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Abstract: In this paper, two results has been established to approximate func-
tions belonging to generalized Holder class by a more generalized UC®" means of
Fourier series (F. S.) and conjugate Fourier series (C. F. S.). Very few researchers
worked out in the area of generalized Holder class. The established theorem ex-
tend and generalize the existing result by Nigam and Hadish [6]. Also, we have
derived several new corollaries and useful remarks.
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1 Introduction

Many results on the estimation of error by single and product means in Lipchitz
and Holder classes using trigonometric polynomial have been obtained by the
researchers like [2]-[3] and [7]-[19].

The purpose of this work is to find best approximation by using trigonometric
polynomial. So, here we generalize the results of Nigam and Hadish [6]. We
approximate the two functions g € H{™) (2 > 1) and § € H") (2 > 1) by UC*"
method by F. S. and C. F. S. respectively. Thus, the result of Nigam and Hadish
[6] become the particular cases of our Theorem

Let U = (aq,p) be an infinite triangular matrix satisfying the condition of regularity
[15], i.c.,

q
Zaq’pzl as q — oo,
p=0

agp =0 forp>q, (1.1)



q
Z lagp] < M, a finite constant.
p=0

The sequence-to-sequence transformation

q q

U._ _E :

tg = E  QapSp = D) Gqq-pSq—p (1.2)
p=0 p=0

defines the sequence tf{of triangular matrix means of the sequence {s,} generated
by the sequence of coefficients (a4 p).

If tg — s as ¢ — oo, then the infinite series ZZio hq or the sequence {s,} is
summable to s by a triangular matrix [1].

Let
1 & .
a,m _ ,CO1 § a— 7
Cp = tp = Ba+n BpthhSh'
p h=0

If C)" — s as ¢ — oo, then the infinite series Z;O:o hgq is summable to s by
Cy'™ means [1].

The UC*" means (U-means of C*" means) is given by
q
U.cen ,
by = DGy
p=0
q 1 &
— —1pn
= D appary D Bla Blsn:
p=0 P h=0
If tflj'ca’n — s as g — oo, then Z:io hg is summable to s by U.C*" means.

The regularity of U and C*" methods leads to the regularity of U.C'“" method.

Remark 1: (Example) Consider the series

1+ i(—l)“.zn. (1.3)

which is not (C,«,n) summable and if we take a,, = —+7, then the series
(1.3) is also not summable by U means. But (1.3) is summable by the U.C*"

product means. That’s why the product means are better than the individual
means.

Remark 2: UC*" means changes to



1 «, @, 1 =L .
L (H, 7i7)C*" or H.C™" means if agp = Gy ogrg7n)’
0q)

2. (N,0y)C*" or NgC*" means if a4, = eqP;”, where P, = Z:O 0, # 0;

: o q
3. (N,0,7)C*" or Ny ,C*" means if a4, = e 2, where Ry = >0 0,74 p;

4. (N,0,)C" or NgC" if a,, = %ﬂ.

Let L#[0,27] = {g : [0,27] — R : f x)|Fdx< 0o,z > 1} be a space of
functions. The norm |[.||,) is defined by

1 27 %
— z > 1.
R

As define in [1], w : [0,27] — R is an arbitrary function with w(l)>0 for
0<! < 27 and lh%l+ w(l) = w(0) = 0.
—

Now, we define

O — {g € 10.20] s sl =90 1}

10 w(l)
wnd loC+D) — g
(w) _ (w) _ gl +0) —g()Il, >1
18 = 101 = Y+ supl LD 0o,

Note 1: w(l) and v(l) denotes Zygmund moduli of Continuity [I].

If we consider % as +ive and non-decreasing,

w(27)
191" < max ( , U(%)> gl <o

Thus,
H® c HY cL?; 2> 1.

Remark 3:

1. Ifw(l) =1* in H™) then H") = H, class.

2. If w(l) =1%in H™, then H") = H, . class.

3. If 2 — ooin H™, then H”) — H®) class and H, . = H, class.
Remark 4: The ¢ partial sum of F. S. and C. F. S. is denoted as

™ sin L
sq(9;7) — g(x) = i/O %(DM&

2 sin 5



and

~ ~ cos q+ l
sq(g;2) — (= 277/ P cos g+ 3)! dl

sm 5

1 [ l
—— (1) cot =dl.
= [ vaeor

The error function g is given by

respectively, where

Eq(g) = min g — 14l ,

where t, is a trigonometric polynomial of degree ¢ [I].

