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Abstract: This paper introduces a system designed for wireless text-to-image synthesis, empowering users to provide textual 

descriptions and obtain high-quality visual representations in real-time. The proposed model, utilizing a conditional generative 

adversarial network (cGAN), is trained on an extensive dataset of approximately 3,80,000 images sourced from 5 datasets, 

amalgamated through Kaggle. This diverse dataset encompasses various images of living and non-living entities, enhancing the 

model's robustness. The integration of wireless communication allows users to remotely input textual descriptions, extending the 

system's accessibility and usability. The model demonstrates an exceptionally high success rate, establishing itself as a valuable tool 

for dynamic image generation in wireless-enabled scenarios. 
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I. Introduction 
In the era of information and communication technology, the 

fusion of text-to-image generation with wireless 

communication represents a groundbreaking paradigm shift, 

offering innovative solutions in various domains. The 

convergence of these technologies not only facilitates the 

seamless translation of textual descriptions into vivid visual 

representations but also empowers users to engage in real-

time interactions through wireless communication channels. 

Text-to-image generation involves the synthesis of images 

based on textual inputs, bridging the gap between linguistic 

expressions and visual content. This process has garnered 

increasing attention due to its potential applications in diverse 

fields, ranging from creative content generation to practical 

solutions in human-computer interaction. 

The approach that is used in building this project involves 

StackGAN combined with Stable Diffusion using the 

masking technique. This greatly enhances the accuracy of the 

images generated. Both these approaches are explained 

further. The StackGAN architecture consists of two stages: 

Stage-I and Stage-II generators. In Stage-I, a low-resolution 

image is generated, which serves as a conditioning input for 

Stage-II. The Stage-II generator refines the initial image, 

capturing fine-grained details and textures to produce a high- 

resolution image that closely matches the textual description. By 

incorporating both the text embedding and the generated image 

from Stage-I, the model ensures that the final output exhibits both 

visual fidelity and semantic relevance [2]. Stable diffusion is a 

powerful technique that models the progressive refinement of 

images through a series of diffusion steps. It has been widely 

adopted in image generation tasks due to its ability to capture 

complex image distributions and generate high-fidelity samples. 

The integration of textual conditioning with stable diffusion 

introduces a new dimension to the image generation process, 

allowing the model to align the generated images with the textual 

descriptions provided by users [9]. The Text-to-Image Generator 

using Stable Diffusion follows a two-stage process. In the first 

stage, a low-resolution image is generated through the application 

of stable diffusion. This initial image provides a coarse 

representation of the desired visual content. In the second stage, the 

low-resolution image is refined and upscaled to a higher resolution, 

capturing finer details and textures. Textual conditioning is 

incorporated at each stage, ensuring that the generated images 

maintain semantic relevance and faithfully depict the information 

conveyed in the input text.  The Proposed model has been trained 

over various datasets like, CelebA HQ, Oxford-102, MS COCO, 

CUB-200, and Landscape Pictures for higher accuracy and better 

resolution.
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This is how the rest of the paper is structured. The 

background of text-to-image creation techniques is examined 

in Section 2. The literature review on text-to-image 

generation with algorithms like StackGAN and GAN is 

presented in Section 3. Our suggested method for creating 

images of several items with predetermined associations is 

shown in Section 4. Section 5 examines the findings and 

assessments, While Section 6 summarizes the report and 

identifies future research directions. 

 

II. Background 

A large amount of work has been done in improving the 

accuracy of text-to-image generators, but some of the most 

accurate work has been done using algorithms such as 

stackGAN and stable-diffusion. In order to improve the 

accuracy, we have combined both algorithms to achieve 

higher accuracy and better resolution. Here is the work done 

in using stackGAN and stable-diffusion: 

