proof of the theorem.

Corollary 3.2. Assume f.: X —Y;f :X —Y are functions satisfying the inequalities
#'(G.t)
(A f (XYL z) )24
T w(GUx I+ l" +1z,")t)

1 G,
o(Afr (4, 1 2) 1) < V(e H Hop
0 (GUx " +y, " +12,1")t)
#(Gt)

U(AF (X0 Y,,2,,8), 1) 29
L w(GUx " 41y, " 1z, " +IsI")t)

(3.22)

( ) v'(G,t)
U(AFL(%,Y5,2,,8),t) <9

e 0 (Gx " +1y, [ +12, [ +15[")t)
for all x,¥,2,%,Y,,Z,,5€ X and all t>0. Then there exists a unique quadratic mappings
Q X >Y;Q, : X >Y satisfying (1.7) such that

,U(QT (x)-f; (Xl)’t) 2

U(QT(Xl)_ fT (Xl)’t)S [




#'(G.J3lt)
,u'(G((ZH +1)[x, ", |4—2H|t); H 1
; (3.23)

,U(QL(XZ)_ fL(Xz)’t) 2

v'(G,3t)

PQ )Tl 1)< v'(G(R" +1)[x, [, [4-2"[t);H =1

forall x,x, e X andall t>0.

VI CONCLUSIONS
In this paper, we establish the geometrical mathematical properties convert into quadratic functional

equations and analyzed the generalized Ulam-Hyers stability of the functional equations in intuitionistic fuzzy
Banach space using Hyers direct method.
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