We write
¢ (1) = ¢(z,1) = g(z +1) + g(x — 1) — 29(2),
Apm = Pm — Pm+1, M 2> 0,
1 i (v )1
Hq(l) = gz q,pBaJrn ZB aniT’
p=0 2
and
- 1 < 1 P o1 cos(v—i—%)l
Hq(l) = %IE_OQ%I)W;B BWT

2 Main theorems

2.1 Theorem

Ifge H éw) class; z > 1 and % are positive and non-decreasing, then the error
estimation of g by UC*" means of F.S. is

® _ L™ w(l)
P _O<q+1/1l2 (l)dl>

q+1

.con
| =

where U = (ay,,) and w, v are defined as in Note 1 provided

q—1

1
> 1yl =0 () and (4t Dag, = O) (2.1)
p=0



2.2 Theorem

Ifge H éw) class; z > 1 and % are positive and non-decreasing, then the error
estimation of g by UC*" means of C.F.S. is

@) log(q + 1) + 1 /” w(l)
_ _ooslar)+1 dl
i, =9 ( q+1 L 2e() )

q+1

where U = (aq,) and w, v are defined as in Note 1.

3 Lemmas

3.1 Lemma

Under the condition 1 yHy(l)=0(g+1) for 0<i< q?

) = £, sin(ql) < ql.

Proof: Using sin (%

(v+3)1

sin
H.(]) = Ba 13"72
q() 27_(_2 QPBa+n; Sin%

q
1 ot 1
Z aqmw Z Bpfle;’ sin (v + 2) l

p=0

1 s

27T><7

IA

[Hq ()]

Ba+7]

l
ZBO‘ IB"sin (20 +1) = ’
v=0

1

21

q

1 o1 l
Z q,pBW]ZB B"(2v+1)2
p=0 v=0
q
T Z “’BQMZBQ VB (20+1)

p=0

q p
q

IN

| =

1 _
Qq,p 2p + 1 ma+n Z Bgf'ulB:)]
Bp v=0

2,
1
= fz agp(2p+1)

p
{ > BBl = Bg+’7}

v=0

= Z(Qp +1) Z |ag,pl
p=0

= 02q¢+1).



3.2 Lemma

Under the condition 1) and 1 JH () =0 (ﬁ) for ﬁ <Il<m.

Proof: Using sin (%) >

Under the condition , H,()=0 (7) for0<l< 5

IN

IN

IN

L and sin®(ql) < 1, we have

q

i L sin o )
o gaq,p Bg+77 ;Bpfy Bv sin%
1 7|¢ 1 S ot 1
o X i pz:;)a,m, B,ﬁ“*” UZ:(:)BP_U B}l sin (v + 2) l
1< 1 <& a 1y,
21 |2 Gar garr 2 By Bl Im{Ze ) H
p=0 p v=0 v=0
q p p
5 > g, Im{ZeL(”‘“%)l} {-.-ZB;:,}B;Z = Bg+”}
p=0 v=0 v=0
1 L
3 Zaqp Im {€L2 Ze“’l}
p=0 v=0
L 1— eL(p+1)l
3 pzz(:)aqyp Im{e 2 ( R )}‘
1 | < et _ 1
21 ;::an’p Im{ 2¢sin (é) H
1 T | . 1
57 X ;i pz:(:)aqmsm (p+ )2
q—1 P I q I
2% ZAaq_,pZSirP(erl)i +aq,q ZsinQ(p+1)§
p=0 v=0 p=0
qg—1
%2 Z |Aagp| + aq,q
p=0

(Grom)

3.3 Lemma

q+1°



Proof: Using sin (%) >

3.4 Lemma

Under the condition 1) and 1 , Hy(1)

Proof: Using sin (é) >

[Hy ()]

<

IN

IA

IN

IN

2

412

O

X

1
™

LS
2Ny
2m P gotn

q
E Qq,p

1 ™

27r><l

p=0

1 d 1 & a—1
51 2 Gav e 2 Bpmi B
p=0 p v=0

v

a+n
BP =

P

=0

1

> By B

1< 1 & o
g Z Qq,p BaJrn Z Bgfv B'g
p=0 p v=0

1 q
3o {3
p=0

v=

()

1
™

q
1

o E aq,pBaJrn E :
p

l

p=0 v

P

P

=0

0

q 1 P

a—1nn
Zaqvi’ Botn Z Bp—v By
= P y=0

=
[
(=)

0

p

M=

I
=)

p

[(

q
Z ag,psin(p + 1)1

P
1
Qq.p Zcos (U + 2) l
v=0

Ba—l

p—v

=0

P
E (¢0)S]

v=0

(7@31)12) for 37

P
E B;‘;}Bﬂ cos (
v=0

cos Jr1 l
YTy

and | cos(ql)| < 1, we get

ind
sin 5

Bl = Bg‘*”}

and |singl| < 1, we have

1
(Bg_leﬁ cos <v + 2) l)
1

cos (v—i— %)l

1
v+ -

1

))!