A generative adversarial network (GAN) architecture called 

StackGAN seeks to produce realistic and high-quality images 

from text descriptions. In 2017 [3], Zhang et al. presented a 

research paper titled "StackGAN: Text to Photo-realistic 

Image Synthesis with Stacked Generative Adversarial 

Networks" at the IEEE International Conference on 

Computer Vision (ICCV). Stack GAN's primary concept is to 

create images through a two-step method. First, a low-

resolution image is created from a written description using a 

conditional GAN (cGAN). An approximate plan or sketch of 

the final image is provided by this low-resolution image. To 

convert the low-resolution image into a high-resolution 

image that closely resembles the text description, a different 

cGAN is used in the second stage. Denoising diffusion 

probabilistic models, often referred to as stable diffusion, are 

a type of generative models that produce high-quality images 

by repeatedly denoising a given noisy image. It is based on 

the concept of diffusion. The basic idea behind stable 

diffusion is to start with a noisy image and gradually refine it 

through multiple iterations. Each iteration involves two steps: 

diffusion and denoising. In the diffusion step, the noisy image 

is updated by adding Gaussian noise to its pixel values, which 

allows the model to explore different image configurations. In the 

denoising step, the model employs a denoising function to reduce 

the noise and enhance the quality of the image [9]. 

III. Literature survey 

There have been several works in the field of text-to-image 

generation that have contributed to the development of this 

technology. Table 1 below represents those works and further 

details are given below: 

In order to produce realistic images from textual descriptions, 

Reed et al. proposed a technique that combines generative 

adversarial networks (GANs) and recurrent neural networks 

(RNNs) [1]. In order to produce high-resolution images 

conditioned on text descriptions, Zhang et al. devised a two-

stage architecture that includes a conditioning augmentation 

process [2]. An attention mechanism was added by Xu et al. 

to the text-to-image synthesis process, enabling the model to 

focus on various textual elements while creating images [3]. 

Chen et al. presented a redescription-based framework for 

text-to-image synthesis, which involves generating image 

descriptions that are then used to reconstruct the 

corresponding images [4]. Zhu et al. proposed a dynamic 

memory mechanism that captures global textual information 

and incorporates it into the image generation process using 

GANs [5]. Shen et al. introduced a control- based approach 

to text-to-image synthesis, enabling users to control the 

generated images' attributes and styles by manipulating the 

input text [6]. Li et al. leveraged Contrastive Language-Image 

Pretraining (CLIP) to guide the image generation process. 

CLIP is a model that learns to associate images and their 

textual descriptions, allowing for better alignment between 

the generated images and the input text [7]. These are just a 

few examples of the many works in text- to-image generation. 

The area is always changing, and experts are trying out with 

different methods and systems to enhance the variety as well 

as the quality of images that are produced from textual 

descriptions. Table 1 contains the tabular representation of the 

existing algorithms and their corresponding datasets. 
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Table 1. Existing algorithms and datasets 
 

Year Author Name Dataset Algorithm 

2017 
Han Zhang, Tao Xu, Hongsheng Li,Shaoting Zhang, 

Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas. 

CUB-200 

Oxford-102 

MS COCO 

StackGAN 

2018 Zizhao Zhang, Yuanpu Xie, Lin Yang 

CUB-200 

Oxford-102 flowers 

Large-scale MS COCO 

GAN 

2020 Pranjal Jain1, Tanmay Jayaswal2 MNIST GAN 

2021 
Stanislav Frolova,Tobias Hinz, Federico Raue, J¨orn Hees, 

Andreas Dengela. 

Oxford-102 Flowers 

CUB-200 

COCO 

GAN 

 

2022 

 

Rihito Tominaga, Masataka Seo 

 

CUB-200 

StackGAN with 

Improved 

Conditional 

Consistency 
Regularization 

 

 

IV. Proposed Work 

The proposed work includes details and theory about the 

project material algorithm, Network Architecture, training, 

and testing of the model and the dataset which is used in the 

making of this project. This helps in understanding the 

overview of the project and the paper. The table below 

compares the proposed work with the previously developed 

models and their results. We obtain much better resolution in 

comparison to other works. In the proposed model, 

StackGAN algorithm is combined with Stable Diffusion 

algorithm to improve the accuracy and resolution of the 

image generated according to the input prompt [1, 10, 11]. 

