
A Novel Approach to Underwater Object Detection via Bottleneck Layers 

and Morphological Operations  

Sumanth Kumar Panguluri 
a
, Ponduri Vasanthi 

b
, Shaik Basheera 

b
,                   

Laavanya Mohan 
c
, Veeravalli Venkata rao 

d
, Madhukumar Patnala

a 

a 
Department of Electronics and Communication Engineering, Bapatla Engineering College, 

Bapatla, Andhra Pradesh, 522102, India 
 

b 
Department of Electronics and Communication Engineering, Eswar College of Engineering, 

Narasaraopet, Guntur, Andhra Pradesh, 522601, India 

 
c 

Department of Electronics and Communication Engineering, Vignan's Foundation for 

Science, Technology, and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India 

 
d 

Department of Electronics and Communication Engineering, Narasaraopeta Engineering 

College, Narasaraopet, Guntur, Andhra Pradesh, 522601, India 

 
vasanthi457@gmail.com, skp6472@gmail.com, shaikbphd@gmail.com, laavanvijay@gmail.com, 

vvraoece2023@gmail.com  

ABSTRACT  

Underwater object detection poses significant challenges due to the inherent distortion and 

light attenuation experienced in aquatic environments. This paper outlines a comprehensive 

approach to enhance object detection in such challenging conditions. The proposed 

methodology combines morphological edge enhancement techniques with an efficient 

detection model featuring bottleneck layers. The initial phase involves the acquisition of a 

meticulously labeled dataset comprising underwater images containing objects of interest. 

Prior to model training, a critical preprocessing step is undertaken to rectify underwater 

distortions, encompassing tasks like color correction and contrast enhancement. To further 

fortify the model's adaptability to diverse underwater scenarios, the dataset is enriched 

through augmentation, introducing variations in lighting conditions, water clarity, and object 

poses. Bottleneck layers act as information bottlenecks, reducing the spatial dimensions of 

feature maps while simultaneously increasing their depth. This transformation not only 

compresses information but also mitigates computational overhead, thereby facilitating 

efficient object detection. This proposed model undergoes experimental validation on the 

underwater dataset, achieving significantly higher metrics such as a mean average precision 

(mAP) of 85.1%, precision of 84.4%, and recall of 79.9%. These experimental findings 

strongly indicate that the proposed model surpasses existing models in its ability to detect 

exceedingly underwater objects effectively.  
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1. INTRODUCTION  

Underwater object detection is a crucial field of study and technology used in various 

underwater applications, including marine research, offshore industries, naval operations, and 

environmental monitoring. It involves the use of specialized equipment and algorithms to 

identify and locate objects or features submerged beneath the water's surface. Detecting 

various objects in water, including fish, jellyfish, penguins, puffins, sharks, starfish, and 

stingrays, is a complex and important task in underwater image processing and computer 

vision. Each of these objects serves different ecological and scientific purposes, and their 

detection can aid in conservation efforts, research, and monitoring of aquatic environments.  

Here's an introduction to object detection for these aquatic creatures: 1. Fish Detection: Fish 

detection is crucial for marine biology, fisheries management, and ecological studies. 

Techniques include image processing and computer vision algorithms that identify fish based 

on color, shape, and size. Convolutional Neural Networks (CNNs) are commonly used for 

fish detection in underwater images and videos. 2. Jellyfish Detection: Detecting jellyfish is 

essential to assess their population, which can have significant ecological and economic 

impacts. Detection methods involve identifying the unique translucent and gelatinous 

structure of jellyfish in images. Machine learning models can be trained to distinguish 

jellyfish from other objects in the water. 3. Penguin and Puffin Detection: Penguins and 

puffins are seabirds that are often studied in their natural habitats. Detection methods may 

involve identifying the distinctive shapes and colors of these birds, even when partially 

submerged. Deep learning models can be trained to recognize these species in images and 

videos. 4. Shark Detection: Shark detection is vital for public safety at beaches and for 

studying these apex predators’ behaviors. Detection methods can include identifying shark 

silhouettes, dorsal fins, and body markings. Real-time detection systems using drones or 

underwater cameras are used for early shark warnings. 5. Starfish Detection: Studying 

starfish can provide insights into reef health and marine ecosystems. Detection techniques 

focus on the radial symmetry and distinct shapes of starfish. Image processing algorithms can 

segment and identify starfish in underwater imagery. 6. Stingray Detection: Stingray 

detection is essential for beach safety and understanding the distribution of these species. 



