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1. Introduction

Difference operators are fundamental tools in discrete mathematics, analogous

to derivatives in continuous calculus. They measure the change in a function’s

value over discrete intervals and are essential in the study of sequences, discrete

functions, and difference equations. Understanding difference operators provides a

foundation for discrete calculus, which is crucial for various fields, including

computer science, numerical analysis, and combinatorics.

Factorials, defined traditionally for integers, are a fundamental concept in

combinatorics, algebra, and analysis. Extending factorials to non-integer values led

to the gamma function, a continuous extension of the factorial function. However,
1
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various generalizations and extensions of factorials exist, one of which involves

using generalized difference operators. These operators provide a powerful tool for

discrete calculus and enable the definition of factorial functions for a wider range

of functional forms.

Early instances of finite differences can be traced back to ancient

mathematicians such as Archimedes, who used methods resembling finite

differences to compute areas and volumes. However, the systematic study of finite

differences began much later. In the 17th and 18th centuries, the development of

calculus by Newton and Leibniz paved the way for the study of finite differences.

Newton, in particular, made significant contributions with his work on

interpolation and the binomial theorem, laying the groundwork for the

formalization of difference operators.

The forward difference operator ∆ was one of the earliest forms to be

formalized, this operator became essential in numerical analysis for approximating

derivatives and solving difference equations. and also the backward difference

operator ∇ was introduced to complement the forward difference operator. The

backward difference operator is particularly useful in situations where the initial

value of a sequence is known. The central difference operator δ provides a

symmetric measure of change. It is used to approximate derivatives more

accurately than the forward or backward difference operators, especially when

dealing with evenly spaced data points. Higher-order differences extend to n-th

order, which are crucial in polynomial interpolation and numerical differentiation.

Difference operators are fundamental in numerical differentiation and

integration, allowing for the approximation of derivatives and integrals when

working with discrete data. Methods such as finite difference methods for solving

differential equations heavily rely on these operators. Newtons forward and

backward difference formulas, based on difference operators, are used for

polynomial interpolation. These methods provide polynomial approximations to

functions based on discrete data points, which are critical in numerical analysis

and computational mathematics.

Difference operators are used in combinatorial identities, summations, and the

study of discrete structures. They play a key role in the analysis of sequences,

recurrence relations, and discrete dynamic systems. The study of difference
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operators continues to evolve, with extensions to non-uniform grids, higher

dimensions, and various applications in computer science, engineering, and the

natural sciences. Modern research often involves the integration of difference

operators with other mathematical frameworks, such as graph theory and discrete

optimization.

2. Notations

Throughout this chapter, we make use of the following assumptions:

(1) l,m, r and n are positive integers.

(2) [k
l
] denotes the integer part of k

l
.

(3) α(j) = (α)(α− 1) · · · (α− j + 1).

(4) [0,∞) is the non-negative reals.

(5) j = k − [k
`
]`.

3. Preliminaries

In this section, we provide some basic definitions and results that will be relevant

in the future discussion.

Definition 3.1. Let u(k) be the real valued function defined on (0,∞), n ∈ N(1) and

` ∈ (0,∞). Then the closed functional factorial and its reciprocal are respectively

defined as

(u(k))
[n]
` = u(k)u(k − `)u(k − 2`)...u(k − (n− 1)`) (1)

and when u(k − r`) 6= 0 for r = 0, 1, 2, ..., n− 1,

1

(u(k))
[n]
`

=
1

u(k)u(k − `)u(k − 2`)...u(k − (n− 1)`)
. (2)

In particular when u(k) = k (1) becomes the generalized polynomial factorial

k
(n)
` = k(k − `)(k − 2`)...(k − (n− 1)`) (3)

and (2) becomes the generalized reciprocal polynomial factorial

1

k
(n)
`

=
1

k(k − `)(k − 2`)...(k − (n− 1)`)
. (4)
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Definition 3.1. Let u(k), k ∈ [0,∞) be a real valued function. The generalized

difference operator ∆` on u(k) is defined as;