 

4.1 Conditional Generative Adversarial Network 

In the conventional setting, Generative Adversarial Networks 

(GANs) employ 'x' as the genuine image sampled from real 

data, while 'z' represents the input noise fed into the generator 

'G' to produce synthetic data 'G(z)'. The objective is to make 

the generated data closely resemble the real data distribution, 

with the aim of deceiving the discriminator. The 

discriminator 'D' plays a crucial role in distinguishing 

between the generated data 'D(G(z))' and the authentic data 

'D(x)'. 

 

 

 

minG maxD V (D, G) = Ex~pdata [logD(x)] + 

Ez~pz [log(1 - D(G(z)))]; (1) 

 

The Conditional Generative Adversarial Network (cGAN) 

serves as an extension to the traditional GAN, introducing an 

enhancement where both the generator and discriminator 

incorporate additional conditioning variables denoted as 'c'. 

Consequently, the generator produces images as 'G(z; c)', and 

the discriminator evaluates both real images 'D(x; c)' and 

generated images 'D(G(z; c))'. This formulation enables the 

generator 'G' to generate images conditioned on the variables 

represented by 'c'. 

4.2 Conditioning Augmentation 

When training neural networks with additional information, 

the challenge of insufficient conditioning may arise in certain 

instances, potentially leading to overfitting issues. To address 

this shortage of data, the conditioning augmentation method 

comes into play. This approach leverages statistical values to 

construct a new data distribution, as elucidated by the 

following equation: 

ĉ0 = μ0 + (σ0 ⊙ ε), (2) 

 

where ĉ₀ is a conditioning latent variable, μ₀ is a mean value of 

embedding vector, σ₀ is a diagonal value of covariance 
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matrix of embedding vector and ε is a normal distribution N 

(0,1). 

Another integral element of this approach is the 

Kullback−Leibler Divergence, commonly referred to as 

KLDiv. This KLDiv serves as a loss function during training, 

ensuring that the newly approximated conditional 

distribution closely aligns with the original conditional 

distribution. A straightforward explanation of KLDiv 

involves computing the logarithmic difference between the 

original and approximated conditional distributions, 

expressed as: 

DK L (N (μ(φt), Σ(φt)) || N (0, I)), (3) 

 

Here, μ(ϕt) and Σ(ϕt) denote the mean value and covariance 

of the embedding vector, respectively. Specifically, our 

embedding vector in this context pertains to a text embedding 

vector.  

The following diagram portrays the integration of the 

aforementioned algorithms. Initially, StackGAN [8] receives 

text prompts as input and proceeds to generate images 

through two stages: the generator and discriminator. 

 

 

 

Figure 1. Algorithm illustrated 
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4.3 Stage-1 GAN 

The purpose of this part is to generate a rough image by using 

the text description and the latent space noise. Our initial step 

involves embedding the text description into the embedding 

vector φt. we enter this text embedding to generate the 

conditional latent variable c₀ of the conditional addition and 

concatenate it with the noise z such that the sample of the 

latent state forms the input to the generator.  The end result is 

a poor-looking low-resolution image that still features some 

bird structure. To advance this Stage-I, we need to prepare the 

discriminator and generator to decrease their loss. Their loss 

capability is LD and LG as displayed underneath [3] 

LD0 = E (I0, t) ~pdata [log D0(I0, φt)] +E [log(1 - 

D (G (z, ĉ ), φ ))], (4) 

4.5 Latent Diffusion 

After the conditioning and development of the image from 

StackGAN, the output image and prompt text is used as input 

for the Stable Diffusion algorithm. The training of the 

Diffusion Model can be divided into two parts: [10] 

1. Forward Diffusion Process → In the step by step 

process of forward diffusion, Gaussian noise is added 

to the input image. Nonetheless, it can be done faster 

using the following closed-form formula to directly 

get the noisy image at a specific time step t: 

xt = √(αt) x0 + √ (1 - αt) ε, (8) 

2. Reverse Diffusion Process → Since the reverse 

diffusion process is not directly computable, we 

z~pz,t~pdata 0 0 0 t 

train a neural network εθ to approximate it. 