Detection methods may involve identifying the unique flattened body shape and long tail of 

stingrays. Machine learning models can be trained to distinguish stingrays from other 

underwater objects. In many cases, the detection of these aquatic objects involves using 

underwater cameras, sonar, or other specialized sensors to capture images or acoustic data. 

Machine learning and computer vision techniques, including deep learning, play a significant 

role in automating the detection process. These systems can be integrated into autonomous 

underwater vehicles (AUVs) or remotely operated vehicles (ROVs) for efficient data 

collection and object detection in underwater environments. Accurate detection and 

monitoring of these aquatic species contribute to the understanding and preservation of 

marine ecosystems.  

The significance of biological detection in underwater environments has garnered widespread 

attention. This application has found utility in diverse areas, including underwater robotics 

[1], underwater surveillance [2,3], and marine research [4,5]. Achieving autonomous and 

highly accurate detection of marine organisms is now a pressing need. However, when it 

comes to underwater detection, there are unique challenges. Unlike land-based detection 

scenarios [6,7,8], underwater imaging faces severe natural conditions on the seabed. 

Consequently, the majority of images are afflicted by issues like color casts [9,10,11,12,13], 

low contrast [14,15,16,17], blurriness [18,19], and noise [20,21]. As a result, accurate 

identification of target marine organisms in complex and dynamic underwater environments 

remains an immense challenge, one that only a handful of researchers have taken on. Hence, 

the development of a high-performance OD framework tailored for marine OD tasks is of 

paramount importance.  

Underwater target detection methods are most effective when they account for specific 

underwater conditions like clear visibility, moderate currents, and suitable lighting. 

Traditional detection approaches primarily rely on extracting features such as “color, texture, 

and geometry”. However, as DL technology has advanced, neural networks have been 

introduced as frameworks for underwater OD, capable of identifying and locating objects 

within images, thereby improving detection accuracy. Nevertheless, real-world underwater 

conditions are often far from ideal, leading to a decline in image quality that adversely 

impacts detection performance. To address these challenges, a comprehensive underwater 

OD framework tailored for complex underwater environments is proposed. This framework 

incorporates an image enhancement module with efficient detection network structure.  



2. LITERATURE SURVEY  

Initially, a series of image enhancement preprocessing steps is applied to the original 

underwater image. These steps include operations like CLAHE [22], dynamic thresholding 

[23], multi-scale color adaptive correction [24,25], and other conventional techniques. Their 

purpose is to enhance image clarity, contrast, and detailed texture features, ultimately 

improving image quality. This, in turn, enhances the accuracy and generalization capability 

of the model. With the continuous evolution of attention mechanisms, recent scholarly work 

has introduced these mechanisms into OD frameworks. A notable example is the introduction 

of a self-attention mechanism for action classification within a pyramid network [26]. 

However, it's important to note that the computational burden of the self-attention layer 

increases quadratically as image resolution grows. To tackle this challenge, BoTNet [27] has 

replaced the 3 × 3 convolution typically found in the middle of the Bottleneck used by 

ResNet50 [28] with Multi-Head Self-Attention (MHSA), yielding promising results in object 

detection tasks.  

Given the intricacy and variability of underwater environments, traditional data enhancement 

techniques are often ineffective due to low contrast and pronounced color differences in 

existing datasets. Notably, previous research [29] has also highlighted that the inclusion of 

data augmentation operations can enhance model detection accuracy. The study of 

underwater target detection holds substantial significance in domains like ocean current 

observation [30], marine biology, and security [31]. In efforts to enhance the performance of 

the improved YOLOv5, some researchers have focused on refining the loss function and 

detection layer of the backbone module, primarily relying on conventional data augmentation 

techniques. In our paper, we propose an efficient OD framework aimed at achieving high-

precision detection. To achieve this, we employ the morphological image enhancement 

method for data augmentation, processing the original dataset's images as inputs for the 

improved network.  

Xu, F., Wang at.el., proposed a novel approach for improving object detection in images. 

