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Abstract: 

One of the main environmental problems facing the industrialized world is air 

pollution, as it has significant consequences on all living beings. There are numerous 

organizations that have released alerts regarding the extreme air pollution. When all the 

negative effects of air pollutants are considered, it is essential to create accurate models to 

predict air pollution levels in order to calculate future concentrations. Even though there have 

been numerous attempts to simulate pollution levels in the literature, new advancements in 

deep learning techniques offer better data integration and prediction outcomes that are more 

accurate. In this study, a detailed research about modelling with deep learning architectures 

on air pollution data is given. In particular, the Long Short Term Memory (LSTM) is 

analysed and aggregation of three LSTM network is designed. The experimental results 

suggested using this architecture in various big air pollution data. 
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I. INTRODUCTION 

Air pollution is one of the most important environmental issues of our time and it 

must be taken into account while assessing sustainable urban development. Several studies 

have shown that air pollution is a major cause of cancer [1–2]. It significantly affects people's 

quality of life and is closely related to the social and economic development of cities as well 

as people's health. 

In recent years, researchers have focused on air pollution forecasting [3-4]. Most of 

these studies [5] use simulation techniques or mathematical equations. These traditional 

approaches are represented by traditional shallow learning algorithms. Dong et al. presented a 

technique based on Hidden Semi-Markov Models (HSMMs) [6] for forecasting PM2.5 



concentration values. Donnelly et al. developed a model based on the Integrated Parametric 

and Nonparametric Regression (IPNR) technique for air quality forecasts [7]. 

All these models fail to adequately collect and predict air pollution since it is greatly 

influenced by weather, transportation and other factors. In the big data era, various sensors 

and associated data gathering equipment gather big data including PM2.5, NO2, PM10, 

weather condition data, traffic data, etc. This is a result of the rapid development and 

application of sensor technology, the Internet of Things (IoTs) and other breakthroughs. As 

traditional shallow learning models still struggle to handle massive amounts of data, new air 

quality forecasting methods need data-driven model support [8-9]. 

This paper overcomes the challenge of big data air quality prediction by designing an 

aggregated LSTM model with the aggregation of three LSTM network.   

The remaining of the paper is organized as follows: Section 2 discusses various 

literatures in air pollution prediction. Section 3 elaborates the proposed air pollution 

methodology. Section 4 demonstrates the proposed method with experimental results. Section 

5 concludes the chapter. 

II. SURVEY 

Currently, deep learning [10] is the most popular technology as it can automatically 

extract and comprehend the essential features of big data. Since 2012, deep learning has 

growing in natural language understanding, audio processing, image processing and video 

processing [11–13]. Researchers are increasingly concentrating on deep learning approaches 

for time series analysis and air quality prediction also [14–15]. Air quality forecasting is a 

multivariate time series analysis problem and it is a useful study of learning many features 

based on hybrid deep learning model [16]. 

Air pollution prediction can be used to forecast changes and trends in air pollutant 

concentration at different spatiotemporal scales [17]. The ability to forecast the future 

distribution of air pollution is critical to prevention, control and treatment of air pollution in 

the future [18]. There are two types of models used to predict air pollution: deterministic 

theoretical models based on physical and chemical principles and data-driven statistical 

prediction models.  



Deterministic theoretical models utilize real observed data, such as the chemical 

composition of pollutants, meteorological elements and emission source characteristics, to 

establish physical and chemical reaction mechanisms of pollutant emission, diffusion, 

transmission, secondary reaction and removal for use in pollution simulation and prediction 

[19-22]. There are still certain limitations on how these models can be used.  

Data-driven statistical prediction methods match the quantitative relationship between 

historical pollutant data and external parameters, such as meteorological features and 

spatiotemporal characteristics, to estimate the distribution of future air pollution [23-24]. The 

accuracy of forecasts is limited by the relationship between targets and variables, which is 

difficult for traditional machine learning techniques [25].  

As deep learning algorithms have developed and grown, several researchers have 

begun to use deep neural network models, such as Recurrent Neural Networks (RNNs) and 

LSTM for air pollution prediction. Numerous studies have also shown how resilient LSTM is 

when handling time series issues, demonstrating that it outperforms general shallow networks 

[26–27]. A few of the LSTM-based models that have been developed recently are Graph 

Convolutional LSTM (GC-LSTM), Temporal Sliding LSTME (TS-LSTM), Convolutional 

LSTME (C-LSTM) and LSTM Extended (LSTME).  

