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Abstract

This study presents the heat and mass transfer analysis in stagnation point flow of MHD Casson nanofluid over a stretching sheet
with thermal radiation effect in porous medium. The set of non-linear partial differential equations (PDEs) leading the study of fluid
flow are transformed into a system of ordinary differential equations (ODEs) using similarity transformations and non-dimensional
variables, which are then numerically solved by the bvp4c built-in MATLAB software. The impact of pertinent parameters like
Casson fluid parameter, porosity parameter, magnetic parameter, stagnation point parameter, thermal radiation parameter, Prandtl
number, Brownian motion parameter, thermophoresis parameter and Lewis number on velocity, temperature, and concentration
profiles is graphically shown and discussed.
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1. Introduction

A fundamental problem in fluid dynamics is the bound-
ary layer flow analysis of viscous incompressible fluids across
a stretched sheet owing to stagnation point flow. The study
of two-dimensional fluid flow at a stagnation point across a
surface was first done by Hiemenz [1]. Later, the issue of
stagnation point flow was expanded in a number of ways to
take different fluid types and physical effects into account. The
practical applications in industry and industrial processing have
drawn a lot of interest to the study of boundary layer stag-
nation point flow over a surface extended to non-Newtonian
fluids. Practical applications include, but are not limited to,
the polymer processing industries; biological processes; envi-
ronmental pollution; aerodynamic plastic sheet extrusion; glass
fiber production of the boundary layer along a liquid film; con-
densation process; and the cooling and/or drying of paper and
textiles. Furthermore, metallurgical processes and petroleum
production are only two examples of the many industrial appli-
cations where heat transfer analysis of non-Newtonian fluids is
crucial. Sakiadis [2] was the first to study boundary layer flow
resulting from a stretching sheet on a continually stretching sur-
face moving at a constant speedTsou et al.’s experimentation [3]
expanded on his findings by examining the flow of heat transfer
in the boundary layer on a constantly moving surface.
Magnetohydrodynamic (MHD) flow is an extremely important
field of study because many industrial processes, including the
processing of magnetic materials, the purification of crude oil,
the production of MHD electrical power, the manufacturing
of glass, geophysics, and paper, depend on the influence of a
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magnetic field on the viscous flow of an electrically conduct-
ing fluid. Ghazwani et al. [4] have studied the application
of nanoparticles in magnetohydrodynamics (MHD) stagnation
point flow across a stretchy surface with porosity effect and
boundary slip phenomena. Taking into account a number of
variables, including thermal radiation, changeable fluid viscos-
ity, Joule heating, and viscous dissipation, Ali et al. [5] exam-
ined MHD nanofluid flow across a non-linear stretchable sur-
face in the presence of an electric field. In order to examine
the effects of a magnetic field, thermal radiation, and chemi-
cal reaction on the flow and heat transfer of boundary layer in
nanofluids over a non-isothermal stretching surface via a per-
meable porous media, Awati et al. [6] conducted an analy-
sis. Waqas et al.’s [7] three-dimensional study of the mass
and heat transfer characteristics of a hybrid nanofluid, along
with electro-magneto hydrodynamics, was aimed at improving
heat transmission. Viscosity dissipation of an exponentially
extending sheet and internal heat production in Casson MHD
nanofluid flow were explored numerically by Kemparaju et al.
[8].
Common fluids like water and ethylene glycol, for example,
have their thermal conductivity improved by mixing metal or
metallic oxide nanoparticles with a base fluid to speed up heat
transfer by improving the nanofluid’s thermal transport. This
can be attributed to the nanoparticles’ increased heat conduc-
tivity and the corresponding Brownian motion. Nanofluids are
stable suspensions of nanoparticles in base fluids, which ex-
hibit improved thermophysical properties compared to the base
fluid alone [9]. Nanofluids have been used in various indus-
tries, including solar panels and CO2 absorption [10]. In the oil
and gas industry, nano-emulsions with adjustable density have
been used as cleaning fluids to remove sludge from well walls
[11]. The addition of nanoparticles to fluids creates smart flu-
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ids, which have enhanced properties that depend on nanopar-
ticle dimensions. These nanofluids have advantages such as
increased sedimentation stability and improved thermal, opti-
cal, stressstrain, electrical, and rheological properties. Thermal
radiation has been investigated in several papers. The effect
of thermal radiation on the flow of nanofluid and heat transfer
over a porous stretching/shrinking surface under the influence
of an angled magnetic field was investigated by Fu Gui et al.
[12]. The impact of a magnetic field on unsteady magnetohy-
drodynamic (MHD) water-based nanofluid flow with radiative
heat transfer was examined by Reddy et al. [13]. The impact
of heat radiation on the three-dimensional magnetized rotating
flow of a hybrid nanofluid was studied statistically by Asghar
et al. [14]. In the presence of copper nanoparticles and gyro-
tactic bacteria, Bhupendra K. et al. [15] investigated the effects
of mass transfer, heat transmission, and entropy formation on
the flow of Jeffrey fluid under the influence of solar light. Neha
et al. [16] computationally investigated the thermally radiative
incompressible flow of hybrid nanofluid induced by a radially
stretchable rotating disk.
Casson nanofluid is a type of nanofluid that has been exten-
sively studied in various research papers. It is known for its
excellent heat transfer rates and has numerous applications in
medical and industrial fields [17]. The behavior of Casson nanofluid
has been investigated in different scenarios, such as in a porous
medium [18], in the presence of swimming motile organisms
[19], and under the influence of an applied changing magnetic
flux [20]. Mathematical models and numerical methods have
been used to analyze the flow and thermal/mass transfer char-
acteristics of Casson nanofluid [21] . The effects of various pa-
rameters, such as viscosity, conductivity, Darcy parameter, and
magnetic field, have been studied to understand the behavior of
Casson nanofluid . Overall, the research on Casson nanofluid
provides valuable insights into its properties and potential ap-
plications in different fields.

