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Abstract—Convolutional Neural Networks (CNNs) have emerged as the backbone of many 

high-performance machine learning models, driving advances in image recognition, object 

detection, and beyond. However, their success is critically dependent on the fine-tuning of 

hyperparameters, a process that often demands significant time and computational resources. 

Selecting the right hyperparameters, such as learning rates, batch sizes, and network 

architectures, can significantly impact model convergence, generalization, and overall 

performance. This paper offers a detailed and comprehensive benchmark of leading 

Hyperparameter Optimization (HPO) frameworks tailored for CNNs, with a focus on 

balancing accuracy, computational efficiency, and ease of use. 

We explore and rigorously compare a diverse range of state-of-the-art optimization 

techniques, including traditional approaches like Grid Search and Random Search, advanced 

probabilistic methods such as Bayesian Optimization, and emerging resource-aware 

algorithms like Hyperband and the Tree-structured Parzen Estimator (TPE). We evaluate 

each approach using diverse CNN architectures and datasets, analyzing critical factors such 

as optimization speed, resource efficiency, and model accuracy. Through this comparative 

study, we reveal unexpected strengths and weaknesses of each framework, offering new 

insights into the subtle trade-offs between exploration and exploitation, computational 

overhead, and scalability. Our findings provide a fresh perspective on optimizing CNN 

performance, guiding practitioners in selecting the most effective HPO strategy for specific 

applications, and paving the way for more intelligent, adaptive deep learning models. 

Keywords: optimization, hyperparameters, machine learning, deep learning, learning rate, 

batch size, architecture and kernel size. 
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1. Introduction 

There has been a revolution in the field of machine learning brought about by convolutional 

neural networks (CNNs), particularly in areas such as image categorization, object detection, 

and video analysis. CNNs are a useful tool for extracting complicated patterns from high-

dimensional data sources due to their hierarchical architecture, which was designed to 

automatically learn spatial hierarchies of information. The efficacy of CNNs is largely 

dependent on the appropriate selection of hyperparameters. These hyperparameters include 

learning rate, batch size, and the number of layers. Each of these hyperparameters plays a key 

role in determining the convergence, accuracy, and cognitive efficiency of the network. 

Practitioners have typically relied on trial-and-error methods to determine the ideal 

configurations for hyperparameter tuning, which has generally been a manual procedure that 

is frequently arbitrary. For this reason, efficient hyperparameter optimization (HPO) has 

arisen as a crucial topic of research as CNN architectures continue to get more complicated 

and are implemented in situations with limited resources. While attempting to strike a balance 

between the demand for high model performance and the constraints of computational 

resources, the issue lies in navigating the enormous hyperparameter search space [1,2]. 

Using complex search algorithms that intelligently explore and exploit the hyperparameter 

space, hyperparameter optimization frameworks that are considered to be state-of-the-art try 

to automate this process. In spite of their widespread application, traditional methods such as 

Grid Search and Random Search are frequently ineffective because of the exhaustive or 

solely stochastic character of their methodologies [3]. Bayesian Optimization, Hyperband, 

and the Tree-structured Parzen Estimator (TPE) are examples of more sophisticated 

techniques that utilize probabilistic models, resource-aware mechanisms, and adaptive 

algorithms to optimize hyperparameters with less iteration and less computer overhead. 

Bayesian Optimization is a methodology that was developed in the 1990s. These frameworks 

not only improve the accuracy of models, but they also reduce the amount of time it takes for 

models to converge and to scale, making them extremely useful for contemporary deep 

learning processes [4]. 

There are not enough extensive studies that compare the performance of HPO frameworks 

across a variety of CNN architectures and real-world datasets, despite the fact that HPO 

frameworks are becoming increasingly popular. There is a lack of assistance for practitioners 

regarding which framework is best suitable for their particular requirements because the 



majority of the research that is currently available either concentrates on a single HPO 

approach or analyzes performance on a limited selection of activities. In addition, the trade-

offs between speed, resource utilization, and model accuracy critical factors in practical 

applications of machine learning [5]. 

