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Abstract

In the present work, we proposed the error estimation of functon belonging to
L[0,∞)- class by (C, β, γ)(E, 1) means using its Fourier-Laguerre series at
point y=0. Our findings generalise earlier results by Krasniqi who studied func-
tion approximation by (C, 1)(E, q) means and Sonker who assessed the degree
of approximation by (C, 2)(E, q) means for q = 1. We also introduced the
approximation theorem using product summability along-with some graphical
interpretations.
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1 Introduction

A wide field of mathematics is represented by the idea of summability when it comes
to the study of Analysis and Functional Analysis. It is widely used in operator theory
(to approximate the functions of positive linear operators), approximation theory, the
theory of orthogonal series, numerical analysis (to assess the rate of convergence), and
other domains. The idea of approximation theory originated with Weierstrass’s famous
theorem which asserts that a polynomial can approximate a continuous function in a
certain interval. Summability theory also extends to the theorems of sequence spaces
and fuzzy numbers [4]. Single summability approaches [1, 3, 7] are less effective than
product summability methods [14, 15]. This fact inspired a variety of mathematicians
engaged in summability and approximation theory research. Krasniqi [17] who worked
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on the error estimation of function by (C, 1)(E, q) product summability technique
of Fourier-Laguerre series released a paper in 2013 employing the idea of product
summability methods. As a result of his use of the product of two summabilities namely
(C, 1) and (E, q), Fourier-Laguerre series can be approximated more accurately than
using individual means. This paper was further developed in 2014 by Sonker [13] at
y = 0 employing (C, 2)(E, q) means. In 2015, Mittal and Singh [11] employed the
(T.Eq) summable approach in response to the aforementioned results to determine
the error in the approximation of the same series function. The error estimation of
Fourier-Laguerre series was later determined in 2016 by Khatri and Mishra [8] by
superimposing Harmonic Means on Euler Means and using the (H, 1)(E, 1) product
summability technique in this way under the appropriate set of conditions. Sharma [9]
investigated the (T,Cδ) technique of the Fourier-Laguerre series in 2021 which is an
extension of past research [12] in the area. This inspired us to estimate a function’s
error at the frontier point of y = 0 using the (C, β, γ)(E, 1) composite summable
technique of its Fourier-Laguerre series. Our findings are compared to the results given
by Krasniqi[17] and Sonker [13] in order to show the efficiency of proposed summation
method. We also introduced the error estimation theorem using product summability
along-with some graphical interpretations.

A function g(y) ∈ L(0,∞) is expanded by Fourier-Laguerre method as

g(y) ≡
∞∑

m=0

cmLm
δ(y), (1)

where

cm =
1

Γ(δ + 1)
(
m+δ
m

) ∫ ∞

0

e−uuδf(u)Lm
δ(u)du, (2)

and Lm
δ(y) denotes the mth Laguerre polynomial of order δ ≥ −1, defined by

generating function

∞∑
m=0

Lm
δ(y)wm = (1− w)−δ−1e(

−yw
1−w ),

and the integral (2) exists. Also,

ψ(u) =
1

Γ(β + 1)
e−uuδ[f(u)− f(0)]. (3)

Let the sequence {sm(g; y)} be the mth partial sum of the Fourier-Laguerre series (1)
given by

sm(g; y) =

m∑
h=0

chLh
δ(y),

is also known as Fourier?Laguerre polynomial of degree (or order)≥ m. We denote
Cβ,γ

m or (C, β, γ) the mth Cesào mean of order (β, γ) with β+ γ > −1 of the sequence
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{sm(g; y)} i.e.

Cβ,γ
m =

1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
hsh,

where

Aβ+γ
m = O(mβ+γ), β + γ > −1 and Aβ+γ

0 = 1.

The Fourier-Laguerre series (1) is said to be (C, β, γ) summable to the definite number
s if

Cβ,γ
m =

1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
hsh → s as m→ ∞.

Also, If

E1
m =

1

2m

m∑
h=0

(
m

h

)
sh → s as m→ ∞,

then {sm(g; y)} converges to a definite value ’s’ by E1
m means (by Hardy [5]), and

we write it as,
sm → s(E1

m).

