
A Comprehensive Benchmark of State-of-the-Art Hyperparameter

Optimization Frameworks for Convolutional Neural Networks

1N. Latha, 2T. Divya, 3Dr. Poornima Devan, 4Radha mam,
1,2Assistant Professor, Department of CSE, Arasu Engineering College, Kumbakonam, India,
3Assistant Professor, Department of CSE, Sathyabama Institute of Science and Technology,

Chennai - 600119.
4Radha R, Assistant Professor, MCA Department, Ethiraj College for Women (Autonomous),

Chennai, India.

latha.sakthi2000@gmail.com1, divyathiru777@gmail.com2, poorniramesh2011@gmail.com3,

radha_r@ethirajcollege.edu.in4

Abstract—Convolutional Neural Networks (CNNs) have emerged as the backbone of many

high-performance machine learning models, driving advances in image recognition, object

detection, and beyond. However, their success is critically dependent on the fine-tuning of

hyperparameters, a process that often demands significant time and computational resources.

Selecting the right hyperparameters, such as learning rates, batch sizes, and network

architectures, can significantly impact model convergence, generalization, and overall

performance. This paper offers a detailed and comprehensive benchmark of leading

Hyperparameter Optimization (HPO) frameworks tailored for CNNs, with a focus on

balancing accuracy, computational efficiency, and ease of use.

We explore and rigorously compare a diverse range of state-of-the-art optimization

techniques, including traditional approaches like Grid Search and Random Search, advanced

probabilistic methods such as Bayesian Optimization, and emerging resource-aware

algorithms like Hyperband and the Tree-structured Parzen Estimator (TPE). We evaluate

each approach using diverse CNN architectures and datasets, analyzing critical factors such

as optimization speed, resource efficiency, and model accuracy. Through this comparative

study, we reveal unexpected strengths and weaknesses of each framework, offering new

insights into the subtle trade-offs between exploration and exploitation, computational

overhead, and scalability. Our findings provide a fresh perspective on optimizing CNN

performance, guiding practitioners in selecting the most effective HPO strategy for specific

applications, and paving the way for more intelligent, adaptive deep learning models.

Keywords: optimization, hyperparameters, machine learning, deep learning, learning rate,

batch size, architecture and kernel size.

mailto:mail@gmail.com
mailto:poorniramesh2011@gmail.com

1. Introduction

There has been a revolution in the field of machine learning brought about by convolutional

neural networks (CNNs), particularly in areas such as image categorization, object detection,

and video analysis. CNNs are a useful tool for extracting complicated patterns from high-

dimensional data sources due to their hierarchical architecture, which was designed to

automatically learn spatial hierarchies of information. The efficacy of CNNs is largely

dependent on the appropriate selection of hyperparameters. These hyperparameters include

learning rate, batch size, and the number of layers. Each of these hyperparameters plays a key

role in determining the convergence, accuracy, and cognitive efficiency of the network.

Practitioners have typically relied on trial-and-error methods to determine the ideal

configurations for hyperparameter tuning, which has generally been a manual procedure that

is frequently arbitrary. For this reason, efficient hyperparameter optimization (HPO) has

arisen as a crucial topic of research as CNN architectures continue to get more complicated

and are implemented in situations with limited resources. While attempting to strike a balance

between the demand for high model performance and the constraints of computational

resources, the issue lies in navigating the enormous hyperparameter search space [1,2].

Using complex search algorithms that intelligently explore and exploit the hyperparameter

space, hyperparameter optimization frameworks that are considered to be state-of-the-art try

to automate this process. In spite of their widespread application, traditional methods such as

Grid Search and Random Search are frequently ineffective because of the exhaustive or

solely stochastic character of their methodologies [3]. Bayesian Optimization, Hyperband,

and the Tree-structured Parzen Estimator (TPE) are examples of more sophisticated

techniques that utilize probabilistic models, resource-aware mechanisms, and adaptive

algorithms to optimize hyperparameters with less iteration and less computer overhead.

Bayesian Optimization is a methodology that was developed in the 1990s. These frameworks

not only improve the accuracy of models, but they also reduce the amount of time it takes for

models to converge and to scale, making them extremely useful for contemporary deep

learning processes [4].

