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ABSTRACT 
 

We proposed an algorithm for the finest approximating solutions of  second-order ordinary linear differential 
equations based on the Galerkin technique by using Laguerre and Hermite polynomials. The approach is to 
convert Dirichlet or mixed BCs, using the shooting method has been used in conjuction with the secant and 
Runge-Kutta method. Accuracy and efficiency are dependent on the size of the set of polynomials and the 
procedure in our case is simpler as compared to the methods such as spline and Bernstein polynomials for 
solving differential equations. The accuracy of the three test problems is testified through L2 and L∞ norms, 
wherein solutions obtained using Hermite polynomials are better than Laguerre and as such better than the 
solution obtained by any other numerical techniques. The visibility of solutions is depicted through tables and 
graphs. 
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I. INTRODUCTION 
 
The goal of numerical analysis is to find the approximate solution to some real physical problems by using 
different numerical techniques, especially when analytical solutions are unavailable or very difficult to obtain. A 
complete solution of governing equation at the boundaries. The conditions may be specified as an initial value 
or Boundary value. 
Many problems in engineering and science can be formulated as two-point Boundary Value Problem (BVPs), 
like mechanical vibration analysis, the vibration of spring, and many others. This shows that the numerical 
methods used to approximate the solutions of Two-point BVPs play a vital role in all branches of science and 
engineering. Among different numerical methods used to approximate two-point BVPs in terms of differential 
equations are the shooting method, finite difference method, finite element method, Variational 
method(Weighted residual methods, Ritz method), and others have been used to solve the two-point boundary 
value problems. Both in finite element methods and Variational methods the main attempts were to look at an 
approximate solution in the form of a linear combination of suitable approximation functions and undetermined 
coefficients (2). In (3) Bernstein polynomials were used for solution of second-order differential equations with 
the Laplace decomposition method, in (5) a numerical method is established to solve second-order ODE with 
Neumann and Cauchy boundary conditions using Hermite polynomials, in (6) a parametric cubic spline solution 
of two-point BVPs were obtained, fourth-order BVPs by the Galerkin method with cubic B-Splines were solved 
by considering different cases on the boundary condition (7), numerical solution of second-order ODEs with 
Galerkin, Petrov-Galerkin, Collocation, Least-square method (9),(10),(11), the numerical solution of RLW 
equation using quadratic B-Splines (12). 
The most available method on Galerkin used the weighted residual method; in this paper the Neumann boundary 
conditions are computed by the shooting method we incorporate the secant method. We use the technique of the 
Galerkin method for viding numerical solutions for the second-order linear ordinary differential equation with 
the boundary condition based on Laguerre and Hermite polynomials basis, the formulation is derived. Two types 
of boundary conditions are considered at this time in this paper: The first kind of boundary condition and the 
third kind boundary condition. This paper is organized as follows. In Section II, we explain the importance of 
our research. In Section III, we introduce basic concepts and the importance of Laguerre polynomials, Hermite 
polynomials, the shooting method, the Runge-Kutta method, and the secant method. In Section IV, we explain 
the basic concepts of Galerkin method. The main results are given in Section V, where the development of the 



Galerkin method is presented. In Section VI, several numerical results and discussions are given. The 
conclusion is given in Section VII. In the last, a graph and error table between exact and approximate solutions 
are given. 
 

II. GALERKIN METHOD 
 
The Galerkin method was invented in 1915 by Russian mathematician Boris Grigoryevich Galerkin and the 
origin of the method is generally associated with a paper published by Galerkin in 1915 on the elastic 
equilibrium of rods and thin plates. The Galerkin method can be used to approximate the solution to ordinary 
differential equation, partial differential equations, and integral equations. 
  The Galerkin Method is a member of the methods of weighted residuals. Both in FEM and Varitional methods, 
the main attempts were to look for an approximate solution in the form of a linear combination of suitable 
approximate functions and undetermined coefficients. For a vector space of functions V, if 𝑆 = {𝜓 (𝑥)}  be 
the basis of V, a set of linearly independent functions, any function 𝑓(𝑥) ∈ 𝑉 could be uniquely written as a 
linear combination of basis as: 
 