2. Problem Formultion

In the current mathematical model, we consider two di-
mensional steady MHD state stagnation point flow of Casson
nanofluid across a stretching sheet in porous medium. The
coordinate system is set up in a way that the x-axis is along
the sheet’s surface, while the y-axis is oriented perpendicular
to the sheet. Moreover, the flow occurs in the region where
y ≥ 0. As y tends to infinity, the ambient values of T and C
are represented by T∞ and C∞ , respectively. The distribution
of the free-stream velocity is assumed to follow the form of
U∞ = ax, where uw = bx represents the velocity of the stretch-
ing sheet, with a and b being positive constants.The steady,
laminar boundary layer flow equations for a Casson nanofluid
passing over a stretching sheet, along with the boundary layer
approximation, encompass expressions for mass, momentum,
thermal energy, and concentration.
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The specific boundary conditions for the problem are outlined
as follows:

u = uw = bx, v = 0, T = Tw, C = Cw at y = 0 (5)

u = U∞ = ax, C = C∞, T = T∞ as y→ ∞ (6)

The quantities u and v represent the velocity components of the
Jeffery nanofluid in the x and y directions, respectively. In the
energy boundary layer equation (3), the radiative heat flux qr is
estimated using the Rosseland approximation [22] for thermal
radiation, which is expressed as follows:

qr = −
4
3
σ∗

k∗
∂T 4

∂y
(7)

Whereas σ∗ = Stephan Boltzmann constant, k∗ = Rosseland
mean spectral absorption coefficient.
Through a Taylor series expansion centered at the ambient tem-
perature T∞, it becomes apparent that the term T 4 can be treated
as a linear relationship with temperature. This simplification is
attained by disregarding higher-order terms in the approxima-
tion process.

T 4 ≈ 4T 3
∞T − 3T 4

∞ (8)

Utilizing Equations (7) and (8), we derive the following:
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The analysis of the problem is made simpler by introducing the
following similarity transformation:

ψ =
√
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√
b
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where ψ(x, y) represent the stream function and is defined
as,

u =
∂ψ

∂y
, v = −

∂ψ

∂x
(11)
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Equations (1) satisfy identically and equations (2), (3), and (4)
are reduced to the following set of nonlinear ODE’s with the
help of the similarity transformation described above.(

1 +
1
β

)
f ′′′(η) − ( f ′(η))2 + f (η) f ′′(η) + (M + K)(r − f ′(η))

+ r2 = 0 (12)

(1 + Nr)θ′′(η) + Pr[θ′(η) f (η) + Nbθ
′(η)ϕ′(η) + Nt(θ′(η))2] = 0

(13)