By presenting a comprehensive assessment of the most advanced HPO frameworks, with a 

particular emphasis on how these frameworks might be used to CNNs, the purpose of this 

research is to fill in these gaps. We evaluate classic and new HPO techniques in a methodical 

manner, evaluating them across a variety of dimensions, such as the accuracy of the model, 

the amount of time it takes for the model to converge, the amount of computational resources 

employed, and the scalability of the system [6]. We intend to provide a comprehensive 

evaluation that will assist academics and practitioners in selecting the HPO framework that is 

best suitable for their needs. This will be accomplished by utilizing a number of CNN 

architectures, including ResNet, VGG, and Inception, and testing on real-world datasets that 

range in size and complexity [7]. 

Our investigation of the underlying mechanisms that are responsible for the effectiveness of 

these frameworks is in addition to the evaluation of their performance. In this study, we 

investigate the various approaches that are utilized to control the exploration-exploitation 

trade-off, optimize resource allocation, and scale to larger datasets and longer networks. This 

study offers useful insights into how HPO frameworks can be customized to unique CNN-

based applications, which ultimately leads to more efficient and successful model 

optimization processes. These insights are provided by offering a balanced assessment of the 

strengths and limits of these frameworks [8]. 

The remaining sections of the paper are structured as follows: In the second section, an 

overview of HPO and its methods is presented. In Section 3, the hyper parameters 

optimization techniques are discussed. In Section 4, the HPO frameworks, including 

Bayesian Optimization, Optuna, HyperOpt, and Keras Tuner, are broken down and discussed. 

The different performance evaluations are discussed in Section 5. The conclusion of the paper 

is found in Section 6. 

2. Hyperparameter Optimizations 

The HPO process is an essential method for selecting the optimal combinations of 

hyperparameters that will lead to the highest possible performance for machine learning 



models. There have been a number of automatic HPO algorithms created in order to tune the 

hyperparameters in order to design efficient machine learning models. First, we will discuss 

the standard hyperparameters, and then we will move on to the HPO approaches.  

2.1. Hyperparameters 

The variables of a model that are responsible for determining its appearance and behavior are 

called hyperparameters. In order to address the computational complexity of the models, 

hyperparameters have recently garnered a significant amount of attention. Every machine 

learning and deep learning algorithm has its own unique set of hyperparameters that need to 

be adjusted during the tuning process as shown in Figure 1. Numerous studies provide a 

comprehensive explanation of the hyperparameters. As far as hyperparameters are concerned, 

there are two primary categories: model hyperparameters and optimizer hyperparameters [9]. 

 

Fig. 1 Process of hyper parameters optimization 

While the training optimization algorithms are the optimizer hyperparameters, the model 

hyperparameters are responsible for designing the structure of the model. A type of model-

specific hyperparameter known as the activation function is responsible for producing a 

robust perception of important and non-linear complicated functions that are used to convert 



the input signals. Sigmoid, Softmax, Tanh, and Rectified Linear Units (ReLU) are examples 

of types of activation functions that are frequently utilized [10]. It is recommended that the 

ReLU activation function be used as the default activation function since it offers a solution 

to the vanishing gradient problem and converges six times more quickly than the Tanh 

function.  

A hyperparameter that is well-known for its ability to quantify the rate and speed at which 

networks learn is referred to as the learning rate (LR). The weights of the hidden layers, 

which are the location where the overall structure of networks that directly extract 

complicated information are represented, can be adjusted with the use of LR [11]. For the 

purpose of ensuring that the local minimum is not overlooked, it is necessary to choose the 

optimal LR values. LR annealing is a method that was established not too long ago in order to 

locate the optimal value during the training process. However, the majority of the times, the 

users are the ones that manually adjust the LR settings. Creating fake copies of the training 

data in order to carry out particular functions such as transformation, rotation, cropping, and 

so on is an example of the data production approach known as data augmentation. The neural 

networks are able to improve their performance during the learning process because to this 

[12]. 