∆`u(k) = u(k + `)− u(k), k ∈ [0,∞), ` ∈ (0,∞), (5)

and the inverse of ∆` on u(k) is defined as,

if ∆`v(k) = u(k), then v(k) = ∆−1` u(k) + c`(k). (6)

In general,

∆−ν` = ∆−1`

(
∆
−(ν−1)
`

)
. (7)

Lemma 3.2. If lim
k→∞

∆−1` u(k) = 0 and j = k −
[
k
`

]
`, then

∆−1` u(k)|∞k = (−1)
∞∑
r=0

u(k + r`). (8)

Theorem 3.3. If lim
k→∞

∆−r` u(k) = 0 for r = 1, 2, · · · ,m and k ∈ [m`,∞), then

∆−m` u(k)|∞k = (−1)m
∞∑
r=m

(r − 1)(m−1)

(m− 1)!
u(k −m`+ r`). (9)

Proof. The proof follows by taking ∆−1` on (8) for (m− 1) times. �

Lemma 3.4. Let u(k) and v(k) be two real valued functions. Then

∆−1` [u(k)v(k)] = u(k)∆−1` v(k)−∆−1` [∆−1` v(k + `)∆`u(k)]. (10)

Proof. From definition of ∆`, we find

∆`[u(k)z(k)] = z(k + `)∆`u(k) + u(k)∆`z(k). (11)

Applying (6) in (11), we obtain

∆−1` [u(k)∆`z(k)] = u(k)z(k)−∆−1` [z(k + `)∆`u(k)]. (12)

The proof follows by taking v(k) = ∆`z(k) and (12). �

Theorem 3.2. Let ` > 0 and k ∈ [`,∞). Then
[ k
`
]∑

r=0

(
r + n− 1

n− 1

)
u(k − r`) +

n−1∑
r=1

([k
`
] + r)(r)

r!
∆
−(n−r)
` u(ˆ̀(k) + (n− 1− r)`)

= ∆−n` u(k + n`)−∆−n` u(ˆ̀(k) + (n− 1)`). (13)
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Proof. we have

u(k) + u(k − `) + · · ·+ u(ˆ̀(k)) = ∆−1` u(k + `)−∆−1` u(ˆ̀(k)). (14)

Since ˆ̀(k) = ˆ̀(k − r`) for r = 1, 2, ...[k
`
], replacing k by k − `, k − 2`,...ˆ̀(k), in (14)

and then adding all the resultant expressions, we arrive

[ k
`
]∑

r=0

(
r + 1

1

)
u(k − r`) = ∆−2` u(k + 2`)−

{
∆−2` u(ˆ̀(k) + `) +

([
k

`

]
+ 1

)
∆−1` u(ˆ̀(k))

}
.

(15)

Applying the process mentioned above to (15), we find that
[ k
`
]∑

r=0

(
r + 2

2

)
u(k − r`) = ∆−3` u(k + 3`)−

{
∆−3` u(ˆ̀(k) + 2`)

−
([k
`
] + 1)

(1)
1

1!
∆−2` u(ˆ̀(k) + `)−

([k
`
] + 2)

(2)
1

2!
∆−1` u(ˆ̀(k))

}
. (16)

Following this procedure, we have the theorem’s proof. �

4. Summation on Closed Functional Factorial

Here, we derive ∆−1` on certain closed functional factorial to find the sum

on infinite series of generalized closed functional factorial and polynomial factorial

functions.