<l <.

p
.. a—1 _ +
{. > BIBI = BS "}
v=0

2sin

l

) . . 2p+1

2sin L cos L + 2sin L cos 3L + ... 2sin L cos 22!
a 2 2 2 2 2 2
a.p

0

1

Z |Aag,p| + aq,q

p=0

)

>

v=0

7

11

2

p=0

q—1 P q
Z(a“’ — Qg pt1) Z sin(v 4+ 1)l + aqq Z sin(p + 1)1

0 v=0
q




(Z |Aag,p| + aw) (p+1)
p=0

3 o(ik) o)
of3)

3.5 Lemma

(20, p. 93) Let g € H™, then for 0<l < 7
L lo(- DIl = O(w(D));

2. 6 +9.0) — (D, = {o%?fﬁgi;

3. If w(l) and v(l) are defined as in Note 1, then ||&(- + y,)

, Ay = 6C D).
o (vly) (%3))-

3.6 Lemma

Let g € ng), then for 0<{ < 7:

Lolo(, DIl = O(w(?));

- (S

3. If w(l) and v(1) are defined as in Note 1, then ||¢(- +y,1)

, )=o),
o (vl (47))-

4 Proof of the main Theorems

Proof of the Theorem Using Titchmarsh [5], we have

sm q+ 3L
sl ) = 5 [ 002

blIl >

Now, denoting U.C*" transform of s,(g;x) by thCa’",

P

> (Bi B Bl (g ) - g(:c)))

tg <" (2) = g(2)

p=0 v=0
i 1 < 1 d sin (v + l) l
= (— Y ag,—— Y BelBn—~ 2/ g
/0 ¢ ()Qﬂ_pz::o EIaPBg+7]U§::O p—v Zv Sini

2



- /OW o (1) H,(1)dl. (4.1)

Let
Ry(z) = tC°" () — g(z) = / 6o (D H, (1)l (4.2)
Then .
Ry(a +y) — Ry(x) = / (6(x + 3.1 — Sz, 1)) Hy(1)dl.

Using generalized Minkowski’s inequality, Chui [4], we get

IRyl 49) — RyO), < / 166+ 1 0) — 60D, Hy(D)dl

(/‘”#/” ) 160 +9,0) — B(- D]l Hy(1)dl

= v 4ve, (4.3)

Using Lemmas and serial number (3) of Lemma

v — 0@2¢+1) <v(|y|)/0q+1 “’“%zz)

v(l)

w(r)

= O(v(ly)—7H (4.4)
U(qﬁ)

Also, using Lemmas and serial number (3) of Lemma [3.5] we get
1 g w(l)
(2 — R —=dl | . 4.
ve = o <q+ 1 /11 o9 o ) (45)

By , , and , we have

IR, (. +y) — RyOl, - (w(zht) 1T w()
T ) O<v<qil>>+0<q+1/ Pvmdl)' 0

_1_
q+1

Again applying Minkowski’s inequality, Lemma Lemma and |lo(-, )|, =
O(w(l)), we get

1RO = [ g

z

RN
_ 0 <(2q+ 1)/0&1 w(l)dl) +0 (qil /W “’é%z)

1
q+1

IN

> loC DI, Hy(1)dl




~o(u(ihy))+o (i [ ). 4

HRQ('7 +y) - Rq(')“z
v(lyl)

Putting the values of (4.6) and (4.7) in (4.8), we get

ummgzzo@(qi0)+o(;&/1ﬁ9m>

+

w(zry) 1 w(l)
+O<v(q+11))+0<q+1/1 ZQU(l)dl>. (4.9)

q+1

Now, we have

[Rg(IIS = [[Rq ()] + sup
y7#0

3 a

By the monotonicity of v(l), w(l) = v(l)’;’((ll)) < v(m) f((ll)) for 0<l < , we get

w( L= T w
'&”M:O<Jﬁﬁ>+o@i1/1p$ﬂ0- (4.10)

q+1

Since % is +ive and non-decreasing, therefore

" o vl "
) = S () [ e
()