There is a significant amount of importance placed on optimization techniques in the process 

of tuning neural networks (NNs). They make it possible for the networks to learn and 

improve their performance. Adaptive momentum estimation (Adam), Root Mean Square 

Propagation (RMSprop), and Gradient Descent (GD) are three optimizers that are frequently 

utilized in deep learning [13]. The Gradient Descent algorithm ensures that the cost function 

is minimized by continuously updating the parameters of the models until they reach the 

standard bias values at each stage. The gradient is adjusted in an iterative manner in order to 

obtain the local minima, which is accomplished by updating the weights and bias. The 

RMSprop algorithm optimizes the gradient by creating a balance between the momentum 

(step size) and decreasing the step size for gradients that are very large [14]. The Adaptive 

Gradient Descent (AdaGrad) and RMSprop optimizers are combined into Adam, which is 

another state-of-the-art optimizer. Adam integrates the two optimizers. Additionally, it serves 

as the default optimization technique for the training process, and it computes the adaptive 

LR for each parameter [15]. 

 



3. Hyperparameters Optimization Techniques 

An overview of the HPO approaches, including grid search, random search, Genetic 

Algorithm (GA), Bayesian Optimization (BO) and Tree Parzen Estimator (TPE) is provided 

in this section. As shown in Figure 2, the hyper parameters optimization techniques can be 

classified into five types.  

 

Fig. 2 Categories of hyper parameters optimization 

3.1.1. Grid Search (GS) 

The grid search algorithm is one of the most straightforward approaches of optimizing 

hyperparameters. A grid of hyperparameter values must be specified, and the model must be 

evaluated for each and every conceivable combination. The process can be formalized as 

follows: 

 It is necessary to define the hyperparameters and the ranges that correspond to them. 

 It is necessary to generate a Cartesian product of all possible hyperparameter 

combinations. 

 Cross-validation or a hold-out validation set can be used to train and evaluate the 

model for each particular combination. 

 Select the combination yielding the best performance metric (e.g., accuracy, F1-

score). 

The number of possible combinations increases at an exponential rate in proportion to the 

number of hyperparameters and the values that are assigned to them, which results in 

expensive computation times. The significance of various hyperparameters is not taken into 

account by it; parameters with less significance may result in the consumption of resources 

that are not necessary [16]. 
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3.1.2. Random Search (RS) 

The random research technique has been empirically shown to outperform grid search, 

particularly in situations where only a subset of hyperparameters significantly impacts model 

performance. This is because it can yield high-quality hyperparameter configurations with a 

significantly smaller number of evaluations, which makes it particularly useful in high-

dimensional search spaces where optimal configurations may be sparsely located. Because of 

this, Random Search is a more efficient alternative to grid search. It does this by sampling 

hyperparameter values randomly from defined distributions rather than exhaustively 

evaluating every possible combination [17]. 

3.1.3. Bayesian Optimization (BO) 

Bayesian optimization is a popular and advanced method that models the performance of 

hyperparameter configurations over time using a probabilistic surrogate model, often a 

Gaussian Process (GP). Bayesian optimization uses previous evaluation results to predict 

which hyperparameters to evaluate next, using an acquisition function like Expected 

Improvement or Upper Confidence Bound. This method finds an appropriate balance 

between exploring new hyperparameter regions and taking advantage of known promising 

configurations, and it converges to optimal settings with much fewer evaluations than 

traditional methods [18]. 

3.1.4. Genetic Algorithm (GA) 

Genetic algorithms (GAs) are inspired by the principles of natural selection and evolutionary 

biology, evolving a population of hyperparameter configurations over generations [19]. The 

process generally follows these steps: 

 Initialize a random population of hyperparameter configurations. 

 Evaluate the performance of each configuration. 