They introduce a specialized network called SA-SPPN (Spatial Pyramid Pooling Network 

with Attention) designed to enhance relevant information and expand the receptive field in 

the original features obtained from the backbone network. This strategy combines features 

from different levels, creating robust feature maps for object detection [32]. Wang, J., et.al., 

introduced Poisson fusion is applied to augment the data at the input, ensuring a balanced 



representation of detected targets. Following this, wavelet transform is employed to execute 

Style Transfer on the improved images, leading to image restoration. This fusion method 

merges the effective feature layer derived from the Backbone layer, resulting in heightened 

detection precision and accelerated model detection speed [33]. 

Jia, J. et. Al., presents an enhancement to the EfficientDet detector and introduces a novel 

model called EfficientDet-Revised (EDR), tailored for marine organism object detection. 

Firstly, the MBConvBlock has been restructured by integrating the Channel Shuffle module. 

Secondly, the attention module's fully connected layer has been eliminated, and convolutional 

layers have been employed instead. This change aims to reduce the overall number of 

network parameters while maintaining or improving performance. Lastly, an Enhanced 

Feature Extraction module has been devised to support multi-scale feature fusion. This 

module enhances the network's capability to extract features from objects of varying sizes, 

contributing to its adaptability in detecting different objects effectively [34].  

Ouyang, W et. Al., proposed two lightweight modules, namely the Attention-GB and 

Bottom-Enhancement modules. The Attention-GB module is designed to incorporate prior 

knowledge related to the differing attenuation coefficients of red light, green light, and blue 

light in water. This knowledge is essential for accurate object detection in underwater 

settings. The Bottom-Enhancement module addresses the need to enhance semantic 

information in the shallow layers of the model. This enhancement is particularly important 

for improving the accuracy of detecting small objects, a common challenge in underwater 

object detection [35]. Zhang, J. et. Al., presenting the CSPLayer incorporates a sizable 

convolution kernel, enabling the detection network to capture contextual information and 

with greater precision [36].  

The contributions of the proposed methodology can be summarized as follows:  

 The methodology integrates advanced morphological edge enhancement techniques; it 

enhances the quality of input images by emphasizing important object boundaries and 

features, which in turn aids the detection model in making more accurate predictions.  

 

 To enhance the model's adaptability to diverse underwater scenarios, the dataset is 

enriched through data augmentation, this process introduces variations in lighting 

conditions, water clarity, and object poses, making the model more robust in 

underwater environments. 



 

 The inclusion of bottleneck layers in the detection model reduces the spatial 

dimensions of feature maps while increasing their depth. This dual function 

effectively compresses information, enabling the model to operate more efficiently. 

 

3. PROPOSED MODEL 

Underwater OD is a challenging task due to the distortion and attenuation of light in water. 

To improve object detection in underwater environments, combine morphological edge 

enhancement techniques with the efficient detection model with bottleneck layers.  

 

Fig.1. The proposed model block diagram. 

The proposed model block diagram, and layer architecture is demonstrated in Fig.1 and 

Fig.2. At first, gather a labelled dataset of underwater images with objects of interest. Pre-

process the images to correct for underwater distortions, such as color correction and contrast 

enhancement. This step is essential to improve the quality of input data for the model. 

Morphological Edge Enhancement operations, such as erosion, dilation, and gradient 

operations, to enhance edges and object boundaries in the pre-processed images. This helps in 

making object boundaries more distinguishable. After that, augment the dataset with 

variations in lighting conditions, water clarity, and object poses to make the model more 

robust to different underwater scenarios. The primary function of bottleneck layers is to act as 

a bottleneck within the network, reducing the spatial dimensions (e.g., width and height) of 



the feature maps while increasing the number of channels (depth). This transformation helps 

in compressing information and reducing the computational load while preserving valuable 

information for detection. Finally, evaluate the model's performance using metrics like mean 

Average Precision (mAP) on a validation dataset. 

 

 

Fig.2. Layer architecture of the Proposed Model. 

3.1. EDGE IMPROVEMENT TECHNIQUE 

A new edge improvement technique developed by using morphological opening and closing 

operations is displayed in Fig.3.  

Generation of output image using above technique involves following steps: 

Step1: First we have to take input image. Let consider it as ( , )i x y . 

Step2: Apply morphological opening operation on input image ( , )i x y . Mathematically it 

can be expressed as  



                                                 ( , ) ( , )opening ef x y i x y S                                                (1)  

Where eS  represents structuring element.  

Step3: Apply morphological closing operation on output of morphological opening 

operation. Mathematically it can be expressed as  

                                   sin ( , ) ( , )clo g opening ef x y f x y S                                                 (2)  

The output of morphological closing operation is the blurred image. 