There are not enough extensive studies that compare the performance of HPO frameworks

across a variety of CNN architectures and real-world datasets, despite the fact that HPO

frameworks are becoming increasingly popular. There is a lack of assistance for practitioners

regarding which framework is best suitable for their particular requirements because the

majority of the research that is currently available either concentrates on a single HPO

approach or analyzes performance on a limited selection of activities. In addition, the trade-

offs between speed, resource utilization, and model accuracy critical factors in practical

applications of machine learning [5].

By presenting a comprehensive assessment of the most advanced HPO frameworks, with a

particular emphasis on how these frameworks might be used to CNNs, the purpose of this

research is to fill in these gaps. We evaluate classic and new HPO techniques in a methodical

manner, evaluating them across a variety of dimensions, such as the accuracy of the model,

the amount of time it takes for the model to converge, the amount of computational resources

employed, and the scalability of the system [6]. We intend to provide a comprehensive

evaluation that will assist academics and practitioners in selecting the HPO framework that is

best suitable for their needs. This will be accomplished by utilizing a number of CNN

architectures, including ResNet, VGG, and Inception, and testing on real-world datasets that

range in size and complexity [7].

Our investigation of the underlying mechanisms that are responsible for the effectiveness of

these frameworks is in addition to the evaluation of their performance. In this study, we

investigate the various approaches that are utilized to control the exploration-exploitation

trade-off, optimize resource allocation, and scale to larger datasets and longer networks. This

study offers useful insights into how HPO frameworks can be customized to unique CNN-

based applications, which ultimately leads to more efficient and successful model

optimization processes. These insights are provided by offering a balanced assessment of the

strengths and limits of these frameworks [8].

The remaining sections of the paper are structured as follows: In the second section, an

overview of HPO and its methods is presented. In Section 3, the hyper parameters

optimization techniques are discussed. In Section 4, the HPO frameworks, including

Bayesian Optimization, Optuna, HyperOpt, and Keras Tuner, are broken down and discussed.

The different performance evaluations are discussed in Section 5. The conclusion of the paper

is found in Section 6.

2. Hyperparameter Optimizations

The HPO process is an essential method for selecting the optimal combinations of

hyperparameters that will lead to the highest possible performance for machine learning

models. There have been a number of automatic HPO algorithms created in order to tune the

hyperparameters in order to design efficient machine learning models. First, we will discuss

the standard hyperparameters, and then we will move on to the HPO approaches.

2.1. Hyperparameters

The variables of a model that are responsible for determining its appearance and behavior are

called hyperparameters. In order to address the computational complexity of the models,

hyperparameters have recently garnered a significant amount of attention. Every machine

learning and deep learning algorithm has its own unique set of hyperparameters that need to

be adjusted during the tuning process as shown in Figure 1. Numerous studies provide a

comprehensive explanation of the hyperparameters. As far as hyperparameters are concerned,

there are two primary categories: model hyperparameters and optimizer hyperparameters [9].

Fig. 1 Process of hyper parameters optimization

While the training optimization algorithms are the optimizer hyperparameters, the model

hyperparameters are responsible for designing the structure of the model. A type of model-

specific hyperparameter known as the activation function is responsible for producing a

robust perception of important and non-linear complicated functions that are used to convert

the input signals. Sigmoid, Softmax, Tanh, and Rectified Linear Units (ReLU) are examples

of types of activation functions that are frequently utilized [10]. It is recommended that the

ReLU activation function be used as the default activation function since it offers a solution

to the vanishing gradient problem and converges six times more quickly than the Tanh

function.

A hyperparameter that is well-known for its ability to quantify the rate and speed at which

networks learn is referred to as the learning rate (LR). The weights of the hidden layers,

which are the location where the overall structure of networks that directly extract

complicated information are represented, can be adjusted with the use of LR [11]. For the

purpose of ensuring that the local minimum is not overlooked, it is necessary to choose the

optimal LR values. LR annealing is a method that was established not too long ago in order to

locate the optimal value during the training process. However, the majority of the times, the

users are the ones that manually adjust the LR settings. Creating fake copies of the training

data in order to carry out particular functions such as transformation, rotation, cropping, and

so on is an example of the data production approach known as data augmentation. The neural

networks are able to improve their performance during the learning process because to this

[12].