ϕ′′(η) + LePr f (η)ϕ′(η) +
Nt

Nb
θ′′(η) = 0 (14)

using the appropriate boundary condition as determined by Eqs.
(5) and (6) in the form:

f (0) = 0, f ′(0) = 1, θ(0) = 1, ϕ(0) = 1 at η = 0 (15)

f ′(η) = r, θ(η) = 0, ϕ(η) = 0 at η→ ∞ (16)

The Brownian motion parameter, the thermophoresis parame-
ter, the thermal radiation parameter, the Prandtl number, Hart-
mann number, the porosity parameter, stagnation point param-
eter and the Lewis number are represented by the similarity pa-
rameters Nb, Nt, Nr, Pr, β, K, M, r and Le respectively in the
equations mentioned above (12)-(16). They are defined as fol-
lows:
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Quantities like the rate of mass and heat transfer, as well as
coefficient of friction factor, are interpreted as follows:

C f =
2 τw

ρu2
w
, Nux =

xqw

k f (Tw − T∞)
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(18)

Where τw denote wall shear stress, surface heat flux is qw and
qm shows mass flux.
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3. Solution Algorithm:

The MATLAB bvp4c technique is applied to numerically
solve the equations described above. Equations (12), (13), and
(14) are converted into first-order differential equations, and
then solved while adhering to the specified boundary conditions
(15)-(16) to interface with the bvp4c solver. The resulting set

of first-order differential equations, along with the transformed
boundary conditions (20)-(28), is as follows:

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ
′ = y5, ϕ = y6, ϕ

′ = y7
(20)

Equations (10), (11), (12), (13) and (14) become

y′1 = y2 (21)

y′2 = y3 (22)

y′3 =
1

(1 + 1/β)
[y2

2 − r2 − y1y3 − (M + K)(r − y2)] (23)

y′4 = y5 (24)

y′5 = −
Pr

(1 + Nr)
[y1y5 + Nby5y7 + Nty2

5] (25)

y′6 = y7 (26)

y′7 = −LePry1y7 +
NtPr

Nb(1 + Nr)
[y1y5 + Nby5y7 + Nty2

5] (27)

The boundary condition yields

y1(0) = 0, y2(0) = 1, y4(0) = 1, y6(0) = 1 at η→ 0

y2(η) = r, y4(η) = 0, y6(η) = 0 at η→ ∞ (28)

4. Results and discussion:

Under the boundary conditions (15) and (16), the reduced
nonlinear ordinary differential equations (12)–(14) are numer-
ically solved using the Bvp4c method. Several values of the
physical parameters are tested for this numerical solution. The
impact of changing the governing parameters on the skin fric-
tion coefficient, concentration, temperature, dimensionless ve-
locity, and local heat and mass transfer rates is investigated.
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Table 1: Effect of various parameter on skin friction coefficient C f

β K M r f ′′(0) (1 + 1/β) f ′′(0)
0.5 0.6 1 0.5 - 0.5299 - 1.5897
1 0.6 1 0.5 - 0.6487 - 1.9461
1.5 0.6 1 0.5 - 0.7106 - 2.1318
2.0 0.6 1 0.5 - 0.7490 - 2.2470
1 0.5 1 0.5 - 0.6391 - 1.7042
1 1.0 1 0.5 - 0.6860 - 1.8293
1 1.5 1 0.5 - 0.7300 - 1.9466
1 2.0 1 0.5 - 0.7715 - 2.0573
1 0.6 0.5 0.5 - 0.5989 - 1.1978
1 0.6 1.0 0.5 - 0.6487 - 1.2974
1 0.6 1.5 0.5 - 0.6950 - 1.3900
1 0.6 2.0 0.5 - 0.7385 - 1.4770
1 0.6 1 0.1 - 1.0564 -2.1128
1 0.6 1 0.2 - 0.9647 - 1.9294
1 0.6 1 0.3 - 0.8660 - 1.7320
1 0.6 1 0.4 - 0.7606 - 1.5212
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Figure 1: Effect of Casson fluid parameter on velocity of the fluid.

The velocity graph’s fluctuation in relation to the Casson
parameter β is shown in Fig. 1. The graph indicates that the
velocity boundary layer thickness reduces as the values of β
grow. This is because a rise in β causes a rise in plastic dynamic
viscosity, which creates resistance to fluid flow and results in a
drop in fluid velocity.
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Figure 2: Effect of Mgnetic parameter on velocity of the fluid.