Step4: Subtract output of morphological closing operation from input image ( , )i x y . 

Mathematically it can be expressed as  

                                      sin( , ) ( , ) ( , )e clo gf x y i x y f x y                                                 (3) 

 Where ( , )ef x y  represents edge imge.  

Step5: Add  input image ( , )i x y  with ( , )ef x y . Mathematically it can be expressed as  

                                                 ( , ) ( , ) ( , )eE x y i x y f x y                                                 (4) 

 Where ( , )E x y  represents output image or edge improved image.  

 

 

Fig.3. Edge improvement technique using morphological opening and closing operations. 



   The input images and edge enhanced output images are displayed in Fig.4.    
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Fig.4. Enhancement output results. 

 

 



3.2. DATA AUGMENTATION  

Data augmentation is a crucial technique in training deep learning models like YOLOv5. It 

involves applying various transformations to the training data to increase the diversity of the 

dataset, which, in turn, improves the model's ability to generalize to different scenarios and 

conditions.  The optimizer used in this context is Stochastic Gradient Descent (SGD) with a 

learning rate (lr) of 0.01. This SGD optimizer is configured with different parameter groups: 

The first parameter group (123 weight) has no weight decay (decay=0.0). The second 

parameter group (126 weight) has weight decay set to 0.0005. The third parameter group (126 

bias) does not have weight decay specified, which implies it may use the default value.  

Additionally, data augmentation techniques are applied using the Albumentations library. 

These augmentations include: Randomly applying blurring with a probability of 1% and a 

blur limit between 3 and 7. andomly applying median blurring with a probability of 1% and a 

blur limit between 3 and 7. Randomly converting the image to grayscale with a probability of 

1%. Applying Contrast Limited Adaptive Histogram Equalization (CLAHE) with a 

probability of 1%. The clip limit is between 1 and 4.0, and the tile grid size is 8x8. These data 

augmentation techniques are applied to the training data to increase its diversity and help the 

model generalize better to various conditions and inputs during training. The optimizer 

configuration and data augmentation strategies work together to train the model effectively, 

controlling the learning process and enhancing the model's ability to handle different 

scenarios and data variations. 

 

3.3. BACKBONE NETWORK   

Proposed model utilizes a modified CSPDarknet backbone network as its feature extractor. 

The key features of the modified CSPDarknet backbone network include Cross Stage Module 

(CSP). The CSP module is the core element of the CSPDarknet backbone network. It 

facilitates cross-stage feature fusion, allowing feature maps from different stages of the 

network to be combined effectively. This fusion enhances the network's ability to capture 

features at various scales and resolutions. The backbone is built upon the Darknet-53 

architecture, which is a deep convolutional neural network. Darknet-53 is designed to extract 

hierarchical features from the input image. It consists of various convolutional layers and 

residual blocks. Proposed model incorporates feature pyramids within the CSPDarknet 

backbone. Feature pyramids enable the network to capture and utilize multi-scale features, 



which is crucial for detecting objects of different sizes in an image. Before performing 

feature fusion, the CSP module often concatenates a portion of the feature maps from the 

main path with those from the shortcut path. This step ensures that relevant information from 

both paths is combined during feature fusion.  

In proposed model, Convolution, Batch Normalization, and the Silu (Sigmoid Linear Unit) 

activation function play crucial roles in the model architecture. Convolutional layers are used 

to extract features from the input image, enabling the network to learn hierarchical 

representations of the data. Batch Normalization is a technique used to stabilize and 

accelerate the training of deep neural networks. It normalizes the activations of each layer 

across a batch of data, reducing internal covariate shift. BatchNorm layers are often placed 

after convolutional layers. They help improve the model's convergence speed and 

generalization by maintaining stable activations. The Silu activation function, also known as 

the Swish activation, is a smooth approximation of the Rectified Linear Unit (ReLU) 

function. Silu has been found to perform well in deep neural networks due to its non-linearity 

and smoothness, which can help mitigate vanishing gradient problems.  

In proposed architecture’s C3 module, the Conv layer with a bottleneck layer is a crucial 

component that contributes to the network's ability to extract hierarchical features effectively. 

This module is designed to improve the network's capacity to capture and represent 

information at different scales, which is important for object detection tasks. The term 

"bottleneck layer" is often associated with ResNet-style architectures, and it typically refers 

to a sequence of convolutional layers with a specific structure.  