We now introduce the Cesàro-Euler product summability mean of order (β, γ, 1)
as follows.

Definition: The (C, β, γ) transform of the (E, 1) transform defines (C, β, γ)(E, 1)
transform of order (β, γ, 1) and we shall denote it by (CE)1,β,γm . Moreover, if

tCE
m = (CE)q,β,γm

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
hE

q
h

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

.
1

(2)h

h∑
v=0

(
h

v

)
sv → s as m→ ∞. (4)

The regularity of (C, β, γ) and (E, 1) methods implies the regularity of (CE)1,β,γm

method.

2 Useful Lemmas

For the proof of the main theorem, we require following lemmas:

Lemma 1: Let δ is any real number ϵ are fixed +ve constant. Then

Lδ
m(y) = O(mδ) if 0<y<1/m, (5)
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= O(y−(2δ+1)/4m(2δ−1)/4 if 1/m < y < ϵ, (6)

as m→ ∞.

Proof: On similar lines as given by Szegö (1975, p.177, Theorem 7.6.4) [6].

Lemma 2: Let α and δbe an arbitrary real no., and 0 < ξ < 4 and ϵ > 0, then

max e−y/2yα | Lδ
m(y) | = O(mQ)

where

Q = max(α− 1/2, δ/2− 1/4), ϵ ≤ y ≤ (4− ξ)m, (7)

= max(α− 1/3, δ/2− 1/4), y > m. (8)

Proof: On similar lines as given by Szegö (1975, p.241, Theorem 8.91.7) [6].

We will also need the following outcomes:

Lemma 3: Let δ > −1. If q = 1, then

1

2m

m∑
h=0

(
m

h

)
h(2δ+1)/4 = O

(
m(2δ+1)/4

)
, (9)

and if β + γ > −1, then

I =
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h(1 + h)δ = O

(
(1 +m)δ

)
. (10)

Proof: The first result is on similar lines as given by Lenski and Szal [10].Regarding
the latter result, A. Zygmund [2][7, Vol. I (1.15) and Theprem 1.17] have stated that

Aβ+γ
m =

(
m+ β + γ

m

)
≡ O

(
(m+ 1)δ

)
,

is positive for β + γ > −1. Moreover, Aβ+γ
m is decreasing for −1 < β + γ < 0 and

increasing for β + γ > 0. Hence for δ < 0,

I =
1

Aβ+γ
m

[m/2−1]∑
h=0

Aβ−1
m−hA

γ
h(1 + h)δ

+
1

Aβ+γ
m

m∑
h=[m/2]

Aβ−1
m−hA

γ
h(1 + h)δ
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= O

(
(m+ 1)β−1(m+ 1)γ

(m+ 1)β+γ

) [m/2−1]∑
h=0

(1 + h)δ

+O

(
(1 +m)δ

)
1

Aβ+γ
m

m∑
h=[m/2]

Aβ−1
m−hA

γ
h

= O

(
(1 +m)−1

) m∑
h=0

(1 + h)δ
∫ h+1

h

dz

+O

(
(1 +m)δ

)
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

= O

(
(1 +m)−1

) m∑
h=0

∫ h+1

h

zδdz +O

(
(1 +m)δ

)

= O

(
(1 +m)−1

)∫ m+1

0

zδdz +O

(
(1 +m)δ

)
= O

(
(1 +m)−1

)
(m+ 1)δ+1

δ + 1
+O

(
(1 +m)δ

)
= O

(
(1 +m)δ

)
If δ > 0, the outcome is obvious. Our proof is thus finished.