 Select configurations based on fitness scores for reproduction, applying crossover 

(mixing configurations) and mutation (randomly altering configurations). 

 Repeat the evaluation and selection process over multiple generations. 

3.1.5. Tree-structured Parzen Estimator (TPE)  

The Tree-structured Parzen Estimator (TPE) is an additional advanced Bayesian optimization 

technique that models the probability distributions of hyperparameter configurations. It uses 

these distributions to differentiate between configurations that produce good and bad 

performance outcomes. TPE constructs separate models for the likelihood of observing good 



and bad configurations and chooses the next hyperparameter set for evaluation based on these 

distributions. This allows it to concentrate the search on promising regions of the 

hyperparameter space, which significantly improves the efficiency of the optimization 

process in comparison to more conventional methods such as grid search [20]. 

4. Hyperparameters Framework 

The automatic tools that are used to modify the hyperparameters of machine learning models 

are known as hyperparameter optimization frameworks. In most cases, each tool comes with 

a collection of optimization strategies as well as an intuitive user interface that allows for the 

definition of search space, the evaluation of objective functions, and the monitoring of the 

performance of mathematical models. In order to solve difficult machine learning challenges, 

these frameworks are in high demand across the industry. As shown in Figure 3, the 

following HPO frameworks have been utilized such as Optuna, HyperOpt, Ray tuner, 

OptiML and Keras tuner.  

 

Fig. 3 Categories of hyper parameters frameworks 

The general Convolutional Neural Network (CNN) based hyper parameters optimization has 

been shown in Figure 4. 

4.1. Optuna 

Optuna is a framework for hyperparameter optimization that is both flexible and efficient. It 

makes use of an automatic optimization technique that is based on tree-structured Parzen 

estimators (TPE) in order to intelligently suggest hyperparameter configurations. It is 

especially useful for complex projects that require fine-tuned models since it provides 

features such as visualization tools that assist users in analyzing the optimization process and 

a user-friendly interface that enables easy connection with current machine learning libraries. 

These features make it particularly relevant for identify the best parameters [21]. 
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Fig. 4 General architecture of CNN based hyper parameters optimization 

4.2. Keras Tuner 

Keras Tuner is a library that was developed exclusively for the purpose of tuning 

hyperparameters in Keras models. It is a straightforward and user-friendly tool. It makes use 

of a variety of optimization techniques, such as Random Search and Bayesian Optimization, 

and provides straightforward application programming interfaces (APIs) for defining 

hyperparameter search spaces. In addition to providing functions such as early pausing and 

learning rate scheduling, Keras Tuner interacts smoothly with Keras, making it possible for 

users to easily tune their models with little setup [22]. 

4.3. Ray Tune 

Ray Tune is a hyperparameter tuning library that is developed for distributed computing and 

machine learning. It is a scalable hyperparameter tuning library that is a component of the 

Ray ecosystem. With Ray Tune's support for a variety of search methods, such as random 

search, Bayesian optimization, and Hyperband, users are able to explore hyperparameter 

spaces in parallel across numerous nodes in an effective manner. As a result of its capacity to 

manage large-scale machine learning processes and its seamless integration with well-known 

deep learning frameworks like TensorFlow and PyTorch, it is a good option for applications 

that require a considerable amount of processing power [23]. 

4.4. HyperOpt 

Another library that is extensively used for hyperparameter optimization is called Hyperopt. 

It employs Bayesian optimization and TPE methods in order to search for the optimal 
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hyperparameters. In addition to supporting single-objective and multi-objective optimization 

jobs, it supplies users with the ability to create complex search spaces through the use of a 

clear syntax. The versatility of Hyperopt in terms of defining the search space, in conjunction 

with its capacity to operate in distributed contexts, makes it suited for a wide range of 

machine learning applications [24]. 