SPPF LAYER  

The SPPF layer is a type of pooling layer used to handle objects of different sizes and scales 

within an image. It helps the model capture multi-scale features effectively. The primary 

objective of the SPPF layer is to divide the input feature maps into a grid of fixed-size 

regions, perform pooling operations on each region, and then concatenate the results. This 

enables the network to capture context and information at multiple scales. SPPF layers are 

particularly useful in object detection tasks, where objects can vary significantly in size and 

location within an image. Proposed backbone uses SPPF layer to improve its ability to detect 

objects of different sizes and scales, contributing to better under water object detection 

performance. 

 



3.4.NECK NETWORK  

The PAN (Path Aggregation Network) is a type of feature fusion network that can be used in 

the "neck" part of an underwater OD model. The neck is the part of the architecture that 

follows the backbone and is responsible for aggregating features from different scales before 

feeding them into the detection head. The PAN network is designed to improve the handling 

of multi-scale information and enhance object detection performance. In underwater OD, 

objects can vary in size, and it's essential to capture information at multiple scales to detect 

both small and large objects accurately.  

The PAN network typically takes feature maps from different levels of the backbone 

network, creating a feature pyramid. Each level of the feature pyramid contains features at a 

specific spatial scale. In the top-down pathway, feature maps from higher-resolution levels of 

the feature pyramid are down sampled to match the spatial resolution of lower-resolution 

levels. This helps align feature maps from different scales. In the bottom-up pathway, 

features are propagated from lower-resolution levels to higher-resolution levels. This allows 

high-level semantics to be combined with detailed information from lower scales. Lateral 

connections connect feature maps from the top-down and bottom-up pathways. These 

connections allow information to flow bidirectional between different scales, facilitating 

feature fusion. It combines feature maps from different levels, ensuring that the final feature 

maps have consistent spatial resolutions across scales. The PAN network is designed to 

handle the challenges of underwater OD effectively. By aggregating and fusing features from 

various scales, it enhances the model's ability to detect objects of different sizes within an 

underwater image. 

 

3.5. BOTTLENECK LAYER  

A bottleneck layer typically consists of three main components: 1x1 Convolution: The first 

component reduces the number of input channels (dimensionality reduction) using a 1x1 

convolutional layer. This step helps reduce the computational cost. 3x3 Convolution: After 

the 1x1 convolution, a 3x3 convolutional layer is applied. This layer captures spatial features 

and relationships within the feature maps. 1x1 Convolution (Expansion): Finally, another 1x1 

convolutional layer is used to expand the number of channels back to the desired level. This 

expansion can introduce non-linearity and expressive power. Bottleneck layers serve 

dimensionality reduction: The initial 1x1 convolution reduces the number of channels, which 



reduces the computational cost and memory requirements. Increased Non-Linearity: The two 

1x1 convolutional layers sandwiching the 3x3 convolution introduce additional non-linearity 

to the network, enhancing its ability to capture complex relationships in the data. Bottle neck 

layers are displayed in Fig.5. 

The use of bottleneck layers has several advantages:  

 Improved training efficiency: The reduced number of parameters and computations 

speeds up training.  

 Increased depth: Deeper networks can capture more intricate patterns and features.  

 Better generalization: Deeper networks often generalize better to unseen data. 

 

       

Fig.5. Bottle Neck layers. 

3.6. MODEL HEAD  

In proposed model, the "model head" refers to the portion of the neural network architecture 

responsible for producing the final output, which includes underwater OD predictions. The 

model head processes the feature maps extracted by the backbone network and generates 

bounding box coordinates, object class predictions, and objectness scores for detected objects 

within the underwater image. The model head often starts with a series of convolutional 

layers. These layers are responsible for further processing the feature maps extracted by the 

backbone network. It includes detection layers that predict the presence of objects within 

specific anchor boxes at different spatial scales. These layers are responsible for predicting 

bounding box coordinates (x, y, width, height), objectness scores (probability that an object is 



present within a given anchor box), and class probabilities (probability of the detected object 

belonging to each class). Proposed model employs specific loss functions for different 

components of the output, including the bounding box regression loss, objectness loss, and 

classification loss. These loss functions are used during training to optimize the model's 

predictions. The final output format of the model head typically consists of a grid of 

predictions across different spatial scales.  