There is a significant amount of importance placed on optimization techniques in the process

of tuning neural networks (NNs). They make it possible for the networks to learn and

improve their performance. Adaptive momentum estimation (Adam), Root Mean Square

Propagation (RMSprop), and Gradient Descent (GD) are three optimizers that are frequently

utilized in deep learning [13]. The Gradient Descent algorithm ensures that the cost function

is minimized by continuously updating the parameters of the models until they reach the

standard bias values at each stage. The gradient is adjusted in an iterative manner in order to

obtain the local minima, which is accomplished by updating the weights and bias. The

RMSprop algorithm optimizes the gradient by creating a balance between the momentum

(step size) and decreasing the step size for gradients that are very large [14]. The Adaptive

Gradient Descent (AdaGrad) and RMSprop optimizers are combined into Adam, which is

another state-of-the-art optimizer. Adam integrates the two optimizers. Additionally, it serves

as the default optimization technique for the training process, and it computes the adaptive

LR for each parameter [15].

3. Hyperparameters Optimization Techniques

An overview of the HPO approaches, including grid search, random search, Genetic

Algorithm (GA), Bayesian Optimization (BO) and Tree Parzen Estimator (TPE) is provided

in this section. As shown in Figure 2, the hyper parameters optimization techniques can be

classified into five types.

Fig. 2 Categories of hyper parameters optimization

3.1.1. Grid Search (GS)

The grid search algorithm is one of the most straightforward approaches of optimizing

hyperparameters. A grid of hyperparameter values must be specified, and the model must be

evaluated for each and every conceivable combination. The process can be formalized as

follows:

 It is necessary to define the hyperparameters and the ranges that correspond to them.

 It is necessary to generate a Cartesian product of all possible hyperparameter

combinations.

 Cross-validation or a hold-out validation set can be used to train and evaluate the

model for each particular combination.

 Select the combination yielding the best performance metric (e.g., accuracy, F1-

score).

The number of possible combinations increases at an exponential rate in proportion to the

number of hyperparameters and the values that are assigned to them, which results in

expensive computation times. The significance of various hyperparameters is not taken into

account by it; parameters with less significance may result in the consumption of resources

that are not necessary [16].

Hyper parameter

Optimization Techniques

Grid Search Random

Search

Bayesian

Optimization

Genetic

Algorithm

Tree-structured

Parzen Estimator

3.1.2. Random Search (RS)

The random research technique has been empirically shown to outperform grid search,

particularly in situations where only a subset of hyperparameters significantly impacts model

performance. This is because it can yield high-quality hyperparameter configurations with a

significantly smaller number of evaluations, which makes it particularly useful in high-

dimensional search spaces where optimal configurations may be sparsely located. Because of

this, Random Search is a more efficient alternative to grid search. It does this by sampling

hyperparameter values randomly from defined distributions rather than exhaustively

evaluating every possible combination [17].

3.1.3. Bayesian Optimization (BO)

Bayesian optimization is a popular and advanced method that models the performance of

hyperparameter configurations over time using a probabilistic surrogate model, often a

Gaussian Process (GP). Bayesian optimization uses previous evaluation results to predict

which hyperparameters to evaluate next, using an acquisition function like Expected

Improvement or Upper Confidence Bound. This method finds an appropriate balance

between exploring new hyperparameter regions and taking advantage of known promising

configurations, and it converges to optimal settings with much fewer evaluations than

traditional methods [18].

3.1.4. Genetic Algorithm (GA)

Genetic algorithms (GAs) are inspired by the principles of natural selection and evolutionary

biology, evolving a population of hyperparameter configurations over generations [19]. The

process generally follows these steps:

 Initialize a random population of hyperparameter configurations.

 Evaluate the performance of each configuration.

 Select configurations based on fitness scores for reproduction, applying crossover

(mixing configurations) and mutation (randomly altering configurations).

 Repeat the evaluation and selection process over multiple generations.

3.1.5. Tree-structured Parzen Estimator (TPE)

The Tree-structured Parzen Estimator (TPE) is an additional advanced Bayesian optimization

technique that models the probability distributions of hyperparameter configurations. It uses

these distributions to differentiate between configurations that produce good and bad

performance outcomes. TPE constructs separate models for the likelihood of observing good

and bad configurations and chooses the next hyperparameter set for evaluation based on these

distributions. This allows it to concentrate the search on promising regions of the

hyperparameter space, which significantly improves the efficiency of the optimization

process in comparison to more conventional methods such as grid search [20].

