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Abstract

The present work deals with the Kantrovinch type modi�cation of modi�ed Bernstein operator.

We discuss the rate of convergence of proposed operators by means of modulus of continuity

and Peetre's K-functional for Hölder's class of functions. Further, we derive a Vornovskaya type

asymptotic result and study weighted approximation with polynomial growth. Also, numerical

examples illustrating the error functions and the approximation of the proposed operators for

some continuous as well as piecewise continuous functions are given.
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1. Introduction

Positive linear operators are widely used in various �elds of science and engineering. A very

famous polynomial in this regards, in the approximation theory of positive linear operators was

studied by Bernstein [1]. Bernstein operator for every bounded function ψ ∈ C[0, 1], n ≥ 1 and

t ∈ [0, 1] is de�ned as

Bn(ψ; t) =
n∑
k=0

pn,k(t)ψ
(
k

n

)
,

and pn,k(t) =
(
n
k

)
tk−1(1 − t)n−k−1 is Bernstein basis function. F. Usta [2] presented a new modi-

�cation for ψ ∈ C[0, 1], n ∈ N, t ∈ (0, 1) as

Bn(ψ; t) =
n∑
k=0

(
n

k

)
(k − nt)2tk−1(1 − t)n−k−1ψ

(
k

n

)
. (1.1)

Recently, M. Sofyal�o�glu [3] introduced a parametric generalization of (1.1). Thereafter, di�erent

modi�cation of the above operator have become interest to many researchers. For more details on
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parametric genaralizations, we refer the readers to [4, 5, 6, 7, 8, 9]. Kantrovinch [10] introduced a

modi�cation involving integral for the class of Lebesgue integrable functions on [0,1] given by

Kn(ψ; t) = (n+ 1)
n∑
k=0

pn,k(t)
∫ k+1

n+1

k
n+1

ψ(u)du, (1.2)

where t ∈ (0, 1).

In the present work, we introduce Kantrovinch modi�cation of the operator given by equation

1.1 as follows:

Kn(ψ; t) = n

n∑
k=0

(
n

k

)
(k − nt)2tk−1(1 − t)n−k−1

∫ (k+1)/n

k/n

ψ(u)du, t ∈ (0, 1). (1.3)

Also, We introduce some numerical example using MATLAB in order to show the theoretical

approach for approximation by newly de�ned operators.

2. Preliminaries

Lemma 2.1. The modi�ed-Bernstein operators Bn(.; t) [2], for n ∈ N, satisfy the following identities:

(1) Bn(1; t) = 1;

(2) Bn(y; t) =
(
n−2
n

)
t+ 1

n ;

(3) Bn(y2; t) =
(
n2−7n+6

n2

)
t2 +

( 5n−6
n2

)
t+ 1

n2 ;

(4) Bn(y3; t) =
(
n3−15n2+38n−24

n3

)
t3 + 12

(
n2−4n+3

n3

)
t2 +

(
13n−14
n3

)
t+ 1

n3 .

3. Moment Estimation

Using the preliminaries, we can prove the following identities for Modi�ed-Bernstein-Kantrovinch

operators :

Lemma 3.1. For n ∈ N the operator Kn(ψ(y); t) satis�es the followings:

(1) Kn(1; t) = 1;

(2) Kn(y; t) =
(
n−2
n

)
t+ 3

2n ;

(3) Kn(y2; t) =
(
n2−7n+6

n2

)
t2 +

( 6n−8
n2

)
t+ 7

3n2 ;
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(4) Kn(y3; t) =
(
n3−15n2+38n−24

n3

)
t3 +

(
27n2−117n+90

2n3

)
t2 +

(
42n−48
n3

)
t+ 15

4n3 .

Proof. Using the linear property of Kn(ψ; t), we've

Kn(y; t) = Bn,a(y; t) + 1
2nBn,a(1; t)

By using preliminaries, we can see part (2) is true. In a similar manner, we can prove other parts

of above result.

Let us denote the rth order moment of Kn((y − t)r; t) by γn,r(t).

Lemma 3.2. For n ∈ N, the rth (r = 1, 2, 4) ordered moments of Kn(.; t) are given by

(1) γn,1(t) =
( −2
n

)
t+ 3

2n ;

(2) γn,2(t) =
( −3n+6

n2

)
t2 +

( 3n−8
n2

)
t+ 7

3n2 ;

Proof. Using the linear property of Kn(.; t) and lemma (3.1), above lemma can be derived easily.