 

4. EXPERIMENTS 

 

4.1.DATASET 

In our study, we conducted evaluations to assess the performance of proposed framework 

using the publicly available Underwater Robot Picking Contest (URPC) dataset. This dataset 

encompasses images containing seven distinct categories of underwater objects, namely 'fish,' 

'jellyfish,' 'penguin,' 'puffin,' 'shark,' 'starfish,' and 'stingray.' You can observe instances of 

these images in Fig.6. As part of our experimental setup, we standardized the image sizes to 

640x640 pixels. For the verification process, we utilized the raw underwater images as our 

test set. This test set served as the basis for evaluating the overall framework's performance in 

terms of object detection. This approach allowed us to rigorously evaluate the effectiveness 

of proposed OD framework in identifying and localizing underwater objects from the URPC 

dataset, even when dealing with the challenges posed by raw underwater imagery. 

 

Fig.6. Instances of URPC Dataset 



4.2. EVALUATION CRITERIA  

In our research, we conducted a thorough evaluation of the model's performance using a 

comprehensive set of evaluation criteria. These criteria included essential metrics such as 

mean Average Precision (mAP), precision (P), recall (R), F1-score, and Frames Per Second 

(FPS). A pivotal aspect of our evaluation process was the utilization of a Confusion Matrix. 

This matrix played a crucial role in providing a detailed and insightful assessment of the 

classifier's performance by comparing its predictions to the actual ground truth. The 

Confusion Matrix consists of four fundamental elements: True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). These components offered us a fine-

grained understanding of the model's classification and object detection capabilities. This 

comprehensive evaluation approach allowed us to thoroughly analyze and quantify the 

model's performance across various aspects of its functionality. 
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4.3. EXPERIMENTAL OUTCOMES   

 

During the initial stages of training, our model leverages the URPC dataset and fine-tunes its 

hyper-parameters for optimal performance. The training process incorporates advanced data 

augmentation techniques, as demonstrated in Fig.7. One such augmentation technique is 

Mosaic augmentation, a powerful approach that combines four distinct images into a single 



composite image. During training, the network processes these augmented images using a 

batch size of 16. In Fig.7, you can observe bounding boxes, each associated with a label 

ranging from 0 to 9, representing the presence of seven different objects within the URPC 

dataset. These bounding boxes vividly illustrate the model's capability to detect objects 

effectively. Furthermore, in Fig.8, we provide visual representations of the model's object 

detection prowess. These visuals showcase bounding boxes, associated labels, and detection 

probabilities, highlighting the proposed model's remarkable accuracy in identifying objects, 

including those that are small and densely packed. Importantly, this accuracy is achieved 

even when working with input images resized to 640x640 pixels, underscoring the model's 

robust performance. The figure in Fig. 9 illustrates a sequence of input images, enhanced 

images, and detected images. 

 

 

Fig.7. Augmented Images 



 

Fig.8. Validation Images. 

 

In Fig.10, we provide a visual representation of the confusion matrix. This visualization plots 

the true values against the model's predicted values for the dataset, offering a clear and 

intuitive depiction of the model's classification performance. This comprehensive evaluation 

process ensures that we have a thorough understanding of the model's capabilities in 

classifying objects within the dataset. The proposed model undergoes experimental validation 

on the underwater dataset, achieving significantly higher metrics such as a mean average 

precision (mAP) of 85.1%, precision of 84.4%, and recall of 79.9%. They are displayed in 

Fig.11. 



 

(a)                                     (b)                                         (c) 

Fig.9. (a) Input Images, (b) Enhanced Images, and (c) Test Images. 



 

Fig.10. Confusion Matrix 

Table 1: The detection performance analysis on the underwater object detection dataset. 