Additional Results:

Also, we will use

Aβ+γ
m (y) =

L
(β+γ+1)
m

Γ(β + γ + 1)
, (11)

and also using this we can prove β + γ > −1, then

1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h(h

(2δ+1)/4) = O

(
m(2δ+1)/4

)
. (12)

3 Error Estimation Theorem

Let g be a lebesgue integrable function then the error estimation of g at y = 0 by the
Cesàro-Euler means of order (β, γ, 1) with β + γ ≥ −1, q = 1 of the Fourier-Laguerre
series of g is given by

| (CE)1,β,γm (g; 0)− g(0) |= o(ς(m)) (13)

with conditions

Ψ(x) =

∫ x

0

| ψ(u) | du = o(xδ+1ς(1/x)), x→ 0, (14)
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∫ m

ϵ

eu/2u−(2δ+3)/4 | ψ(u) | du = o(m(−2δ+1)/4ς(m)), (15)

and ∫ ∞

m

eu/2u−1/3 | ψ(u) | du = o(ς(m)), m→ ∞, (16)

where ς(x) is positive and monotonically increasing signal of x such that ς(m) → ∞
as m→ ∞.

Proof of theorem:

Based on the equality

Lδ
m(0) =

(
m+ δ

δ

)
,

we obtain

sm(0) = sm(g; 0)

=

m∑
h=0

chLh
δ(0)

=
1

Γ(δ + 1)
(
m+δ
m

)Lm
δ(0)

∫ ∞

0

e−uuδg(u)

m∑
h=0

Lh
δ(u)du

=
1

Γ(δ + 1)

∫ ∞

0

e−uuδg(u)Lm
δ+1(u)du.

Now

(CE)1,β,γm (g; 0) =
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
sv(0)

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
.

1

Γ(δ + 1)

∫ ∞

0

e−uuδg(u)Lv
δ+1(u)du.

Therefore using (3), we have

| (CE)1,β,γm (g; 0)− g(0) | = 1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

.

h∑
v=0

(
h

v

)∫ ∞

0

| ψ(u) | Lv
δ+1(u)du

=

(∫ 1/m

0

+

∫ ϵ

1/m

+

∫ m

ϵ

+

∫ ∞

m

)
1

Aβ+γ
m
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.

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
. | ψ(u) | Lv

δ+1(u)du

= J1 + J2 + J3 + J4. (17)

Using orthogonal property (14), Lemma [1][condition 5] and Lemma [3] we get

J1 =

∫ 1/m

0

1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
. | ψ(u) | Lv

δ+1(u)du

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
O(mδ+1)

.

∫ 1/m

0

| ψ(u) | du

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
hO(mδ+1)o

(
ς(m)/mδ+1

)
= O(mδ+1)o

(
ς(m)/mδ+1

)
= o(ς(m)). (18)

Further using the orthogonal property (15), Lemma [1][condition 6], Lemma (3) and
using the argument as in Nigam and Sharma [7] and Krasniqi [17] then integrating by
parts, we get

J2 =
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)∫ ϵ

1/m

| ψ(u) | Lv
δ+1(u)du

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
.O(v(2δ+1)/4)

∫ ϵ

1/m

| ψ(u) | u−(2δ+3)/4du

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
hO(h(2δ+1)/4)

∫ ϵ

1/m

| ψ(u) | u−(2δ+3)/4du

= O(m(2δ+1)/4)

∫ ϵ

1/m

| ψ(u) | u−(2δ+3)/4du

= o(ς(m)). (19)
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Using (15), Lemma [2][condition 7] and Lemma [3] we get

J3 =
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
.

∫ m

ϵ

| ψ(u) | Lv
δ+1(u)du

≤ 1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)∫ m

ϵ

eu/2

.u−(2δ+3)/4 | ψ(u) | e−u/2u(2δ+3)/4Lv
δ+1(u)du

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)
O(v(2δ+1)/4)

.

∫ m

ϵ

eu/2u−(2δ+3)/4 | ψ(u) | du

= O(m(2δ+1)/4)o

(
m−(2δ+1)/4ς(m)

)
= o(ς(m)). (20)

Finally, using (16), Lemma [2][condition 7] and Lemma [3], we get

J4 =
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

2h

h∑
v=0

(
h

v

)∫ ∞

m

eu/2

.u−(3δ+5)/6 | ψ(u) | e−u/2u(3δ+5)/6Lv
δ+1(u)du

=
1

Aβ+γ
m

m∑
h=0

Aβ−1
m−hA

γ
h

1

(2h

h∑
v=0

(
h

v

)
O(m(δ+1)/2)

.