4. Hyperparameters Framework

The automatic tools that are used to modify the hyperparameters of machine learning models

are known as hyperparameter optimization frameworks. In most cases, each tool comes with

a collection of optimization strategies as well as an intuitive user interface that allows for the

definition of search space, the evaluation of objective functions, and the monitoring of the

performance of mathematical models. In order to solve difficult machine learning challenges,

these frameworks are in high demand across the industry. As shown in Figure 3, the

following HPO frameworks have been utilized such as Optuna, HyperOpt, Ray tuner,

OptiML and Keras tuner.

Fig. 3 Categories of hyper parameters frameworks

The general Convolutional Neural Network (CNN) based hyper parameters optimization has

been shown in Figure 4.

4.1. Optuna

Optuna is a framework for hyperparameter optimization that is both flexible and efficient. It

makes use of an automatic optimization technique that is based on tree-structured Parzen

estimators (TPE) in order to intelligently suggest hyperparameter configurations. It is

especially useful for complex projects that require fine-tuned models since it provides

features such as visualization tools that assist users in analyzing the optimization process and

a user-friendly interface that enables easy connection with current machine learning libraries.

These features make it particularly relevant for identify the best parameters [21].

Hyper parameter

Optimization Frameworks

Optuna Keras Tuner Ray Tune HyperOpt OptiML

Fig. 4 General architecture of CNN based hyper parameters optimization

4.2. Keras Tuner

Keras Tuner is a library that was developed exclusively for the purpose of tuning

hyperparameters in Keras models. It is a straightforward and user-friendly tool. It makes use

of a variety of optimization techniques, such as Random Search and Bayesian Optimization,

and provides straightforward application programming interfaces (APIs) for defining

hyperparameter search spaces. In addition to providing functions such as early pausing and

learning rate scheduling, Keras Tuner interacts smoothly with Keras, making it possible for

users to easily tune their models with little setup [22].

4.3. Ray Tune

Ray Tune is a hyperparameter tuning library that is developed for distributed computing and

machine learning. It is a scalable hyperparameter tuning library that is a component of the

Ray ecosystem. With Ray Tune's support for a variety of search methods, such as random

search, Bayesian optimization, and Hyperband, users are able to explore hyperparameter

spaces in parallel across numerous nodes in an effective manner. As a result of its capacity to

manage large-scale machine learning processes and its seamless integration with well-known

deep learning frameworks like TensorFlow and PyTorch, it is a good option for applications

that require a considerable amount of processing power [23].

4.4. HyperOpt

Another library that is extensively used for hyperparameter optimization is called Hyperopt.

It employs Bayesian optimization and TPE methods in order to search for the optimal

Dataset

Collect

Image Pre-

processing

(80%)

Training

Image

Build CNN

Model

CNN

Training

A
ss

es
s

th
e

C
N

N
 M

o
d

el

Hyper parameter

optimization

Prediction

results

hyperparameters. In addition to supporting single-objective and multi-objective optimization

jobs, it supplies users with the ability to create complex search spaces through the use of a

clear syntax. The versatility of Hyperopt in terms of defining the search space, in conjunction

with its capacity to operate in distributed contexts, makes it suited for a wide range of

machine learning applications [24].

4.5. OptiML

In order to navigate huge search spaces in an effective manner, OptiML is a hyperparameter

optimization system that makes use of multi-fidelity optimization strategy. OptiML is able to

lower the overall computational cost associated with hyperparameter tweaking while

retaining a high level of accuracy in identifying optimal configurations. This is accomplished

by utilizing surrogate models to generate predictions about the performance of the model at

certain resource levels (for example, training epochs) [25].

5. Performance Metrics

Evaluation metrics plays an important role for accessing the classification performance and

improving model selection. We have used confusion matrices, accuracy, precision, recall and

F1-score for evaluating the effectiveness of the proposed approach. TP, FP, TN, and FN class

values are shown in Figure 5 for an classification and prediction system. If the classifier

correctly predicts the class response at each instance, it is considered a "success," but if it

does not, it is considered an "error." The error rate, which is a proportion of the errors made

over the entire set of samples, is used to determine the classifier's overall performance.