Corollary 3.1. For n ∈ N, operator Kn(.; t) satis�es the followings:

(1) lim
n→∞

nKn((y − t); t) = 3
2 − 2t;

(2) lim
n→∞

nKn((y − t)2; t) = 3t(1 − t);

4. Approximation Properties of Kn(.; t)

4.1. Local Approximation

Theorem 4.1. Let ψ ∈ C(0, 1), then

lim
n→∞

Kn(ψ; t) = ψ(t).

uniformly on (0, 1).

Proof. Using lemma (3.1), we have

lim
n→∞

Kn(yk; t) = tk, k = 0, 1, 2,

uniformly on (0,1). The required result is immediately given by Korovkin type theorem [11].
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4.2. Rate of Convergence

For ψ ∈ C(0, 1) , the modulus of continuity of ψ is de�ned as

ω(ψ, ζ) = sup
|y−t|≤ζ

{
sup
t∈(0,1)

|ψ(y) − ψ(t)|
}
.

Also from [12], we can write

|ψ(y) − ψ(t)| ≤
(

1 + (y − t)2

ζ2

)
ω(f, ζ)

Also, the Peetre's K-functional is given by

K(ψ; ζ) = inf
f∈C2[0,1]

{∥ψ − f∥ + ζ ∥f”∥}, ζ > 0,

where C2[0, 1] = {ψ ∈ C[0, 1] : ψ′, ψ” ∈ C[0, 1]}. By [13], ∃ a constant M > 0 such that

K(ψ; ζ) ≤ Mω2(ψ,
√
ζ), ζ > 0, (4.1)

where ω2(ψ,√η) = sup
0<|h|<√

η

sup
t,t+2h∈(0,1)

|ψ(t+2h)−2ψ(t+h)+ψ(t)| is the second ordered modulus

of continuity of ψ on (0,1).

Theorem 4.2. Let t ∈ (0, 1) and ψ ∈ C[0, 1]. Then we have

|Kn(ψ; t) − ψ(t)| ≤ 2ω(ψ,
√
γn,2(t)),

where γ2
n,2(t) = Kn((y − t)2; t), is the second ordered central moment of nth proposed operator.

Proof. For ψ ∈ C[0, 1], we obtain

|Kn(ψ; t) − ψ(t)| = n

n∑
k=0

pn,k(t)
∫ (k+1)/n

k/n

|ψ(y) − ψ(t)| dy

≤ n

n∑
k=0

pn,k(t)
∫ (k+1)/n

k/n

(
1 + (y − t)2

ζ2

)
ω(f, ζ)dy

=
(

1 + 1
ζ2 Kn((y − t)2; t)

)
ω(ψ, ζ)

By taking ζ2 = γn,2(t), we reach the required result.

Next, we de�ne Hölder's class of functions for α ∈ (0, 1] as follows

Hα(0, 1) = {ψ ∈ C(0, 1) : |ψ(y) − ψ(t)| ≤ Mψ |y − t|α ; y, t ∈ (0, 1)}

The following theorem gives the convergence rate for Hölder's class of functions:
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Theorem 4.3. Let t ∈ (0, 1) and ψ ∈ Hα(0, 1). Then we have

|Kn(ψ; t) − ψ(t)| ≤ M
√
γαn,2(t),

where γn,2(t) is the second ordered central moment of nth proposed operator.

Proof. For ψ ∈ Hα(0, 1), consider

|Kn(ψ; t) − ψ(t)| = n

n∑
k=0

pn,k(t)
∫ (k+1)/n

k/n

|ψ(y) − ψ(t)| dy

On applying Hölder inequality with p = 2
α , q = 2

2−α twice, we are led to

|Kn(ψ; t) − ψ(t)| ≤
{
n

n∑
k=0

pn,k(t)
∫ (k+1)/n

k/n

|ψ(y) − ψ(t)|
2
α dy

} α
2

≤ M

{
n

n∑
k=0

pn,k(t)
∫ (k+1)/n

k/n

|y − t|2 dy
} α

2

= MKn((y − t)2; t) α
2 ,

which completes the result.

Theorem 4.4. Let ψ ∈ C[0, 1] and 0 < t < 1. Then for all n ∈ N, ∃ an absolute constant M such

that

|Kn(ψ; t) − ψ(t)| ≤ Mω2

(
ψ;

√{
γn,2(t) + 1

2γ
2
n,1(t)

})
+ 2ω

(
ψ, |γn,1(t)|

)
.