Figure 2 illustrates how raising the magnetic field parameter
has a negative impact on the velocity profile. The Lorentz force
is created as a result of the rising magnetic field’s strengthening
of the external electric field. In the opposite direction of the
flow, the Lorentz force acts on the surface to lower velocity.
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Figure 3: Effect of Porosity parameter on velocity of the fluid.

As can be seen in Fig. 3 the velocity profile decreases as
the porosity parameter varies. It indicates that as pores are big-
ger, the momentum of the flow across the boundary layer gets
less. Additionally, the presence of a porous medium raises flow
resistance, which lowers fluid motion and, as a result, lowers
nanofluid velocity.
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Table 2: The variation of Nusselt number (Nux) and Sherwood number (S hx) with respect to different parameters.
β K M r Nr Pr Nb Nt Le −(1+Nr)θ′(0) −ϕ′(0)
0.5 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6461 0.6028
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6284 0.5927
1.5 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6230 0.5883
2.0 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6200 0.5857
1 0.5 1 0.5 0.5 1 0.6 0.5 1 0.6292 0.5934
1 1.0 1 0.5 0.5 1 0.6 0.5 1 0.6254 0.5902
1 1.5 1 0.5 0.5 1 0.6 0.5 1 0.6219 0.5874
1 2.0 1 0.5 0.5 1 0.6 0.5 1 0.6188 0.5849
1 0.6 0.5 0.5 0.5 1 0.6 0.5 1 0.6326 0.5964
1 0.6 1.0 0.5 0.5 1 0.6 0.5 1 0.6284 0.5927
1 0.6 1.5 0.5 0.5 1 0.6 0.5 1 0.6246 0.5896
1 0.6 2.0 0.5 0.5 1 0.6 0.5 1 0.6212 0.5869
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6284 0.5927
1 0.6 1 1.0 0.5 1 0.6 0.5 1 0.7278 0.6878
1 0.6 1 1.5 0.5 1 0.6 0.5 1 0.8139 0.7740
1 0.6 1 2.0 0.5 1 0.6 0.5 1 0.8904 0.8509
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.5892 0.5927
1 0.6 1 0.5 1.0 1 0.6 0.5 1 0.7340 0.6089
1 0.6 1 0.5 1.5 1 0.6 0.5 1 0.8710 0.6215
1 0.6 1 0.5 2.0 1 0.6 0.5 1 1.0038 0.6312
1 0.6 1 0.5 0.5 0.5 0.6 0.5 1 0.5481 0.4100
1 0.5 1 0.5 0.5 1.0 0.6 0.5 1 0.6284 0.5927
1 0.6 1 0.5 0.5 1.3 0.6 0.5 1 0.6457 0.7053
1 0.6 1 0.5 0.5 1.5 0.6 0.5 1 0.6472 0.7797
1 0.6 1 0.5 0.5 1 0.5 0.5 1 0.6544 0.5581
1 0.6 1 0.5 0.5 1 1.0 0.5 1 0.5323 0.6597
1 0.6 1 0.5 0.5 1 1.5 0.5 1 0.4291 0.6899
1 0.6 1 0.5 0.5 1 2.0 0.5 1 0.3430 0.7027
1 0.6 1 0.5 0.5 1 0.6 1.0 1 0.5536 0.5500
1 0.6 1 0.5 0.5 1 0.6 1.5 1 0.4881 0.5576
1 0.6 1 0.5 0.5 1 0.6 2.0 1 0.4305 0.6063
1 0.6 1 0.5 0.5 1 0.6 2.5 1 0.3798 0.6891
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6633 0.3539
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6284 0.5927
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.6078 0.7867
1 0.6 1 0.5 0.5 1 0.6 0.5 1 0.5945 0.9499
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Figure 4: Effect of Stagnation point parameter on velocity of the fluid.

The impact of velocity ratio parameter r on the velocity
graph is seen in Fig. 4. The flow velocity increases when the
free-stream velocity surpasses the stretching sheet’s velocity,
or when r ≥ 1. Nevertheless, the thickness of the boundary
layer decreases as r increases. Moreover, the velocity graph ap-
proaches the velocity ratio parameter r when the free-stream ve-
locity is higher than the stretching velocity. On the other hand,
there is a drop in fluid velocity and hydrodynamic boundary
layer thickness when the free-stream velocity is smaller than
the stretching sheet velocity.
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Figure 5: Effect of Radiation parameter on velocity of the fluid.