(o)

Then

w (-1 -
v((qlﬂ)) -9 (qil /$ 1121;(([1)) dl) : (4.11)

From (4.10), (4.11), we get

o L[ w0
H&ML—O<W4/;PWﬂO,
e —0 (q i - /i l;”v((ll)) dl) . (4.12)




Proof of Theorem The s4(g; ) of C.F.S. is given by

50(G:2) — 3(2) = o /O Tyt ey,

2T sin 5

Now, denoting U.C*" transform of s4(g; ) by {g,cm"’ we get

P

q

~ a, ~ 1 - q

B0 (@) = g(x) = D ag, <W§:B§”—JBZZ(SU(9;I)—
p=0 P

v=0

/0 " p(l)

/ ROy AL

p=0 v=0

Let

Then

Ry(e +y) — Ry(a) = /Oﬂ (a4 11, 1) — (1)) H, (1)dL.

Using generalized Minkowski’s inequality Chui [4], we get

= JO 4 J@,

Using Lemmas and serial number (3) of Lemma

S o<v(|y|)7“:((ql+1)) /Om }dl)
s

o (v(lyl)w il) log(q + 1)) :

v(z7)

Also, using Lemmas and serial number (3) of Lemma [3.6]

J® — 0 (/ﬂ v(|y|)l;"v((ll))dz> :

q+1

11

1 & 1 P e cos (v+ l)l
7D Gan parn Y By Bl—

Ry(o) =8 (@) = gla) = | () H (1)L
0

[t = RO < [ 1040 = w0l Hy(a

(/”#/W ) lo- 4 1) — D Hy ()l
)

dl

(4.13)

(4.14)

(4.15)



By (4.13), (4.14), and (4.15), we have

SupHRq<~,+y> ~RO), . <w<q1il> o <q+1>> o ( / w(i) dl) |

y#0 v(Jyl) . 12v(l)

)

(4.16)
Again applying Minkowski’s inequality, Lemma Lemma [3.4 and [[¢(-,1)]|, =
O(w(l)), we get

HRq()

z

=0 <w (q-lu) log(q + 1)) +0 (/T “’lg)dl> . (4.17)

| Rao ) = RaC)

Now

] = ] g o
Putting the values of (.16) and ({I.17) in (4.15), we get
|20 =0 <w <q+11> log(q + 1)> L0 (/i “’l(j)dz>
+ 0 (f((il)) log(q + 1)) +O < /ﬂ l;‘;((ll)) dl) .
| 2a0) ~0 (ffil)) log(q + 1)) o </W l;”U((IZ)) dl) . (4.19)

Using the fact that % is +ive and non-decreasing,

/: wll) gy 5 D\ (1) /; La

Po(l) " —

q+1

Vv
S
N Ve N
Q
= J,»‘»—A +
\_/\)_l o N——



Then

w 1 T

Lﬂ) —0 (/ “’U(l) dl) . (4.20)
From , , we get
-0 <log(q +1) /; l;"v((ll)) dl) +0 < /i l;Uv((ll)) dl) :

v

|00

o
tq —g

z

5 Corollaries

Several known and previous results can be derived from the main results as:

5.1 Corollary
Let 0 < p<{ <1andge€ H(C),z; z > 1. Then

e~ = {0[(log(q +he)(a+ 1) if0.< p<g =L )
‘ .= | Ol(loglg + De)(loglg +1)m)] if p=0,C= '

Proof: Putting w(l) =15, v(l) =17, 0 < p<¢ < 1 in (4.21)

™
i, - o

log(g+ 1)e /
(p),%

¢ ""%ll}

1

O ((loglq + D) [T 17072d1)  if0< p<C <1,
B O(( (q+1))f1l1dl) ifp=0,¢=1.

By solving it, we easily get the result in condition (5.1).

5.2 Corollary

Let 0 < p<( <1, a,b € R and suppose w(l) = (1oglcl)“’ o(l) = o<l <,
1

(log%)b’
g e Hz(w), z > 1. Then

O |loglatDe(a+l) ifC(=panda—b> -1,

HEU_Ca,n @ _ {log(g+1)}°~

13



Proof: We have

v 7T ¢
g(llj.cam P (v) =0 log(q—|—1)e/1 B 1la ——dl
. . 12 (log 1) (o 1)
™ 1 b—a
= O |log(q+ 1)@/1 16=p=2 <log l) dl]
r+1

O% if(t=panda—b>—1,

O% ifC=panda—b=—1.

