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Abstract  

Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain 

tissue are presented for evaluation of their hydrodynamic conditions before and after shunting 

for seven patients with non-communicating hydrocephalus. We have developed a mathematical 

model of the fluid flow in cerebral ventricles during hydrocephalus is presented.  The fluid-

solid interaction simulation shows the CSF mean pressure is five times greater than normal 

subject. We present a brief overview of the clinical problems that are being addressed. This 

suggests that functional deficits observed in hydrocephalic patients could therefore be more 

related to the damage to periventricular white matter.  

Introduction 

Many researchers have constructed the computational theory of hydrocephalus based on poro-

elasticity. Such models would provide greater comprehension of the problem and, as a result, 

better therapy. Such models have also neglected to account for the intermittent effects of 

shunting, the most often utilized treatment for hydrocephalus. We use elasticity and fluid 

mechanics to create a mathematical model of the human brain and ventricular system. Our 

model expands previous work by considering flow across the aqueduct and including boundary 

constraints. This would create a quantitative model for the disorder's boundary and 

improvement. We develop and solve the governing equations and boundary conditions for this 

model along with meaningful clinical findings. 

Our model expands earlier research on hydrocephalus by incorporating aqueduct flow with 

boundary constraints. A Cerebrospinal fluid travels down the subarachnoid space around the 

spinal cord and then into the cranial subarachnoid space, however, the laws of physics make it 

difficult to explain how this flow could be endured. 

A mathematical methodology that utilized in vivo stimuli was used to study the dynamic 

interplay of pulsatile blood, brain, and CSF1. The simulation presented in this article was 

generated for individuals with CSF physio pathological illness hydrocephalus2. An 

investigation of the posterior ventricular permeability for an asymmetrical circulation with 

chemical concentration for idiopathic hydrocephalus3. Using a basic geometric model, the 

current work presents an entirely novel approach to multi-physical diffusion processes in 

hydrocephalus and serves as a standard for more geometrically sophisticated simulations4. The 

circulation of CSF in the cardiovascular and sub-arachnoidal routes and CSF seepage into the 



porous brain parenchyma were addressed. The complicated brain geometry's boundary 

conditions were developed5. 

A standard subject's study information has been compared to an actual computational 

model that represented intracranial dynamics. The model, which was created utilizing subject-

specific magnetic resonance (MR) images and physical boundary conditions as input, 

reproduces pulsating CSF circulation and simulates intracranial pressures and flow rates6.The 

numerical model was used to explore how cross-sectional geometry and spinal cord motion 

affect unsteady velocity, shear stress, and pressure gradient fields7. The system was broken 

down into five submodels: blood from the arterial system, blood from the venous system, 

ventricular CSF, cranial subarachnoid space, and spinal hemorrhagic space. Resistance and 

compliance connect these submodels. The constructed model was utilized to mimic key 

functional features found in seven healthy individuals, such as arterial, venous, and CSF flow 

distribution (amplitude and phase shift)8.  

Previously, time-resolved three-dimensional magnetic resonance velocity mapping was 

utilized to study healthy and abnormal blood flow patterns in the human vascular system. This 

approach was utilized to investigate the temporal and spatial variations of CSF flow in the 

ventricular system of 40 healthy volunteers9.  

The barrier between CSF and blood in these granulations is minimal, allowing CSF to flow 

into the circulation and be absorbed. In contrast to CSF production, consumption is pressure-

dependent, with the rate influenced by the differential between intraventricular and superior 

sagittal venous pressure. In the present study, these effects and ICC diagrams have been 

investigated using 3D FSI simulation up to 2.5 years after shunt surgery in a large number of 

NCH patients through a non-invasive method10. 

A finite element parametric investigation on a head model under different scenarios of impact 

is conducted. In the study, the CSF material parameters are varied within the expected range of 

change, while other components of the head model are kept constant11.   

 In this chapter, we construct a model of the cerebral cortex and circulatory system that is 

complex enough to imitate the behavior of a hydrocephalic brain while being simple enough 

to be computationally accessible, and then we employ it to analyze the disorder's genesis and 

therapy. CSF perfusion throughout the human brain system has oscillatory fluid dynamics. The 

cardiac area has been demonstrated within a porous material with suitable pulsatile boundary 

conditions. This simulation was developed for people with CSF physiopathological disease 

hydrocephalus. We computed the cerebral bloodstream circulation rate of patients using 

acceptable validity. 

Mathematical Formulation 

In this study, the CSF is treated as a Newtonian fluid, with dynamic viscosity and density of 

1.003 x 10-3 kg/ms and 998.2 kg/m3, respectively [1]. The brain tissue is a linearly viscoelastic 

substance, with storage and dissipation parameters of 2038 and 1356 Pa for individuals in good 

health, 1594 and 1015 Pa for patients, respectively, and a density of 1040 kg/m3 [8, 9]. CSF 

flow rate in the lateral ventricles is 0.35 cm3/min [1].  For numerical models, this number is 

employed as the value of the amplitude in the input fluids pulsatile flow rate function—the 

final segment of the ventricular system following the fourth ventricle is chosen as the flow 



output site. The usual baseline CSF pressure was established at 500 Pa, whereas the 

pathological baseline was set at 2700 Pa [6]. 
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𝑢 and 𝑤 represent the CSF velocity of the fluid in 𝑥 & 𝑦 direction respectively. 𝑤0 represents 

velocity. Density of CSF is denoted as 𝜌.  Da and 𝛺 are represented as darcy number and 

angular velocity, 𝐺𝑝𝑚 referred as particle mass parameter. 𝜔 denotes CSF Womersley number.  