Most LSTM-based models are used to estimate short-term air pollution concentrations 

and they consider basic temporal dependencies. They usually have limited accuracy in long-

term prediction because they are unable to maintain high temporal correlations. In LSTME 

and C-LSTME models, suitable time delays were used to generate several models to provide 

long-term prediction, but they did not perform well. While TS-LSTME, were effective in 

identifying the implicit temporal linkages among the data, they failed to take into account the 

geographical dependencies of air pollutants. 

The C-LSTME model was utilized to simulate the spatial connection of air pollution 

at the monitoring stations using Convolutional Neural Networks (CNNs). However, as air 

pollution spreads in non-Euclidean space, conventional CNN only functions in normal 

Euclidean space and is not applicable to network topologies [23, 27]. In order to overcome 

this problem, the authors developed the GC-LSTM model, which combines spectral graph 

convolution, the Chebyshev approximation and superficial LSTM layers to demonstrate that 

network-based predictions are more valuable and accurate. The Chebyshev approximation 

reduces complexity and the possibility of lower accuracy. 



Long-term dependencies were too big for the standard LSTM layers used in temporal 

modeling. Furthermore, most studies only forecast one air pollutant, making it impossible to 

assess how well the recommended models predict other pollutants [16, 28–29]. The 

aforementioned constraints were addressed in the creation of the GT-LSTM model [30], 

which predicts various air pollutants by merging graph convolution networks with self-loops 

and temporal sliding LSTM networks.  

III. AGGREGATED LONG SHORT TERM MEMORY MODEL 

The aggregated LSTM combines all of the predictive features for the final predicted 

value. All forecast features have identical weights. However, the causes of air pollution need 

to vary at different times or in different locations of the station. Thus, the idea of aggregation 

serves as the foundation for this study. For every feature produced by three separate models, 

different weights are given. Therefore, the purpose of this paper is to optimize our air 

pollutant forecast model through the use of aggregation model.  

Three prediction features are generated using aggregation learning for different kinds 

of stations. Predicted functional data from the fully connected neural network layer is used to 

construct the data. The reverse propagation adjusts weights after each batch and the system 

trains data instantaneously [31-32]. In the end, the best outcomes are possible to achieve. 

Figure 1 depicts the suggested design of the aggregated LSTM. It comprises three 

subnetwork layers and three input layers. The output layers added together yield a single 

forecast.  

Each time point has data with 12 dimensions. Hence, in the input layer of the 

proposed model, the size of the data is 12 dimensions and 72 hours (three days are used for 

prediction). The hidden layer will receive the hourly 12-dimension data supplied from the 

input layer. Three gates, each coupled by four Fully Connected (FC) layers, are present inside 

the hidden layer. The output of the LSTM cells at that particular moment in time will then be 

collected, together with a matrix of cell states. This technique has preserved and transferred 

the memory data to the LSTM cells at the final time point.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 ALSTM for Air Quality Prediction 

In the forget gate of LSTM, the following calculation is made. 

                                              𝑓𝑡 = 𝜎(𝑊𝑓[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑓)                                            (1) 

Where the size of two input matrices 𝑥𝑡 and ℎ𝑡−1 are 17 x 1 and 128 x 1 respectively.  

𝑏𝑓 is the forget gate bias. The sigmoid function is used to convert to the sequence 0-1.  
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The input gate (𝑖𝑡) is the same as the forget gate, where input matrices 𝑥𝑡, ℎ𝑡−1and 

𝑥𝑡 + ℎ𝑡−1 are connected and entered into two different FC layers. The first FC layer will 

determine how much information will be added to the state of the cell. It is given as  

 𝑖𝑡 = 𝜎(𝑊𝑖[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑖) (2) 

Where 𝑏𝑖 is the input gate bias and 𝑊𝑖 is the weight matrix of forget gate. 

The second FC layer controls how much information will be added to the cell state. 

The candidate state 𝑐𝑡 and the current moment 𝐶𝑡 is given as 

 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑐) (3) 

 𝐶𝑡 = 𝑓𝑡ʘ𝑐𝑡−1 − 𝐼𝑡ʘ𝑐𝑡 (4) 

Where 𝑏𝑐 is the current moment bias and 𝑊𝑐 is the weight matrix of current state. 