Fig. 5 Confusion matrix process

For the purpose of evaluating the effectiveness of classification algorithms, it is feasible to

derive statistical metrics such as Precision, Recall, and F-measure from the confusion matrix.

These metrics are described as follows: Precision (P), which is often referred to as detection

rate, is the ratio of instances that have been successfully labelled to the total number of

instances that have been labelled. In a certain class, it refers to the proportion of positive

forecasts that were accurate. It is defined in the following manner:

 FPTP

TP

(P)Precision

 (4)

The number of true positives is denoted by TP, and the number of false negatives is denoted

by FN for a particular class. Total number of test samples for a particular class is equal to the

sum of test samples and blanks. Whether it is recall (R) or sensitivity, the ratio of correctly

classified images to the total number of instances in a class is referred to as recall. In addition

to this, it is also referred to as the genuine positive rate, and it holds the capability of

measuring the prediction model. The following is the definition of it:

 FNTP

TP

(R) Recall

 (5)

For a particular class, the number of true positives is denoted by TP, while the number of

false negatives is determined by FN. The total number of test samples for a certain class is

equal to, TP plus FP. By calculating the harmonic mean of precision and recall, the F1-

measure makes an effort to provide a single measurement of performance. It is possible for a

classification algorithm to obtain high levels of both recall and precision. Consider the

following explanation of the F1-measure:

 RP

RP
F

.
.21

 (6)

The Accuracy can be defined as below:

Accuracy =
TP+FP

TP+FP+FN+TN
 (7)

K-Fold Validation

The objective of K-Fold validation is to achieve the capability of simultaneously training and

validating all of the images that are contained inside the model. There is a type of cross-

validation known as k-fold cross-validation, which includes iterating a set of data k times. At

the beginning of each round, we divide the dataset into k parts: one of these parts is utilized

for validation, and the remaining k-1 parts are combined into a training subset for the purpose

of evaluating the model, as visualized in Figure 6.

Fig. 6 The concepts of K-Fold cross validation

6. Conclusion

In this paper, a rigorous and nuanced evaluation of Hyperparameter Optimization (HPO)

frameworks that have been specifically customized for Convolutional Neural Networks

(CNNs) is presented. The study also highlights crucial trade-offs in terms of accuracy,

computational efficiency, and usability. The strengths, limitations, and ideal applications of

each framework are revealed through the examination of a variety of optimization techniques.

These techniques include the traditional Grid and Random Search methods, as well as more

advanced Bayesian Optimization and resource-efficient algorithms such as Hyperband and

Tree-structured Parzen Estimator (TPE). The results of our research indicate that selecting the

most appropriate HPO approach can significantly improve both the performance of the model

and its computational feasibility. This has the potential to direct practitioners towards making

more informed decisions when adjusting CNNs. These findings not only contribute to a more

in-depth comprehension of HPO techniques, but they also pave the way for future

breakthroughs in CNN models that are flexible, efficient, and high-performing.

7. References

1. S. Abreu, “Automated Architecture Design for Deep Neural Networks,” ArXiv, 2019.

2. P.Deepan and L.R. Sudha, “Object Classification of Remote Sensing Image Using Deep

Convolutional Neural Network”, The Cognitive Approach in Cloud Computing and

Internet of Things Technologies for Surveillance Tracking Systems, pp.107-120, 2020.

https://doi.org/10.1016/B978-0-12-816385-6.00008-8

3. J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter

Optimization,” in Advances in Neural Information Processing Systems, Granada, Spain,

vol. 24, pp. 2546-2554, 2011.

4. P. Deepan and L.R. Sudha, “Fusion of Deep Learning Models for Improving

Classification Accuracy of Remote Sensing Images”, Journal of Mechanics of Continua

and Mathematical Sciences, Vol.14, pp.189-201, 2019, ISSN: 2454-7190.

5. P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of Hyperparameters

of Machine Learning Algorithms,” J. Mach. Learn. Res., vol. 20, no. 53, pp. 1–32, 2019.