5.3 Corrolary
m, then U.C*" means reduces to (H, ﬁ)C’O‘*" means and
() is approximated by (H, qﬁ)Oa’" means of F. S. as

the function g € H;"
(©) 1 w()
2 _O<q+1/1 l%(l)dl)'

q+1

Ifag, =

H.Cc*"
tq

-9

5.4 Corrolary

Ifag, = ‘9‘;3—*”, then U.C*" means reduces to Ng.C*" and the function g € H™
q
is approximated by Ny.C'*T means of F. S. as

® 1 w()
—All. O<q+1/1 z%(z)dl)'

q+1

1\/:4).6”1’77
|

5.5 Corrolary

If agp = qu‘%‘;”’, then U.C*" means reduces to Ny ..C*" and the function g €

H™ is approximated by Np,,.C*" means of F. S. as

) 1 ™ w(l)
91, O(q—i—l/l l%(l)dl)'

q+1

N0,7~Ca’n
ty -

5.6 Corollary

By using the conditions as in Corollary the function g € H. ) i approximated

by (H, ﬁ)Ca’" means of C. F. S. as

FH.OM
i -

j i”) =0 ((1og(q+ 1+1) /j léuzf(ll))dl> '

q+1

14



5.7

Corrolary

04

If agp = %%, then U.C*" means reduces to Ny.C*" and the function g € ng)
q
is approximated by Ny.C'*" means of C. F. S. as

5.8

TNy.C*"M ~
iy =3

iv) —0 ((log(q+ 1) + 1) /; lzuij((ll))dl) .

q+1

Corrolary

If agp, = Y9070 then U.C*" means reduces to Ny -.C*" and the function g €

Rq

Hf,w) is approximated by Ny ,.C*" means of C. F. S. as

+Ng ,.C®N
|7

i i”) =0 ((log(q+ 1)+ 1)/? Z;Uv((ll)) dl) '

q+1

Remark 5:

1.

If = — oo then H{™ reduces to H® class. Also taking w(l) = I¢ and
v(l) = 1?7 in H™) class, it reduces to H. class; then by taking p = 0 in H
class, it reduces to Lip( class.

. By taking w(l) = ¢ and v(I) = I” in Result H™ class reduces to He.;

then, by taking p = 0 in H , class, it reduces to Lip(¢, z) class.

6 Particular cases

1.

By putting = 0 and @ = 1 in the Theorem and Theorem [2.2] our
results reduces to the result of Nigam and Hadish [6].

By using Remark 5(1), n = 0, and o = 1, in the main Theorem our
results reduces to the result of Dhakal [2].

By using Remark 5(2) and taking n = 0, a = 1, a,, = p"%’;q’”, where
R, = E:n:O PmGr—m in the main Theorem our results reduces to the
result of Kushwaha and Dhakal [g].

By using Remark 5(1) and taking n = 0, & = 1, ay, = p’%’;qm, where
R, = anzo PmGr—m in the main Theorem our results reduces to the
result of Dhakal [3].

7 Conclusion

The approximation theory is a field of great practical significance. Analysis of
periodic functions are important because of its applications in the engineering

15



fields like digital communication, digital signal processing, mechanical engineering
etc. These functions are derived using a polynomial approximation function and
a Fourier truncated series. The closest estimate can be carried out using either a
Fourier approximation or a polynomial approximation. The polynomial approx-
imation of the function is done using Taylor series expansion, and the quality of
the approximation is dependent on the number of terms utilized. Naturally, a
function must be infinite times differentiable in some interval in order to have a
Taylor series, which is a fairly strict requirement. Nevertheless, sines and cosines
functions are used in Fourier approximation and act as far more adaptable compo-
nents than powers of any variable. Sines and cosines are useful in approximating
non-analytical functions as well as wildly discontinuous ones. Due to their numer-
ous uses, Fourier approximation has taken on significant new dimensions in signal
analysis.

The result focuses on approximation of functions g and § belongings to gener-
alized H{", z > 1 Hélder class using Matrix-C" (U.C*") methods of F. S. and
C.F.S. respectively. As we know that product summability methods are better
than the individual methods. So, here we introduce the product method (U.C*™),
which is better than the individual Matrix-U method and C*" method. In sum-
mary, the aim of all these measures is to minimize approximation errors and im-
prove accuracy. The more the authors reduce the error, the stronger the results
will be. The concept of product summarizability is very useful. Moreover, some
previous known results become the particular cases of our Result 2.1]
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