The above governing equations dimensionalised and hence the dimensionless form of the same 

with suitable boundary conditions is represented as follows 
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To solve the above momentum equation the complex function 𝐹𝑐  =  𝑢 +  𝑖𝑤  were 𝑢 and 𝑤 

are functions of  𝑥  and 𝑦, Navier Stoke’s equation in an explicit form of complex function 

with boundary conditions is followed as 
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METHOD OF SOLUTION 

We use analytical tools and a model issue to understand the biologically beneficial nature of 

the cranial systems and their physical consequences. The statistical approach may improve the 

efficacy of the numerical method. Consequently, we simplify those equations into ordinary 

differential equations and solve them using perturbation methods. We solve the governing 

equation utilizing the perturbation approach as it is error-free, adopting the trial solution for 

velocity. 
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𝜆 denotes oscillation frequency and 𝜖 an arbitrary constant with 𝜖 ≪ 1. Consider  𝑢0,  𝑢1, 𝑢2 

refers base part, perturbed part of first order and perturbed part second orders of conservation 

of momentum respectively. F and u's complex parameters are encoded by I, i. 

The analytical perturbation strategy is used to solve the given problem, yielding 
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RESULT AND DISCUSSION 

To investigate the different physical characteristics such as dynamic viscosity, density, 

kinematic viscosity, resistance parameter, Elastic parameter, Reynolds number, and 

Womersley number were calculated analytically and the results are shown below. The 

intracranial pressure of normal subject human beings was found to be 500Pa and 3000Pa for 

hydrocephalus patients [14]. The size of the lateral ventricle in hydrocephalus is much larger 

than normal when CSF flows. As a result, there is a significant statistical difference in the 

expansion of the ventricular for hydrocephalus. To employ the behaviour of CSF for 

hydrocephalic patients we use the following parameters Porosity (0.25), Pressure gradient 

(2700), Elasticity(350Pa), Reynolds Number (468.3), Womersley Number (more than 8.9) and 

Resistance parameter (1.367).The graphs shows velocity profile(cm/s) in y axis and Time ‘t’ 

along x axis.  

Fig 1 exploits the variation of the Reynolds number with time variation. Re varies from 130, 

240,420 has been depicted for CSF with hydrocephalus subjects. Here it is shown that the 

velocity increases as the when Reynolds number escalates with time taken for cardiac cycle. 

When the flow fluctuates during the early systole of the cardiac cycle, the velocity of CSF 

flow reaches a peak. When the frequency increases over time, the circulation rate of 

hydrocephalus reduces. As a result, increasing the Womersley number for pulsatile flow to 6.2, 

7.5, or 8.9 with variable velocity yields the optimum volumetric flow rate. Fig: 4.  

The greatest amount of hydrocephalus is reached in Fig 2 with varied Resistance parameters 

0.9, 1, 1.36. Furthermore, when the fluid level increases, the ventricular flexibility deforms 

(see Fig 3). The brain parenchyma porosity is estimated to be 0.2 [4]. As a result, the fluid 

velocity increases as the permeability increases, demonstrating the elevated pressure of the 

CSF fluid flow.The pressure of hydrocephalus is close to 3000Pa whereas for normal subjects 



is ≤500Pa [1]. We justify the increase in pressure graphically in Fig:5. 

 

                  Fig: 1 Velocity profile with varying Reynolds number  

 

                     Fig: 2 Velocity profile with varying particle mass parameter 

 

                              Fig: 3 Velocity profile with varying Elasticity 



 

                        Fig: 4 Velocity profile with varying Womersley number 

 

                        Fig: 5 Pressure of CSF from Velocity profile with varying with time ‘t’ 

 

CONCLUSION 

In response to the impacts of high CSF pulsatile velocity, the hydrocephalus pressure 

differential in the brain fluctuates greatly. This leads to increased cranial system ventricular 

hypertrophy, as seen by the elasticity graph. When there is a rise in pressure, there is less 

ventricular compliance. CSF circulation as well as production will have an impact on the 

complete function of afflicted patients, resulting in brain damage. 



The flow level in the cardiac cycle is predicted by important characteristics such as Womersley 

number ∝, elasticity G, and resistance parameter 𝐺𝑝𝑚. This work verified a few noteworthy 

properties of fluid behavior in thermal transfer in a simplified representation of hydrocephalus 

useful for neurological studies. The following are the findings from the current study. 

The momentum of fluid flow increases as the Darcy number, resistance parameter, Womersley 

number, and Reynolds number increase. Increased deformation (elasticity) caused by 

dimensional change increases cerebrospinal fluid velocity.  
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