6. P.Deepan and L.R. Sudha, “Remote Sensing Image Scene Classification using Dilated

Convolutional Neural Networks”, International Journal of Emerging Trends in

Engineering Research, Vol. 8, No.7, pp.3622-3630, 2020, ISSN: 2347-3983.

7. H. J. P. Weerts, A. C. Mueller, and J. Vanschoren, “Importance of Tuning

Hyperparameters of Machine Learning Algorithms.” arXiv, Jul. 15, 2020.

8. P.Deepan and L.R. Sudha, “Comparative Analysis of Remote Sensing Images using

Various Convolutional Neural Network”, EAI End. Transaction on Cognitive

Communications, 2021. ISSN: 2313-4534, doi: 10.4108/eai.11-2-2021.168714.

9. S. Agrawal, “Hyperparameters in Deep Learning,” Medium, May 19, 2021.

https://towardsdatascience.com/hyperparametersin-deep-learning-927f7b2084dd

(accessed Mar. 18, 2022).

10. Shrestha, A. and A. Mahmood, Review of deep learning algorithms and architectures.

IEEE access, 2019. 7: p. 53040-53065.

11. P.Deepan and L.R. Sudha, “Deep Learning and its Applications related to IoT and

Computer Vision”, Artificial Intelligence and IoT: Smart Convergence for Eco-friendly

Topography, Springer Nature, pp. 223-244, 2021, https://doi.org/10.1007/978-981-33-

6400-4_11.

https://www.sciencedirect.com/science/article/pii/B9780128163856000088
https://www.sciencedirect.com/science/article/pii/B9780128163856000088
https://doi.org/10.1016/B978-0-12-816385-6.00008-8
https://doi.org/10.1007/978-981-33-6400-4_11
https://doi.org/10.1007/978-981-33-6400-4_11

12. Ghantasala, G. P., Sudha, L. R., Priya, T. V., Deepan, P., & Vignesh, R. R. An Efficient

Deep Learning Framework for Multimedia Big Data Analytics. Multimedia Computing

Systems and Virtual Reality, 99.

13. Xu, Y., et al., Batch normalization with enhanced linear transformation. arXiv preprint

arXiv:2011.14150, 2020.

14. Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-

parameter optimization. Advances in Neural Information Processing Systems.

15. R. Elshawi, M. Maher, and S. Sakr, “Automated Machine Learning: State-of-The-Art

and Open Challenges,” ArXiv190602287 Cs Stat, Jun. 2019.

16. P.Deepan, L.R. Sudha, K. Kalaivani and J. Ganesh, “Scene Classification of Remotely

Sensed Images using Optimized RSISC-16 Net Deep Convolutional Neural Network

Model”, EAI Endorsed Transactions on Scalable Information Systems, Vol. ,2022,

https://doi.org/10.4108/eai.1-2-2022.173292.

17. M.-A. Zöller and M. F. Huber, “Benchmark and Survey of Automated Machine

Learning Frameworks,” ArXiv190412054 Cs Stat, Jan. 2021.

18. Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., & de

Freitas, N. (2018). Bayesian optimization in AlphaGo. arXiv:1812.06855.

19. John H. Holland, "Genetic Algorithms", Sci. Am., vol. 267, no. 1, pp. 66-73, 1992.

20. Watanabe, S., & Hutter, F. (2023). c-TPE: Tree-structured Parzen estimator with

inequality constraints for expensive hyperparameter optimization. arXiv:2211.14411.

21. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. In International Conference on

Knowledge Discovery & Data Mining.

22. KerasTuner.” Keras, Mar. 14, 2022. Accessed: Mar. 18, 2022. [Online]. Available:

https://github.com/keras-team/kerastuner.

23. J. Zhang, Q. Wang, and W. Shen, “Hyper-parameter optimization of multiple machine

learning algorithms for molecular property prediction using hyperopt library,” Chin. J.

Chem. Eng., vol. 52, pp. 115–125, Dec. 2022.

24. J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hyperopt: a Python

library for model selection and hyperparameter optimization,” Comput. Sci. Discov.,

vol. 8, no. 1, p. 014008, Jul. 2015.

25. Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition", Proc. IEEE, vol. 86, no. 11, pp. 2278-2323, 1998.

https://doi.org/10.4108/eai.1-2-2022.173292
https://github.com/keras-team/kerastuner