4.5. OptiML 

In order to navigate huge search spaces in an effective manner, OptiML is a hyperparameter 

optimization system that makes use of multi-fidelity optimization strategy. OptiML is able to 

lower the overall computational cost associated with hyperparameter tweaking while 

retaining a high level of accuracy in identifying optimal configurations. This is accomplished 

by utilizing surrogate models to generate predictions about the performance of the model at 

certain resource levels (for example, training epochs) [25]. 

5. Performance Metrics 

Evaluation metrics plays an important role for accessing the classification performance and 

improving model selection. We have used confusion matrices, accuracy, precision, recall and 

F1-score for evaluating the effectiveness of the proposed approach. TP, FP, TN, and FN class 

values are shown in Figure 5 for an classification and prediction system. If the classifier 

correctly predicts the class response at each instance, it is considered a "success," but if it 

does not, it is considered an "error." The error rate, which is a proportion of the errors made 

over the entire set of samples, is used to determine the classifier's overall performance. 

 

Fig. 5 Confusion matrix process 

For the purpose of evaluating the effectiveness of classification algorithms, it is feasible to 

derive statistical metrics such as Precision, Recall, and F-measure from the confusion matrix. 

These metrics are described as follows: Precision (P), which is often referred to as detection 

rate, is the ratio of instances that have been successfully labelled to the total number of 



instances that have been labelled. In a certain class, it refers to the proportion of positive 

forecasts that were accurate. It is defined in the following manner:  

                                        FPTP

TP


(P)Precision 

    (4) 

The number of true positives is denoted by TP, and the number of false negatives is denoted 

by FN for a particular class. Total number of test samples for a particular class is equal to the 

sum of test samples and blanks. Whether it is recall (R) or sensitivity, the ratio of correctly 

classified images to the total number of instances in a class is referred to as recall. In addition 

to this, it is also referred to as the genuine positive rate, and it holds the capability of 

measuring the prediction model. The following is the definition of it:  

                                        FNTP

TP


(R) Recall

                                             (5) 

For a particular class, the number of true positives is denoted by TP, while the number of 

false negatives is determined by FN. The total number of test samples for a certain class is 

equal to, TP plus FP. By calculating the harmonic mean of precision and recall, the F1-

measure makes an effort to provide a single measurement of performance. It is possible for a 

classification algorithm to obtain high levels of both recall and precision. Consider the 

following explanation of the F1-measure:  

                  RP
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F
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.21

                            (6) 

The Accuracy can be defined as below: 

Accuracy =
TP+FP

TP+FP+FN+TN
                                (7) 

K-Fold Validation 

The objective of K-Fold validation is to achieve the capability of simultaneously training and 

validating all of the images that are contained inside the model. There is a type of cross-

validation known as k-fold cross-validation, which includes iterating a set of data k times. At 

the beginning of each round, we divide the dataset into k parts: one of these parts is utilized 

for validation, and the remaining k-1 parts are combined into a training subset for the purpose 

of evaluating the model, as visualized in Figure 6. 



 

Fig. 6 The concepts of K-Fold cross validation 

6. Conclusion 

In this paper, a rigorous and nuanced evaluation of Hyperparameter Optimization (HPO) 

frameworks that have been specifically customized for Convolutional Neural Networks 

(CNNs) is presented. The study also highlights crucial trade-offs in terms of accuracy, 

computational efficiency, and usability. The strengths, limitations, and ideal applications of 

each framework are revealed through the examination of a variety of optimization techniques. 

These techniques include the traditional Grid and Random Search methods, as well as more 

advanced Bayesian Optimization and resource-efficient algorithms such as Hyperband and 

Tree-structured Parzen Estimator (TPE). The results of our research indicate that selecting the 

most appropriate HPO approach can significantly improve both the performance of the model 

and its computational feasibility. This has the potential to direct practitioners towards making 

more informed decisions when adjusting CNNs. These findings not only contribute to a more 

in-depth comprehension of HPO techniques, but they also pave the way for future 

breakthroughs in CNN models that are flexible, efficient, and high-performing. 
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