LG0 = Ez~pz,t~pdata [log(1 - D0(G0(z, ĉ0), φt))] + 

λDKL(N(μ0(φt), Σ0(φt)) || N (0, I)), (5) 

4.4 Stage-2 GAN 

Upon completing the generation of a low-resolution image in 

stage-I, the generated low-resolution image from the 

preceding stage becomes the input for the generator tasked 

with generating a high-resolution image. To obtain input for 

the generator, the generated low-resolution image is sampled 

from pG₀. Conditioning augmentation is employed to sample 

a conditional latent variable, mirroring the approach in stage-

I. The discriminator then distinguishes between the generated 

high-resolution image and the authentic high-resolution 

image based on the text description, akin to the previous step. 

In stage-II, the loss function is defined as follows: [1] 

LD = E(I,t)~pdata [log D(I, φt)] + 

 

Es0~pG0, t~pdata [log(1 - D(G(s0, ĉ0) φt)), (6) 

 

LG = Es0~pG0, t~pdata [log(1 - D(G(s0, ĉ0) φt))] + 

λDKL(N(μ0(φt), Σ0(φt)) || N (0, I)), (7) 

The loss function of the training objective is as follows: 

LSimple = Et, x0, ε [||ε - εθ (xt,t)||
2], (9) 

 

4.6 Conditioning Mechanism 

The true strength of the stable diffusion model is that it's 

capable of generating images by text triggers. This is done by 

modifying the inner diffusion model to accept conditioning 

inputs. [8] 

 

 

Figure 2. Conditioning Mechanism 

 

The inner diffusion model is turned into a conditional image 

generator by augmenting its denoising U-Net with the cross- 

attention mechanism. The switch in the above diagram is used 

to control between different types of conditioning inputs: 
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● For text inputs, they are first converted into 

embeddings (vectors) using a language model 𝜏θ 

(e.g., BERT, CLIP), and then they are planned into 

the U-Net through the (multi-head) Consideration 

(Q, K, V) 

● layer.For other spatially aligned inputs (e.g., 

semantic maps, images, inpainting), the 

conditioning can be done using concatenation. 

Finally, Stable Diffusion outputs the image with high 

accuracy and best resolution amongst other models. 

 

4.7 Datasets 

Various datasets like CelebA HQ, COCO, CUB-200, Oxford- 

102, Landscape Pictures have been used in the development 

of this project. Table 3 represents the datasets and their 

attributes along with the number of images present. 

Table 3. Datasets used 
 

Dataset Name Attributes Number of Images 

 

 

CelebA HQ 

1. High resolution images 

(1024x1024). 

2. Annotations are provided. 

3. Binary attributes like gender, 

presence of glasses, etc. 

 

 

 

30,000 

 

 

 

 

 

CUB-200 

1. Characteristics such as color, shape, 

and pattern are present. 

2. Each image is associated with 

detailed annotations. 

3. Bounding boxes and part locations 

are provided. 

4. Fine-grained annotations for object 

localization. 

 

 

 

 

 

11,788 

 

 

 

 

 

COCO 

1. Object detection 

 

2. Segmentation 

 

3. Image captioning 

 

4. Contains common objects like people, 

animals, vehicles, household items. 

 

 

 

 

 

330,000 

 

 

Oxford-102 

1. Image classification 

2. Object recognition 

3. Attribute recognition tasks specific 

flower species. 

 

 

8,189 

Landscape Pictures 1. Contains real-world photos from 

Flickr. 

4,319 
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Evaluation metrics. The performance of generative models, 

such as GANs, cannot be assessed easily. We choose a 

recently proposed numerical estimation approach to 

quantitatively estimate the "initial score" [12]. 

    I = exp (ExDKL(p(y|x) || p(y))),       (7)  

In this context, let x represent an individual generated sample, 

and y denote the label predicted by the Inception model [30]. 