When the value of 𝑓𝑡 is closer to 0, it means that the state of the neuron is to be completely 

forgotten, and the value closer to 1 means to completely remember the state of the neuron. 

And then we use the output 𝑖𝑡 of the input gate to choose the amount of information to be 

memorized to multiply the information that needs to be memorized to get the information we 

need to memorize.  

In the output gate, there are three inputs and the current cell state 𝑐𝑡, which will 

connect 𝑥𝑡 and ℎ𝑡−1 matrices to obtain 𝑥𝑡 + ℎ𝑡−1. And by multipling the matrix with the 

weight matrix 𝑊𝑜 of the output gate and adding the output gate 𝑏𝑜, 𝑜𝑡 is obtained which is 

then converted to a sequence from 0 to 1 by sigmoid function and limit 𝑐𝑡 to the sequence 

from 1 to −1 by tanh function. We multiply 𝑐𝑡 with the amount of information of the cell 

status to become the output in the output layer and in the LSTM cells at the next time.  

 𝑜𝑡 = 𝜎(𝑊𝑜[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑜) (5) 

 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑐) (6) 

 ℎ𝑡 = 𝑜𝑡ʘtanh (𝑐𝑡) (7) 

Two dropout layers are added between LSTM layers. In the FC layer, the 72 neurons 

of the second LSTM network layer are connected to all 64 neurons to produce the weight and 

activation function for the next merge layer. In the Merge layer, the features from the three 

sub-neural networks are connected and the output is given to next FC layer. This method 



collects all predicted features and outputs for the next layer and gives each predicted feature a 

different weight.  

Finally, the final FC layer is connected with the prediction feature of the merge layer. 

The final layer will give different weights to its hidden layer through back propagation. The 

data will be merged to get the final output. By giving different weights to the predicted 

features, the final layer can represent the correlation of local station data for each predicted 

feature.  

IV. Experimental Results 

The experimental evaluation of the proposed model is performed by using Air Quality 

Data in India (2015-2020), which is openly available on Kaggle [33]. The dataset contains the 

data starting from January 1, 2015 to February 28, 2021. The dataset contains Air Quality 

Index (AQI) and air quality data in terms of daily and hourly levels of several stations across 

multiple cities in India. 

It encompasses the concentrations of different pollutants for each hour of the day 

along with the data of the environmental conditions. Pollutants include PM2.5, PM10, SO2, 

NO2, CO, O3 etc. The dataset consists of 5 sub datasets: city_day, station_day, city_hour, 

station_hour and stations. We concentrated on station_day dataset. It consists of the attributes 

listed in Table 1. 

Table 1 Attributes of Station_day Dataset 

S. 

No. 
Attribute Description 

1. StationId ID given to each station of a city 

2. Date Date on which the concentrations are obtained  

3. PM2.5 particulate matter of a diameter ≤ 10 μm 

4. PM10 particulate matter of a diameter ≤ 2.5 μm 

5. NO Nitrogon Oxide 

6. NO2 Nitrogen dioxide 

7. NOx Total Nitrogen Oxides 

8. NH3 Atmospheric Ammonia 

9. CO Carbon Monoxide True hourly averaged 



concentration CO in mg/m3  

10. SO2 Sulphur dioxide 

11. O3 Ozone 

12. Benzene Benzene 

13. Toluene Toluene 

14. Xylene Xylene 

15. AQI Air Quality Index 

16. AQI_Bucket AQI classification 

 

In the above table, Station Id, Date, AQI and AQI_Bucket are excluded for prediction. 

The remaining 12 features are predicted individually using the proposed model. The 

statistical information about the dataset is shown in Fig. 2. 

 

Fig. 2 Statistical Information about Attributes 

All pollutants values are displayed in feature graph. Finally, the Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 

Coefficient of determination (R2) values were selected to evaluate the effectiveness of the 



proposed method. We assume that 𝑶𝒊 and 𝑷𝒊 are the observed and predicted values, 

respectively. 𝑶̅𝒊 is the average value of n observed samples. These indicators can be 

formulated as follows. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑄𝑖)2𝑛

𝑖=1  (8) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑖 − 𝑄𝑖|

𝑛
𝑖=1  (9) 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑃𝑖−𝑄𝑖|

𝑄𝑖

𝑛
𝑖=1  (10) 

 𝑅2 = 1 −
∑ (𝑃𝑖−𝑄̅𝑖)2𝑛

𝑖=

∑ (𝑂𝑖−𝑄̅𝑖)2𝑛
𝑖=

 (11) 

The proposed model works on few epochs only with batch size is set to 1. Only 10% 

dropout and Adam optimizer are used. The learning rate is set to 10-3. The prediction results 

obtained by BiLSTM model for each pollutant are shown in Table 2. 

