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Abstract:  

We also developed a socially relevant use case application of pedestrian detection with a Social 

Distancing Monitoring System. We used a pre-trained YOLO V3 and SORT tracker to generate 

detection and assign them unique IDs for the duration of their visibility. We then use a 

combination of homographic projection and Euclidean distance measurement to record 

whether a given pair of IDs are violating the social distancing norms of distance and duration 

of violation, hence incorporating both guidelines issued by the WHO regarding social 

distancing. 
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Introduction 

As a social application of pedestrian detection, the use case of Social Distancing 

Monitoring System presented itself to be promising challenge. During the pandemic lockdown, 

WHO issued strict guidelines regarding social distancing norms to be maintained for public 

health and safety. These guidelines stated that the distance between two individuals must not 

be less than 6ft for more than 3sec. Since this is a surveillance problem, the feed to be used 

must be of a wall mounted camera. The view of such a camera is tilted on an angle, rendering 

any absolute calculation of distance between two individuals extremely difficult. The distance 

measurement is then dependent upon the intrinsic parameters of the camera and the area for 

which it is capturing the feed. These parameters need to be defined beforehand. Also, to 

incorporate the time aspect of the guidelines, the violations need to be tracked across multiple 

frames, hence making the need of a fast tracker also apparent. We tasked ourselves with 

creating a simple yet powerful solution which is lightweight, easy to scale and flexible to 

incorporate better models as and wherever required. 



For the overhead camera feed, we used the Oxford Town Centre Dataset. This dataset 

was one of the most used ones with respect to the social distancing detection applications. A 

sample image from the dataset is shown in Figure 1. 

Figure 1. Sample Image from Oxford Town Centre Dataset 

 

Importance of Multi Object Tracking and Behaviour Estimation strategies 

Multi-object tracking (MOT) finds extensive applications across diverse domains, 

contributing significantly to fields such as surveillance, autonomous vehicles, sports analysis, 

and human-computer interaction. In surveillance, MOT plays a pivotal role in monitoring 

crowded scenes, detecting suspicious activities, and ensuring public safety. Moreover, MOT 

facilitates real-time object tracking in autonomous vehicles, enabling obstacle avoidance and 

enhancing navigation capabilities. In sports analysis, MOT aids in player tracking, performance 

evaluation, and tactical assessment, providing valuable insights to coaches and analysts. 

Furthermore, it assists in human-computer interaction scenarios, enabling gesture recognition, 

augmented reality applications, and immersive experiences. 

Several tracking techniques have emerged to address the complexities of MOT, 

leveraging a combination of algorithms and methodologies. Data association methods, 



including Kalman Filters, Particle Filters, and Hungarian Algorithms, are widely used to 

associate object detections across frames, managing occlusions and identity switches 

effectively. Additionally, deep learning-based approaches utilizing Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks have gained prominence due to their ability 

to learn complex motion patterns and appearance features, contributing to enhanced tracking 

accuracy and robustness. Hybrid methods combining feature-based tracking, motion models, 

and appearance-based descriptors have also shown promising results by exploiting both spatial 

and temporal information for object tracking.  

Among simple yet effective tracking algorithms, Simple Online and Realtime Tracking 

(SORT}) algorithm is a popular multi-object tracker. SORT operates in real-time and exhibits 

high-speed performance, making it suitable for applications requiring low-latency tracking 

capabilities. Its simplicity lies in its straightforward design, leveraging a combination of motion 

prediction, bounding box association, and Kalman filtering for reliable object tracking. 

Moreover, SORT's modular architecture allows for easy integration with various detection 

algorithms and association methods, ensuring adaptability and flexibility across different 

tracking scenarios. Additionally, SORT achieves competitive tracking accuracy while 

maintaining computational efficiency, rendering it an appealing choice for real-world 

applications demanding real-time multi-object tracking capabilities. 

Behavior monitoring, a subset of computer vision and surveillance, focuses on 

understanding and analyzing patterns, interactions, and activities of individuals or groups 

within visual scenes. This field plays a critical role in various applications, including security, 

crowd management, social science research, and human-computer interaction. Research in 

behavior monitoring encompasses trajectory analysis, crowd dynamics, anomaly detection, and 

social interaction modeling, aiming to derive insights into human behavior within diverse 

environments. 