The analysis of Fig. 5 shows that raising the value of Rd
raises the temperature profile. The heat transfer rate inside the
boundary layer area is increased by a larger value of Rd be-
cause it transfers more heat to the working fluid between the
two layers.
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Figure 6: Effect of Prandtl number on temperature of the fluid.

The temperature profile changes when the Prandtl number is
applied, as seen in Fig. 6. The Prandtl number is the momentum
diffusivity divided by the thermal diffusivity. A lower amount
of thermal diffusivity is associated with an increase in Prandtl
number. Therefore, the temperature drops due to a decrease in
thermal diffusion.
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Figure 7: Effect of Brownian motion parameter on temperature of the fluid.

The influence of Nb on the temperature profile is displayed
in Figure 7. It is evident that when Nb rises, mass diffusivity
increases as well, raising the temperature in the boundary layer
segment.
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Figure 8: Effect of thermophoresis parameter on temperature of the fluid.

The plotted impacts of Nt on the temperature profile is shown
in Fig. 8. It is evident that when Nt rises, the temperature pro-
file rises as well. It occurs as a result of the increased ther-
mophoresis force caused by higher values of Nt, which has the
propensity to transfer nanoparticles from hot surfaces to cold
surfaces. Consequently, heat transmission rates for nanoparti-
cles increase in the boundary layer area.
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Figure 9: Effect of Lewis number on Concentration profile.

The effect of the Lewis number on the nanoparticle concen-
tration profile is seen in Fig. 9. Higher values of Lewis number
Le, which is correlated with nanoparticle concentration and re-
duces mass concentration with the base fluid and nanoparticles,
are evident as the Lewis number is the ratio of heat diffusivity
to mass diffusivity. As a result, the value of Le increases and
the concentration profile of nanoparticles lowers.
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Figure 10: Effect of Prandtl number on Concentration profile.

The similar consequences was observed from the Fig.10
with the parameter Pr.
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Figure 11: Effect of thermophoresis parameter on Concentration profile.

The effects of nanoparticle concentration with thermophore-
sis parameter Nt are shown in Fig. 11. It can be seen that
the value of Nt is followed by the nanoparticle concentration
profile. It occurs as a result of the increased thermophoresis
force in the boundary layer area caused by a greater value of
Nt, which raises the concentration of nanoparticles.
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Figure 12: Effect of Brownian motion parameter on concentration profile.

Figure 12 shows the ϕ(η) for various levels of Nb. It has
been shown that as Nb grows, the thermal boundary layer’s ther-
mophoresis force decreases, which lowers the boundary layer’s
thickness concentration. when a result, when Nb grows, the
nanoparticle concentration profile decreases.

5. Conclusion

In the present investigation, the impact of thermal radiation
and magnetic field on the flow of a boundary layer at the stagna-
tion point is scrutinized. The flow occurs over a porous stretch-
ing sheet and involves a nanofluid with Casson characteristics.
The governing equations are transformed into a set of differen-
tial equations without dimensions, incorporating various phys-
ical parameters. The boundary layer equations dictating mo-
mentum and heat are altered into a set of ordinary differential
equations using similarity transformations. These equations are
subsequently solved using the ”bvp4c” function in MATLAB.
The study’s findings yield the following conclusions:

• An increase in the Prandtl number is associated with a
reduction in thermal diffusivity, resulting in a decline in
temperature.

• The skin friction coefficient is heightened by larger mag-
netic field parameters due to the decrease in velocity re-
sulting from the generated Lorentz force. This decrease
in velocity, in turn, leads to an increase in the drag force
experienced at the surface.

• There is a drop in fluid velocity and hydrodynamic bound-
ary layer thickness when the free-stream velocity is smaller
than the stretching sheet velocity.

• The presence of a porous medium raises flow resistance,
which lowers fluid motion and, as a result, lowers nanofluid
velocity.

• An augmentation in thermal radiation parameter, Brow-
nian motion parameter and thermophoresis parameter re-
sults in an augmentation in thermal boundary layer.

• This study has the potential to be applied in various ar-
eas, such as the enhancement of industrial processes like
cooling systems and metal processing, the advancement
of biomedical applications like drug delivery systems and
the comprehension of blood flow, as well as the improve-
ment of energy systems.
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