Table 2 Results Obtained by Proposed Model for each Pollutant 

Pollutant/ 

Measure 
RMSE MAE MAPE R2 

PM2.5 1.08 6.82 0.25 0.72 

PM10 0.37 10.36 0.18 0.68 

NO 1.18 1.32 0.39 0.28 

NO2 1.75 2.6 0.47 0.31 

NOx 3.55 3.76 0.34 0.26 

NH3 1.55 1.98 0.14 0.68 

CO 0.04 0.09 0.33 0.28 

SO2 2.81 3.99 0.2 0.35 

O3 6.32 3.32 0.14 0.18 

Benzene 0.22 0.26 3.15 0.28 

Toluene 0.68 1.01 0.52 0.33 

Xylene 8.78 9.9 1.02 0.35 

 



The error values such as RMSE, MAE and MAPE should be as less as it could be. But 

the R2 value should be nearer to 1 as it ranges from 0 – 1. In the above table, the RMSE 

values are lesser than 6.32 (obtained for O3) except Xylene. All the MAE values are lesser 

than 5 except for PM 2.5, PM 10 and Xylene. The MAPE values are very encouraging as it is 

very lesser than 1 except for Benzene and Xylene pollutant. But the R2 values did not reach 

even 0.7. It indicates the correlation between the prediction and the original data are different 

from each other.  

    

    

Fig. 3 Comparison of Individual Pollutants 

The results clearly explain that Xylene pollutant is not predictable. Figure 4 compares 

the predictions obtained by ALSTM model with the groundtruth data. 
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Fig. 4 Predictions of proposed ALSTM Model 

The importance of aggregation is studied by comparing the proposed model with 

single LSTM and BiLSTM. Table 3 compares only PM2.5 and PM10 concentration on 

different models. 

Table 3 Comparison of Different Type of Models on PM2.5 and PM10 

Model Pollutant RMSE MAE MAPE R2 

LSTM PM2.5 1.81 7.17 0.43 0.59 

PM10 3.87 10.66 0.28 0.52 

BiLSTM PM2.5 2.8 1.75 0.34 0.43 

PM10 4.26 3.42 0.53 0.49 

ALSTM PM2.5 1.08 6.82 0.25 0.72 

PM10 0.37 10.36 0.18 0.68 

 

From Table 3, it is very clear that the proposed aggregated LSTM model outperforms 

other models in all the metrics. Figure 5 compares results of each model.  



     

Fig. 5 Comparison of Results of Each Model 

Another study is carried out for aggregation type: Linear (carrying different weights) 

and Uniform (carrying same weight). Table 4 shows the results obtained by linear and 

uniform aggregation. 

Table 4 Comparison of Aggregation Type on PM2.5 and PM10 

Aggregation 

Type 
Pollutant RMSE MAE MAPE R2 

Uniform PM2.5 2.91 9.11 0.3 0.57 

PM10 4.69 10.86 0.18 0.43 

Linear PM2.5 1.08 6.82 0.25 0.72 

PM10 0.37 10.36 0.18 0.68 

The RMSE value of linear aggregation (0.37) is very lesser for PM10 than uniform 

aggregation (4.69). The R2 value is greater than 0.6 in linear aggregation. From the results, it 

is substantially proved the linear aggregation is better than uniform aggregation.  

V. Conclusion 

The air and water pollution has a significant impact on human life. The technology 

development should prevent human life in all the means. One such model is designed for air 

quality prediction using LSTM network. An aggregated LSTM model is proposed with linear 

aggregation. The proposed ALSTM model is experimented on all pollutants of Indian dataset 

individually. As PM2.5 and PM10 has a greater impact on air pollution, these two pollutants 

are analysed with other models such as LSTM and BiLSTM. The linear aggregation is also 

compared with uniform aggregation. From all the analyses, it is proved that ALSTM with 
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linear aggregation is better for air quality prediction. In future, it can be further extended to 

include more than one pollutant for prediction. Also, the huge variety of datasets can also be 

tested considering the feature correlation. 
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