Trajectory analysis forms a fundamental aspect of behavior monitoring, involving the 

tracking and analysis of individuals' movement patterns. Studies such as the Social LSTM 

model and attentive GAN for trajectory prediction, exemplify advancements in predicting 

future trajectories within crowded spaces. These methods leverage deep learning architectures 

to model temporal dependencies and interactions, enabling more accurate trajectory forecasting 

and behavior prediction. 



Crowd dynamics analysis aims to comprehend collective behavior within groups or 

crowds. Mehran et al. introduced a Social Force Model for abnormal crowd behavior detection, 

emphasizing the influence of social forces in simulating crowd movement. Additionally, works 

by Helbing and Molnár and Moussaid et al. shed light on collective behavior models and crowd 

simulation, elucidating emergent patterns and behaviors within large groups. 

Anomaly detection within visual scenes is crucial for identifying irregular or suspicious 

activities. Research by Cong et. al. introduced anomaly detection frameworks based on motion 

patterns, scene context, and abnormal behavior recognition. These methods utilize statistical 

models and machine learning techniques to identify deviations from normal behavior, aiding 

in security and surveillance applications. 

Models focusing on social interactions and group behavior, such as social force models, 

graph-based representations, and trajectory clustering techniques, have been explored in works 

by Pellegrini et. al. and Leal-Taixe et. al. These approaches analyze spatio-temporal 

relationships, social cues, and interaction patterns, facilitating the understanding of group 

dynamics and social behavior within visual scenes. 

The interdisciplinary nature of behavior monitoring integrates computer vision, 

machine learning, and social science concepts, fostering advancements in understanding 

human behavior, social interactions, and collective dynamics within various environments. 

Distance Estimation: Homography 

To solve the challenge of distance estimation between two pedestrian in a skewed view, 

we make use of homographic transformation. The model asks the user to mark 4 points on the 

first frame of the video in order to demarcate the area with reference to which the distance 

measurement is to take place. If camera intrinsic parameters and particulars of the area of 

camera deployment are known then this step can be automated. We generate the homographic 

projection matrix for the selected area using the OpenCV library. Then, using homographic 

transform, the perspective of the view of the street is mapped on to bird's eye view, represented 

as a blank image. The blank image is then marked with a grid which is mapped back on to the 

original image for reference. For distance measurement, each grid cell is estimated to represent 

a 2m by 2m area. The choice made for the sample image as shown in Figure 2 is of an estimated 

area of 20m by 16m.  

 



Figure 2. Grid formation using homographic transformation 

Now, with the perspective shifted on to a bird's eye view, the distance between any pair 

of detections mapped on to the projected grid can be evaluated using simple Euclidean distance 

between them. Since we have assumed the required distance of 6ft (or 2m) be represented by 

100 px, therefore any pair of detection at a distance less than 100 px would be considered 

violators. 

To find the detection, we pass the video frames through a YOLO V3 detector. The 

advantage of using this detector is that it has very little computational cost and still maintains 

decent accuracy of detection. This is also the model of choice for many other versions of social 

distancing monitoring systems developed in the past few years. The detections generated are 

in the conventional bounding box format. However, to map the detection on to the projected 

grid image, we require detections to be represented as singular points on the grid made on the 

ground in the original image. For this, we consider only the mean point of the bottom 

coordinates of the bounding boxes generated by the detector. Now these detections are 

presentable as singular points and the same is achieved using same the homographic projection 

matrix which was generated to map the grid. 

Once mapped to the grid, the Euclidean distance is measured between all possible pairs 

of detection  and the pairs with less than 100 px separation between them are identified. These 

detected pedestrians would be called the distance norm violators. In order to indicate their 

movement through the video, the non-violating detections are represented by a green dot and 

the violators are initially marked with a red dot. This however, brings us to the aspect of 

identifying if the violation is happening for more or less than the defined threshold of 3sec. 

 



Timing estimation: SORT tracker 

In order to estimate the time for which violation is occurring, we need to identify that 

the violation is happening between the same two detections across multiple frames. For this, 

each detection needs to be assigned unique IDs by a tracking system which remains assigned 

to them till their presence in the field of view. We chose to use SORT tracker for this study, 

since it is lightweight and works in real-time. 