The rationale behind employing this metric is rooted in the 

belief that effective models should not only produce a diverse 

array of images but also ensure that these images carry 

meaningful and relevant information. Hence, a considerable 

KL divergence is desirable between the marginal distribution 

p(y) and the conditional distribution p(yjx). In our 

experiments, we employ the Inception model pre-trained on 

the COCO dataset directly. In the case of fine-grained 

datasets like CUB and Oxford-102, we conduct separate fine-

tuning for an Inception model on each of these datasets. As 

recommended in [9], we assess this metric based on the 

number of samples related to age (specifically, 30,000 

randomly chosen samples) for each model. While the inception 

score has demonstrated a strong correlation with human perception 

regarding the visual quality of samples [7], it does not provide 

insight into whether the generated images are appropriately 

conditioned on the provided text descriptions. Consequently, we 

supplement our evaluation with human assessment. We randomly 

pick 50 text descriptions for each class within the CUB and 

Oxford-102 test sets. In the case of the COCO dataset, we 

randomly select 4,000 text descriptions from its validation set. 

5. Experimental Results 

In proposed model, 5 images were generated from different 

prompts. They are highly accurate and generated with a high 

resolution. The model was tested over 50 different prompts, 

where 46 outputs were highly accurate with high resolution, 

whereas the remaining 4 outputs were not 100% accurate but 

of a high resolution. Figure 3 shows the images generated on 

the proposed model. Table 4 represents the comparison of 

inception scores of different models on different datasets. 

Here are the experimental results for text to image generator: 

 

Text Description Family on the 

beach 

 

1024 x 1024 

images 

Animals in jungle Pigeon standing 

next to each other 
 

Figure 3. Images generated on entering the prompt 

 

Table 4. Inception score 

Flower garden Cup on shelf 

 

 

Metric 
Dataset GAN-INT-CLS HDGAN StackGAN 

Proposed model 

(StackGAN + 

Stable Diffusion) 

 

 

 

 

Inception 

score 

CUB 
2.88 ± .04 

3.65 ± .08 
3.62 ± .07 3.70 ± .04 

Oxford 
2.66 ± .03 

3.25 ± .05 
3.20 ± .01 3.35 ± .03 

COCO 
7.88 ± .07 

8.45 ± .03 
8.45 ± .03 8.51 ± .02 

CelebA-HQ 
2.78 ± .06 

3.92 ± .04 
4.43 ± .02 4.47 ± .03 

Landscape Pictures 
3.78 ± .07 

5.86 ± .07 
6.11 ± .04 6.15 ± .02 



8  

Our model achieved the best inception score on all the 

datasets. Compared to the GAN-INT-CLS model, our model 

achieves 22.2% improvements in terms of inception score on 

CUB dataset, 18.2% improvement on Oxford-102, 7.8% 

improvement on MS-COCO, 37.8% improvement on Celeb- 

HQ, and 38.5% improvement on Landscape Pictures. 

 

 

  
 

 

Figure 4. Inception Score graphs 

 

 

6. Conclusion and Future Work 

In conclusion, the fusion of text-to-image synthesis with 

wireless communication marks a significant advancement in 

interactive content creation. The proposed system, leveraging 

a powerful cGAN model and a diverse dataset, showcases 

outstanding success rates in generating visually coherent 

representations based on textual inputs. The accessibility 

offered by wireless communication opens new avenues for 

real-time collaboration and user engagement. The success, 

accuracy, and confidence levels achieved underscore the 

system's effectiveness, positioning it as a versatile solution 

with broad applications. 

While this paper establishes a solid foundation for wireless 

text-to-image synthesis, there are avenues for future 

exploration and enhancement. The integration of advanced 

wireless protocols and security measures can be investigated 

to ensure seamless and secure communication in diverse 

environments. Additionally, expanding the dataset diversity 

and exploring transfer learning techniques could further 

enhance the model's adaptability to an even broader range of 

contexts. Future research could also focus on real-world 

deployment scenarios, user experience evaluations, and 

optimizing the system for resource-constrained devices. These 

directions pave the way for continued advancements in the field, 

fostering innovation and addressing emerging challenges. 
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