∫ ∞

m

eu/2u−1/3 | ψ(u) |
u(δ+1)/2

du

= O(m(δ+1)/2)o(m−(δ+1)/2ς(m))

= o(ς(m)). (21)

Combining (17), (18), (19), (20) and (21), we get

| (CE)1,β,γm (g; 0)− g(0) |= o(ς(m)).

4 Corollary

� If we take β = 1, γ = 0 and q = 1, Our findings reduces to the results given by
Krasniqi [17] for q = 1.

� If we take β = 2, γ = 0 and q = 1, Our findings reduces to the results given by
Sonker [13] for q = 1.
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� If we take β = 0, γ = 0 and q = 1, Our findings reduces to the results given by
Nigam and Sharma [7] and many other.

5 Examples

Here, we consider the function
g(y) = y6,

with its Fourier Laguerre series

g(y) =

∞∑
m=0

(−1)m
(
6

m

)
Γ(7)Lβ

m(y).

Here, {cm} is the cofficient sequence in Fourier Laguerre expansion. (CE)1,β,γm is the
proposed mean about the point y=0. We are plotting g and (CE)1,β,γm verses Number
of terms. Here, we discuss our results in following cases:

Case 1: When β + γ < 0 and q = 1, we interpret that after applying (CE)1,β,γm

mean the Fourier-Laguerre polynomial is approximating g(y) from negative side and
larger the value of β + γ better will be the approximation.

1 2 3 4 5 6 7 8 9 10 11

Number of terms (m)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

10
th

 p
ar

tia
l s

um
 (s

10
)

g

Fig. 1 Approximation of function when β + γ < 0

Case 2: When β + γ > 0 and q = 1, we interpret that after applying (CE)1,β,γm

mean the Fourier-Laguerre polynomial is approximating g(y) from positive side and
smaller the value of β + γ better will be the approximation.

9



1 2 3 4 5 6 7 8 9 10 11

Number of terms (m)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

10
th

 p
ar

tia
l s

um
 (s

10
)

g

Fig. 2 Approximation of function when β + γ > 0

Comparison with existing methods: From the graph given below it can be
analysed that the rate of convergence of proposed method is much faster than the
existing methods given by Krasniqi[17] and Sonker [13] for q = 1.

1 2 3 4 5 6 7 8 9 10 11

Number of terms (m)

-20

0

20

40

60

80

100

120

10
th

 p
ar

tia
l s

um
 (s

10
)

g

(C,2)(E,1)

(C,1)(E,1)

(CE)
1

Fig. 3 Comparison with existing method

From above graphical interpretation, we can say that (CE)1,β,γm product summa-
bility method is much efficient. Also, the change in the value of β and γ changes the
behaviour of approximation.
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Conclusion

The use of (CE)1,β,γm product summability of order (β, γ, 1) generalised the results
discussed in corollary and add flexibility to convergence as with the change in values
of β, γ changes the behaviour of approximation. Also, the rate of convergence is
improved with the help of proposed method. We can infer that our result is much
efficient and useful.

Conflict of interest: The authors declare that they have no conflict of interest.
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[1] A. N. S. Singroura, On Cesàro Summability of Fourier-Laguerre Series, Proceedings
of the Japan Academy, 39(4) (1963) 208 - 210.

[2] A. Zygmund, Trigonometric series Vol. I, Cambridge University Press, Cambridge,
1959.

[3] D. P. Gupta, Degree of approximation by cesaro means of Fourier-Laguerre
expansions, Acta Scientiarum Mathematicarum, 32(3-4) (1971) 255 - 259.

[4] E. Yavuz, Euler summability method of sequences of fuzzy numbers and a
Tauberian theorem, Journal of Intelligent and Fuzzy Systems, 32(1) (2017)
937-943.

[5] G. H. Hardy, Divergent series, Oxford University Press, New York, 1959.
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