Theorem 4.1. Let n ∈ N(1) and ` ∈ (0,∞). Then[k
`

]∑
r=1

[
u(k − r`)[n]` ∆(n+1)`u(k − (r + n)`)

]
= [u(k)]

[n+1]
` (17)

Proof. From the Definition (3.1) we find

∆` (u(k))
[n]
` = (u(k))

[n−1]
` ∆n`u(k − (n− 1)`) (18)

The proof follows by taking ∆−1` on both sides and replacing n by n+ 1 in (18). �

Corollary 4.2. For ` ∈ (0,∞), k ∈ [0,∞) and j = k −
[k
`

]
, we have[k

`

]
∑
r=1

(
(k − r`)[m]

(n+1)`

)[n]
`
m(n+ 1)`(k − (n+ r)`)

(m+1)
(n+1)` =

(
k
[m]
(n+1)`

)[n+1]

`
|kj (19)
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Proof. The proof follows by taking u(k) = k
[m]
(n+1)` in (4.1) and applying (6). �

The following example illustrate Corollary (4.2).

Example 4.1. Taking k = 10, ` = 5,m = 2, n = 2 in (19) we get[10

5

]
∑
r=1

(
(10− 5r)

[2]
2(3)

)[2]
2

2(3)2(10− (2 + r)2)
(3)
(3)2 =

(
10

[2]
(3)2

)[3]
2
−
(

8
[2]
(3)2

)[3]
2

Theorem 4.3. For n ∈ N(1), ` ∈ (0,∞), we have

∆−1`

[
∆(n−1)`u(k − (n− 1)`)

(u(k))
[n]
`

]
= − 1

(u(k − `))[n−1]`

(20)

and hence
∞∑
r=0

[
∆(n−1)`u(k + r`− (n− 1)`)

(u(k + r`))
[n]
`

]
=

1

(u(k − `))[n−1]`

(21)

Proof. From the definition (3.1), we find that

∆`
1

(u(k))
[n]
`

= −∆n`u(k − (n− 1)`)

(u(k + `))
[n+1]
`

(22)

The proof follows by taking ∆−1` on both sides and replacing k by k−` then replacing

n by n− 1 in (22).

The relation (21) is obtained by applying (8) and taking limit k to ∞ in (20) �

Corollary 4.4. For ` ∈ (0,∞), k ∈ [0,∞), we have

∞∑
r=0

((k + r`)3)
[4]
` − ((k + r`− 3`))

[4]
`

((k + r`)3)
[4]
`

=
1

((k − `)3)[3]`
(23)

Proof. The proof follows by taking u(k) = k3 in (20) and applying (8) �

The following example is an illustration of Corollary (4.4)

Example 4.2. Taking k = 5, ` = 2 in (23), we get

∞∑
r=1

((5 + 2r)3)
[4]
2 − ((5 + 2r − 6))[4]2

((5 + 2r)3)[4]2

=
1

(9)[3]2

(24)

The following theorem is a specified form of discrete summation by parts.
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Theorem 4.5. For k ∈ [0,∞), ` ∈ (0,∞) and n ∈ N(1), we have

∆−1`

[(
u(k) +

∆`u(k)

2

)
∆`u(k)

]
=

(u(k))2

2
(25)

Proof. Taking z(k) = u(k) in (12), we get

∆−1` [u(k)∆`u(k)] = u(k)u(k)−∆−1` [u(k + `)∆`u(k)]

∆−1` [u(k)∆`u(k)] = (u(k))2 −∆−1` [(∆`u(k) + u(k))∆`u(k)]

The proof follows by combining the ∆−1` terms. �

Corollary 4.6. For ` ∈ (0,∞), k ∈ [0,∞), j = k −
[
k

`

]
, we have

k
`

∑
r=1

{(
(k − r`)[n]` +

n`(k − r`)[n−1]`

2

)
n`(k − r`)[n−1]`

}
=

(k
[n]
` )2

2
− (j

[n]
` )2

2
(26)

Proof. The proof follows by taking u(k) = k
[n]
` in Theorem (4.5) and applying

Definition (3.1). �

Example 4.3. Taking k = 5, ` = 2, n = 2 in (26), we get
2∑
r=1

{(
(5− 2r)

[2]
2 +

4(5− 2r)
[1]
2

2

)
4(5− 2r)

[1]
2

}
=

(5
[2]
2 )2

2
− (1

[2]
2 )2

2

112 = 112

5. Higher Order Summation

In this section we find the higher order summation on infinite series of

generalized closed factorial function.