Proof. Firstly, we de�ne an auxiliary operator

K∗
n(g; t) = Kn(g; t) − g

(
n− 2
n

t+ 3
2n

)
+ g(t) (4.2)

Then, we have K∗
n(1; t) = 1 and K∗

n(y − t; t) = 0. Now Taylor's expansion for g ∈ C2[0, 1] is given

by

g(y) = g(t) + (y − t)g′(t) +
∫ y

t

(y − u)g”(u)du, t ∈ (0, 1).

Applying auxiliary operator to both sides of above expansion, we obtain

K∗
n(g; t) − g(t) = Kn

(∫ y

t

(y − u)g”(u)du; t
)

−
∫ n−2

n t+ 3
2n

t

(
n− 2
n

t+ 3
2n − u

)
g”(u)du (4.3)

Now, ∣∣∣∣∫ y

t

(y − u)g”(u)du
∣∣∣∣ ≤ ∥g”∥ (y − t)2
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and ∣∣∣∣∣
∫ n−2

n t+ 3
2n

t

(
n− 2
n

t+ 3
2n − u

)
g”(u)du

∣∣∣∣∣ ≤ 1
2 ∥g”∥

(
−2
n
t+ 3

2n

)2

Rewriting equation 4.3, we obtain

|K∗
n(g; t) − g(t)| ≤ ∥g”∥ Kn((y − t)2; t) + 1

2 ∥g”∥
(

−2
n
t+ 3

2n

)2

= ∥g”∥
{
γn,2(t) + 1

2γ
2
n,1(t)

} (4.4)

Also,

|K∗
n(g; t)| ≤ 3 ∥g∥ (4.5)

In the view of equations 4.4 and 4.5, we get

|Kn(ψ; t) − ψ(t)| =| K∗
n(ψ; t) + ψ

(
n− 2
n

t+ 3
2n

)
− ψ(t) − ψ(t) + g(t)

− g(t) + K∗
n(g; t) − K∗

n(g; t) |

≤ |K∗
n(ψ − g; t) − (ψ − g)(t)|

+ |K∗
n(g; t) − g(t)| +

∣∣∣∣ψ(
n− 2
n

t+ 3
2n

)
− ψ(t)

∣∣∣∣
≤ 4 ∥ψ − g∥ + ∥g”∥

{
γn,2(t) + 1

2γ
2
n,1(t)

}
+ ω(ψ, ζ)

(
1 + 1

ζ

∣∣∣∣−2
n
t+ 3

2n

∣∣∣∣)
Taking in�mum to RHS of above equation over g ∈ C2[0, 1] and ζ = |γn,1(t)|, we are led to

|Kn(ψ; t) − ψ(t)| ≤ 4K
(
ψ;

{
γn,2(t) + 1

2γ
2
n,1(t)

})
+ 2ω

(
ψ, |γn,1(t)|

)
.

We reach the required result immediately by using equation 4.1

4.3. Voronovskaya-type Asymptotic Result

In this subsection, we derive an asymptotic formula for the proposed operator as follows:

Theorem 4.5. Let ψ ∈ C2[0, 1]. and t ∈ (0, 1). Then, we have

lim
n→∞

n(Kn(ψ; t) − ψ(t)) = 1
2

{
(3 − 4t)ψ′(t) + 3t(1 − t)ψ”(t)

}
.

6



Proof. From Peano form of remainder of Taylor's expansion, we can write

ψ(y) = ψ(t) + (y − t)ψ′(t) + 1
2(y − t)2ψ”(t) + (y − t)2ϵ(y, t), (4.6)

where ϵ(y, t) = ψ”(ξ)−ψ”(t)
2 for some ξ lying between t and y. Also, lim

y→t
ϵ(y, t) = 0. Now, operating

the equation 4.6 by Kn(.; t), we get

Kn(ψ; t) − ψ(t) = Kn((y − t); t)ψ′(t) + 1
2Kn((y − t)2; t)ψ”(t) + Kn(ϵ(y, t)(y − t)2; t).

Using corollary 3.1 and Cauchy-Schwartz inequality, we can deduce

lim
n→∞

n(Kn(ψ; t) − ψ(t)) = ψ′(t) lim
n→∞

nKn((y − t); t) + 1
2ψ”(t) lim

n→∞
nKn((y − t)2; t)

+ lim
n→∞

(
nKn

(
(y − t)2ϵ(y, t); t

))
≤ (3 − 4t)ψ′(t) + 3

2 t(1 − t)ψ”(t)

+ lim
n→∞

√
n2Kn

(
(y − t)4; t

)√
Kn

(
ϵ2(y, t); t

))
.