‘Framework’ ‘Year’ ‘Backbone’ 

‘Test 

Pixels’ ‘AP50’ 

SA-SPPN [32] 2022 DarkNet-53 608x608 79.23 

B-YOLOX-S [33] 2022 DarkNet-53 640x640 82.68 

SWIPENET-CMA 

[37] 2022 SWIPENET 512x512 68 

SWIPENET-IMA [38] 2020 SWIPENET 512x512 64.5 

RoIAttn [39] 2022 ResNet-50 1000x600 82 

RFTM-XT101 [40] 2023 ResNetXT101 640x640 84.7 

YOLOX-U [41] 2023 

Cascade Mask R-

CNN with Swin-

T 640x640 83.65 

Proposed Model   

Modified CSP 

Darkent 512x512 85.62 



 

     

     

Fig.11. Performance metrics  

Table 2: The detection results for 7 class categories of the underwater object detection 

dataset images 

Class P R mAP@50  mAP50-95 

Fish 87.2 81.3 87.7 56.4 

Jellyfish 90.3 95.5 96.9 63.4 

Penguin 72.6 83.9 78.1 45.2 

Puffin 74.4 62.8 69.2 41.8 

Shark 86.6 80.7 87.8 65 

Starfish 95.4 76.3 87.7 74.9 

Stingray 84.3 78.8 88.1 70.6 

 

mailto:mAP@50


4.4. DISCUSSION  

In this training configuration, we outline the parameters and settings used for training the 

proposed model model. The training process spans 100 epochs, with each batch comprising 

16 images resized to 640x640 pixels. The training process utilizes the following 

specifications: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, 

warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, 

cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, 

hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, 

flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0. 

The table 1 presents a comparative analysis of various models in terms of their performance 

metrics, year of publication, backbone architecture, test image resolution (in pixels), and 

average precision at 50% overlap (AP50) scores. These models have been evaluated on a 

common dataset, and their respective results are summarized as:  SA-SPPN [32], published in 

2022, utilizes the DarkNet-53 backbone and operates on test images with a resolution of 

608x608 pixels. It achieves an AP50 score of 79.23, indicating its ability to accurately detect 

objects with a 50% overlap. B-YOLOX-S [33], also from 2022, is based on the DarkNet-53 

backbone and processes test images of size 640x640 pixels. It demonstrates superior 

performance with an AP50 score of 82.68, suggesting robust object detection capabilities. 

SWIPENET-CMA [37], introduced in 2022, uses the SWIPENET architecture and evaluates 

objects in 512x512 pixel images. It achieves an AP50 score of 68, indicating moderate 

performance in object detection. SWIPENET-IMA [38], published in 2020, also employs the 

SWIPENET backbone with 512x512 pixel test images. However, it lags behind in 

performance with an AP50 score of 64.5 compared to more recent models.  

RoIAttn [39], released in 2022, adopts the ResNet-50 backbone and tests objects in images 

sized 1000x600 pixels. It attains a competitive AP50 score of 82, demonstrating strong object 

detection capabilities. RFTM-XT101 [40], introduced in 2023, leverages the ResNetXT101 

backbone and processes test images with a resolution of 640x640 pixels. It achieves an 

impressive AP50 score of 84.7, showcasing high accuracy in object detection. YOLOX-U 

[41], published in 2023, uses the Cascade Mask R-CNN with Swin-T as its backbone and 

evaluates objects in 640x640 pixel images. It achieves an AP50 score of 83.65, indicating 

excellent object detection performance. Proposed Model, employs a modified CSP Darknet 

backbone and operates on test images with a resolution of 512x512 pixels. It outperforms all 



other models in the table with an impressive AP50 score of 85.62, highlighting its exceptional 

object detection accuracy. The table 2 provides a comprehensive overview of the 

performance metrics. The proposed model stands out as the top-performing model in this 

comparison, indicating its potential for real-world applications where precise object detection 

is essential.  

 

5. CONCLUSION  

This paper presents a robust and innovative approach to address the intricate challenges of 

underwater object detection, stemming from the inherent distortion and light attenuation 

within aquatic environments. By combining morphological edge enhancement techniques 

with an efficient detection model featuring bottleneck layers, a comprehensive solution is 

outlined. Through a critical pre-processing stage encompassing color correction and contrast 

enhancement, the dataset is refined to bolster the quality of input data. In an effort to fortify 

the model's adaptability across diverse underwater scenarios, dataset augmentation introduces 

variations in lighting conditions, water clarity, and object poses. Central to this approach, 

bottleneck layers role in reducing spatial dimensions while enhancing depth not only 

compresses information but also minimizes computational overhead. Experimental validation 

conducted on the underwater dataset yields remarkable results. The proposed model achieves 

impressive metrics, including a mean average precision (mAP) of 85.1%, precision of 84.4%, 

and recall of 79.9%. These outcomes substantially surpass the performance of existing 

models, underscoring the model's superior efficacy in the detection of underwater objects. 
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