Theorem 5.1. Let m,n ∈ N(1), (m+ 1) ≤ n, kn` 6= 0. Then

∞∑
r=m

(r − 1)(m−1)

(m− 1)!

1

(k −m`+ r`)
(n)
`

=
1

(n− 1)(m)`m(k −m`)(n−m)
`

. (27)

Proof. From the Definitions 5 and 6, we obtain

∆−1`
1

k
(n)
`

∣∣∣∞
k

=
1

(n− 1)`(k − `)(n−1)`

, n ≥ 2. (28)

The proof follows by taking ∆−1` on (28) for (m− 1) times and (9). �

The following example illustrate’s Theorem 5.1 for m=3.
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Example 5.1. For n ≥ 4, k ∈ [3`,∞), ` ∈ (0,∞) and m = 3, equation (27)

becomes
∞∑
r=3

(r − 1)(2)

(2)!(k − (r − 2)`)
(n)
`

=
1

(n− 1)(3)`3(k − 3`)
(n−3)
`

. (29)

In particular, k = 2, ` = 0.5, n = 4 in (29), we obtain
1

2× 1.5× 1× 0.5
+

3

2.5× 2× 1.5× 1
+ · · · = 1

6× 0.54
.

Theorem 5.2. For k 6= 0 and (k + r`)
(2)
` 6= 0, we have

∞∑
r=1

2k + (2r − 1)`(
(k + r`)

(2)
`

)2 =
1

`k2
. (30)

Proof. From Theorem (3.1) and (6), we find

∆−1`
2k + `(

(k + `)
(2)
`

)2 = − 1

`k2
. (31)

The proof follows by applying (8) on (31) for the limit k to ∞. �

The following is an illustration of Theorem 5.2.

Example 5.2. By taking ` = 0.4 in (30), we get

∞∑
r=1

2k + (2r − 1)(0.4)(
(k + r(0.4))

(2)
0.4

)2 =
1

(0.4)k2

In particular, when k = 1,

2 + 1(0.4)

(1.4)2(1)2
+

2 + 3(0.4)

(1.8)2(1.4)2
+

2 + 5(0.4)

(2.2)2(1.8)2
+ · · · = 1

0.4
.

6. Summation on Trigonometric Factorials

In this section, we derive some results on closed functional factorial in

trigonometric functions.

Lemma 6.1. Let p be any real numbers. Then,

∆−1` sin pk =
sin p(k − `)− sin pk

1− cos p`
+ c`(k) (32)

and

∆−1` cos pk =
cos p(k − `)− cos pk

1− cos p`
+ c`(k) (33)
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are solutions of equation (6) when m = 1 and for u(k) = sinpk and cospk

respectively .

Proof. Replacing u(k) by sin pk and cos pk in (5), we find that

∆` sin pk = (cos p`− 1) sin pk + sin p` cos pk, (34)

and

∆` cos pk = (cos p`− 1) cos pk − sin p` sin pk. (35)

Since ∆` is linear, i.e., c∆`u(k) = ∆`cu(k) and (cos p`− 1) and sin p` are constants,

multiplying (34) by (cos p` − 1), (35) by sin p` and then subtracting the second

resultant from the first one, we find that

∆`[(cos p`− 1) sin pk − sin p` cos pk] = (2− 2 cos p`) sin pk (36)

Now (32) follows from (6) and dividing (36) by (2− 2 cos p`).