(4.7)

By theorem 4.1, we have

lim
n→∞

Kn

(
ϵ2(y, t); t

)
= ϵ2(t, t) = 0.

Using above equation in 4.7, we are led to the required result.

4.4. Weighted Approximation

Consider a weight function σ(t) = 1+t2 on (0,1). Let Bσ(0, 1) denotes the space of all functions

φ on (0,1) such that

|φ(t)| ≤ Mφσ(t)

and Cσ(0, 1) be the subspace of all continuous functions in Bσ(0, 1) endowed with norm ∥.∥σ given

by

∥φ∥σ = sup
t∈(0,1)

φ(t)
σ(t)

Next, we prove an inequality and convergence for the operator Kn(.; t) in weighted space as follows:

Lemma 4.1. Let ψ ∈ Cσ(0, 1). Then following inequality holds for Kn(ψ; t)

∥Kn(ψ; t)∥σ ≤ 7
3 ∥ψ∥σ .
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Proof. By using de�nition of proposed operator, we may write

∥Kn(ψ; t)∥σ = sup
t∈(0,1)

|Kn(ψ; t)|
σ(t)

≤ ∥ψ∥σ sup
t∈(0,1)

n

1 + t2

n∑
k=0

bn,k(t)
∫ (k+1)/n

k/n

(1 + u2)du

= ∥ψ∥σ sup
t∈(0,1)

1
1 + t2

{1 + Kn(y2; t)} ≤ 7
3 ∥ψ∥σ .

Theorem 4.6. For ψ ∈ Cσ(0, 1), the newly modi�ed operator Kn(.; t) satis�es

lim
n→∞

∥Kn(ψ; t) − ψ(t)∥σ = 0.

Proof. From lemma 3.1, we obtain

∥Kn(y; t) − t∥σ = sup
t∈(0,1)

|Kn(y; t) − t|
1 + t2

=
∣∣∣∣ 1
2n

∣∣∣∣ sup
t∈(0,1)

|3 − 4t|
1 + t2

≤ 1
n
.

Also, ∥∥Kn(y2; t) − t2
∥∥
σ

= sup
t∈(0,1)

|Kn(ψ; t) − ψ(t)|
1 + t2

≤ −35
3n2 + 13

n
.

Thus, in limiting condition, we can write

lim
n→∞

∥∥Kn(yj ; t) − tj
∥∥ ; j = 0, 1, 2.

Then, the weighted convergence holds for all ψ ∈ Cσ(0, 1) from the results given by Gadjiev

[14].

5. Graphical Analysis

Now, we introduce some simulation results in order to substantiate the convergence behavior

of Kn(ψ; t) for continuous as well as piece-wise continuous functions ψ by using MATLAB.

To test the approximation behavior of newly de�ned operators, let us consider a polynomial

function ψ(t) = t3 − t2 + t
10 + 0.1 and a piesewise continuous function ϕ given by

ϕ(t) =
{

e2t, 0 ≤ t ≤ 0.4

cos(10t), 0.4 < t ≤ 1
.
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As the new sequence of operators is de�ned on (0, 1), so for that we will consider approximation

over equally spaced grids in [0.0005, 0.9995]. Figure 1 and 2 shows the approximation and error in

the approximation by proposed operator to ψ(t) respectively for n=20, 50 and 100. On the other

hand, behavior of proposed operators towards ϕ(t) is shown in �gure 3 and we can observe from

the graph that error of approximation near point of discontinuity is gradually increasing here.

0 0.2 0.4 0.6 0.8 1 t
0

0.05

0.1

0.15

0.2

0.25

(t)

n=20

n=50

n=100

Figure 1: Approximation by proposed operator Kn(ψ; t) to ψ at di�erent values of n.
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Figure 2: Error in the approximation by proposed operator Kn(ψ; t) to ψ at di�erent values of n.
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1

1.5

2 (t)

n=100
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Figure 3: Approximation by proposed operators Kn(ϕ; t) to discontinuous function ϕ(t) at di�erent values of n.

6. Closing Comments

In this manuscript, we presented modi�ed-Bernstein-Kantrovinch operators and discussed the

rate of convergence, asymptotic formula and weighted approximation of these operators. Also, we

included some numerical simulations in order to test the newly de�ned operators.
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