Now, since we have access to unique detections, we keep track of the violations across 

90 frames, i.e., 3sec} (the dataset is recorded at 30fps). If the same pair of IDs are violating the 

distance norms in multiple frames, the color of their representation keeps switching from 

yellow to red and back, every 15 frames (or 0.5sec). If the violations stop, the color marking 

the two detections is switched back to green. In case the violations continue for more than the 

threshold 90 frames, the color of the detections is switched to red for the remainder of their 

visibility in the video stream. A sample image of detections is shown in Figure 3. 

 

Figure 3. Marking the safe and unsafe detections 

Results 

The system was used to create a demonstration on the Oxford dataset for DView AI. For the 

demo, we ran the model on different snippets extracted from the dataset, which is lengthy 

surveillance camera feed. The idea was to highlight the different challenges faced in the task 

of social distancing and how the model would tackle them. 



 

 

 

 

 

 

Figure 4. Social Distancing Demo snapshots 



The process is better explained with an example as shown in Figure 4. Here we demonstrate 

the behaviour of the model at 2 fps, i.e. we display every 15th frame of a snippet of the demo. 

In the first frame, 7 detections are identified and marked with the characters A, B, C, D, E, F 

and G.  

As is visible, detection A and B are walking together violating social distancing norms. 

Therefore, they are initially marked with yellow dot and the color keeps switching between 

yellow to red for 6 frames, i.e. 3 seconds. In the 7th frame, and all subsequent frames, these 

detections stay red having been marked unsafe because of violating social distancing norms.  

Detection C, D, E and F are all initially walking at relatively low distance from each other, 

hence initially all being marked with yellow. Subsequently, the detection C and F walk out of 

the frame of reference and changing the color of detection to green. We note that in frame 3, 

the detector fails to identify detection D but recovers the detection in frame 4. After frame 4, 

the distance between detection 4 and 5 is enough to make them both safe, hence maintaining 

the green color.  

Detection G can be seen in frame 1, to be blocking the visibility of another pedestrian. From 

the angle of perception, the model fails to identify that pedestrian and hence, the model is 

unable to identify that detection G is at an unsafe distance. This is identifiable in frame 3, when 

both the pedestrian and detection G are marked yellow. Since the two are walking away from 

each other, the model changes the color back to green in subsequent frame. 

As is evident, the pedestrian detection accuracy is limited due to use of smaller models. 

However, the concept used is easily applicable with any detection and tracking system.  

 

Figure 5. A group of more than 2 violators 

Figure 5 shows the case where more than 2 detections are found to be violating social distancing 

at the same time. Since distance between violating instances is measured in pairs, the IDs of 



the violating instances are entered in relevant sets (red or yellow), hence creating sets of unique 

IDs which can then be assigned the respective colors they should. 

Upon analysis on the Oxford dataset, we find that our model presents the following metric 

values.  

Metric  Value 

Detection Precision  68.27% 

Detection Recall 73.19% 

IDF1-score  69.34% 

MOTA  62.48% 

Frames per Second (FPS)  25 

System Latency  0.28 s 

Violation Detection Rate  37.63% 

Violation Detection Precision  84.24% 

Fraction of violators at risk  57.36% 

 

Here, IDF1 score indicates the retention of the IDs of the tracked objects and MOTA is a metric 

which evaluates overall accuracy of the tracked individuals. We also present the findings of 

social distancing violators on the dataset. We observe that there is a 37.63 % social distancing 

violation rate determined at an 84.24 % precision. Out of all the violations, 57.36 % were found 

to be for over 3 seconds, hence marking the violators to be at risk of exposure. 

Conclusion 

The IDs marked with red indefinitely are considered to be at risk of exposure due to violation 

of Social distancing and those marked green are considered safe.  

Therefore, this demo serves as a good proof of concept as an efficient Social Distancing 

Monitoring System. The solution was used by DView AI, an Australia based startup that deals 

with AI} based solutions, as a part of their social distancing measurement solution developed 

during the COVID-19 pandemic. 

In the demo solution created for DView AI, the individual tracks of the moving pedestrians 

across past frames was indicated using white dots. Detectors generate detections based on the 

entire field of view. However, for this application the detections for which the bottom of the 

bounding box coordinates lie outside the marked grid area, are ignored from analysis.  

The model created here is very lightweight and can be run using extremely simple machines. 

With marginal latency, the model can also be run on a simple CPU machine with sufficient 



memory. The model is flexible enough to incorporate detections from any other advanced 

systems. Use of better versions of SORT like is also a possibility. 
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