Similarly multiplying (34) by sin p`, (35) by (cos p`− 1) and then adding them, we

arrive

∆`[sin p` sin pk − (cos p`− 1) cos pk] = (2− 2 cos p`) cos pk (37)

Now (33) follows from (6) and dividing (37) by (2− 2 cos p`). �

Theorem 6.2. Let n ∈ N(1), k ∈ [0,∞) and p be any real number. Then,

∆
−(2n−1)
`

(
sin pk

)[2]
`

=
cos p`

2(2n− 1)!

k
[2n−1]
`

`2n−1
+

(−1)n

22n

sin p(2k − 2n`)

sin2n−1 p`
(38)

and

∆
−(2n)
`

(
sin pk

)[2]
`

=
cos p`

2(2n)!

k
[2n]
`

`2n
+

(−1)n+1

22n+1

cos p(2k − (2n+ 1)`)

sin2n p`
(39)

Proof. From the definition of closed functional factorial, we have

∆−1`
(

sin pk
)[2]
`

= ∆−1` sin pk sin p(k − `)
Applying the formula of sinC sinD and Lemma 6.1 we get

∆−1`
(

sin pk
)[2]
`

=
cos p`

2

k
[1]
`

`
− 1

2

cos p(2k − 3`)− cos p(2k − `)
2(1− cos 2p`)

From the formula of cosC − cosD, we get

∆−1`
(

sin pk
)[2]
`

=
cos p`

2

k
[1]
`

`
− 1

22

sin p(2k − 2`)

sin p`
(40)
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Taking ∆−1` on both sides in (40) and apply the Formula we get

∆−2`
(

sin pk
)[2]
`

=
cos p`

22

k
[2]
`

`2
− 1

23

cos p(2k − 3`)

sin2 p`
(41)

Continuing this process upto n times we get (38) and (39). �

Theorem 6.3. Let n ∈ N(1), k ∈ [0,∞). Then,

∆
−(2n−1)
`

(
sin pk

)[3]
`

= (−1)n
cos p` cos p

(
k − (2n+ 3)`

2

)
22n sin(2n−1) (p`

2
)

+

(−1)n+1 cos p

(
3k − (6n+ 3)`

2

)
22n+1 sin(2n−1) (3p`

2
)

+

(−1)n cos p

(
k +

(3− 2n)`

2

)
22n+1 sin(2n−1) (p`

2
)

(42)

and

∆
−(2n)
`

(
sin pk

)[3]
`

= (−1)n
cos p` sin p (k − (n+ 2)`)

22n+1 sin(2n) (p`
2

)

+
(−1)n+1 sin p (3k − (3n+ 3)`)

22n+2 sin(2n) (3p`
2

)
+

(−1)n sin p (k − (n− 1)`)

22n+2 sin(2n) (p`
2

)
(43)

Proof. Now, ∆−1`
(

sin pk
)[3]
`

= ∆−1` sin pk sin p(k − `) sin p(k − 2`)

Applying the formula of sinC sinD and Lemma 6.1, we get

∆−1`
(

sin pk
)[3]
`

= −
cos p` cos p

(
k − 5`

2

)
22 sin (p`2 )

+

cos p

(
3k − 9`

2

)
23 sin (3p`2 )

−
cos p

(
k +

`

2

)
23 sin (p`2 )

(44)

Taking ∆−1` on both sides in (44) and apply Lemma (6.1) we get

∆−2`
(

sin pk
)[3]
`

= −cos p` sin p (k − 3`)

23 sin2 (p`
2

)
+

sin p (3k − 6`)

24 sin2 (3p`
2

)
− sin p (k)

24 sin2 (p`
2

)
(45)

Continuing this process upto n times we get (42) and (43). �

Theorem 6.4. Let n ∈ N(1), k ∈ [0,∞). Then,

∆
−(2n−1)
`

(
sin pk

)[4]
`

=
cos2 p`

22(2n− 1)!

k
[2n−1]
`

`(2n−1)
+

(−1)n cos p` sin p(2k − (2n+ 4)`)

2(2n+1) sin(2n−1) p`

+
(−1)n sin p(2k − (2n− 1)`)

2(2n+2) sin(2n−1) p`
+

(−1)(n+1) sin p(4k − (4n+ 4)`)

2(2n+2) sin(2n−1) 2p`

+
cos(4p`)

23(2n− 1)!

k
[2n−1]
`

`(2n−1)
+

(−1)n sin p(2k − (2n+ 1)`)

2(2n+2) sin2n−1 p`
(46)
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and

∆
−(2n)
`

(
sin pk

)[4]
`

=
cos2 p`

22(2n)!

k
[2n]
`

`(2n)
+

(−1)n+1 cos p` cos p(2k − (2n+ 5)`)

2(2n+2) sin(2n) p`

+
(−1)n+1 cos p(2k − (2n)`)

2(2n+3) sin(2n) p`
+

(−1)n cos p(4k − (4n+ 6)`)

2(2n+3) sin(2n) 2p`

+
cos(4p`)

23(2n)!

k
[2n]
`

`(2n)
+

(−1)n+1 cos p(2k − (2n+ 2)`)

2(2n+3) sin2n p`
(47)

Proof. Since ∆−1`
(

sin pk
)[4]
`

= ∆−1` sin pk sin p(k − `) sin p(k − 2`) sin p(k − 3`)

By applying Lemma (6.1) to the linera expression of above product, we get,

∆−1`
(

sin pk
)[4]
`

=
cos2 p`

22

k
[1]
`

`
− cos p` sin p(2k − 6`)

23 sin p`
− sin p(2k − `)

24 sin p`

+
sin p(4k − 8`)

24 sin 2p`
+

cos(4p`)

23

k
[1]
`

`1
− sin p(2k − 3`)

24 sin p`
(48)

Now taking ∆−1` in above equation, we get

∆−2`
(

sin pk
)[4]
`

=
cos2 p`

22(2)!

k
[2]
`

`(2)
+

cos p` cos p(2k − 7`)

24 sin(2) p`
+

cos p(2k − 2`)

25 sin(2) p`

− cos p(4k − 10`)

25 sin(2) 2p`
+

cos(4p`)

23(2)!

k
[2]
`

`(2)
+

cos p(2k − 4`)

25 sin2 p`
(49)

Taking ∆−1` upto n times we get (46) and (47) �

2.6 Numerical Example
In this section we present some numerical examples to the finite closed factorial

trigonometric functions.

Example 6.5. In Theorem (3.2) taking n = 3, u(k) =
(

sin pk
)[2]
`

gives[k
`

]∑
r=0

(
r+2
2

)
sin p(k − r`)[2]` +

2∑
r=1

([
k

`

]
+ r

)(r)

r!
∆
−(3−r)
` sin p(j + (2− r)`)(2)`

= ∆−3` sin p(k + 3`)
[2]
` −∆−3` sin p(j + 2`))

[2]
`

In particular, taking k = 3, ` = 2, p = 2 and applying Theorem (6.2) we get

−2.283395695 = −2.283395695
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Example 6.6. In Theorem (3.2) taking n = 4, u(k) =
(

sin pk
)[3]
`

gives[k
`

]∑
r=0

(
r+3
2

)
sin p(k − r`)[3]` +

3∑
r=1

([
k

`

]
+ r

)(r)

r!
∆
−(4−r)
` sin p(j + (2− r)`)(3)`

= ∆−4` sin p(k + 3`)
[3]
` −∆−4` sin p(j + 2`))

[3]
`

In particular taking k = 4, ` = 3, p = 1 and applying Theorem (6.3) we get

−0.4409404378 = −0.4409404378

Like this one can get more example in all the cases.

7. Conclusion

The closed functional form of the factorial using generalized difference operators

illustrates the factorial’s combinatorial and analytic properties. By leveraging the

difference operators, forward differences, and the gamma function, we gain a deeper

understanding of general partial sums on infinite series of rational functions of the

generalized polynomial factorial and trigonometric factorials. Numerical results are

also presented.
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