𝑓(𝑥) = ∑ 𝑐 𝜓                                                                 (1) 
 
Suppose that the approximate solution of the differential equation, 𝐷(𝑢) = 𝐿 𝑢(𝑥) + 𝑓(𝑥) = 0, on the 
boundary 𝐵(𝑢) = [𝑎, 𝑏] is in the form: 
 

𝑢(𝑥) ≈ 𝑈 (𝑥) = ∑ 𝑐 𝜓 (𝑥) + 𝜓 (𝑥)                                                     (2) 
 

Where 𝑈 (𝑥) is the approximate solution, 𝑢(𝑥) is the exact solution, 𝐿, is differential operator, 𝑓 is a given 
function, 𝜓 (𝑥)′𝑠 are finite number of basis functions and 𝑐  unknown coefficients for 𝑗 = 1,2,3, … , 𝑁. 
The term method of weighted residuals was originally coined by Vichnevetsky (11). Hence the methods of 
weighted residual are presented by following generalized inner product: 
 

∫ 𝑤 (𝑥)𝑅 𝑥, 𝑐 𝑑𝑥 = 0                                                                 (3) 
 

Where, 

𝑅 𝑥, 𝑐 = 𝐷 𝑈 (𝑥) − 𝐿 𝑈 (𝑥) + 𝑓(𝑥) and 𝑤 (𝑥) are a set of linearly independent functions, called 

weight functions which in general can be different from the approximate functions 𝜓 , this method is known as 
the weighted-residual method. 
If 𝜓 (𝑥) = 𝑤 (𝑥) in equation (3), then the special name of the weighted-residual method is known as the 
Galerkin method. Thus Galerkin method is one of the weighted residual methods in which the approximate 
function is the same as the weighted function and hence it is also used to find the approximate solution of two-
point boundary value problems. 
 

III. PROPOSED METHOD 
 
In this section firstely we apply the Galerkin method to second-order linear differential equation, secondly, 
secant and Runge-Kutta methods are used in the shooting method for converting Dirichlet or mixed boundary 
condition to Neumann boundary conditions. 
Consider a second-order linear differential equation of the form 
 

𝑝(𝑥) + 𝑞(𝑥)𝑢 − 𝑟(𝑥) = 0, 𝑎 ≤ 𝑥 ≤ 𝑏                                              (4) 

 
With the boundary conditions,  
 

𝛼 𝑢(𝑎) + 𝛼 𝑢 (𝑎) = 𝑐                                                                     (5) 
 
 

𝛽 𝑢(𝑏) + 𝛽 𝑢 (𝑏) = 𝑐                                                                    (6) 
 

Where 𝛼 , 𝛽 , 𝛼 , 𝛽 , 𝑐 , 𝑐  are constant and 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) are continuous functions. 



The solution of the differential equation (4 − 6) is approximated as 
 

𝑢(𝑥) ≈ 𝑈 (𝑥) = ∑ 𝑐 𝜓 , 𝑁 ≥ 1                                                       (7) 
 

Substituting (1) into (4), the Galerkin weighted residual equations are: 
 

∫ 𝑝(𝑥) + 𝑞(𝑥)𝑈 (𝑥) − 𝑟(𝑥) 𝜓 (𝑥)𝑑𝑥 = 0                                          (8) 

 
Simplifying, we obtain 
 

𝑝(𝑥)
𝑑𝜓

𝑑𝑥

𝑑𝜓

𝑑𝑥
+ 𝑞(𝑥)𝜓 (𝑥)𝜓 (𝑥) 𝑑𝑥 = 𝑟(𝑥)𝜓 (𝑥) 𝑑𝑥 + 𝜓 (𝑏)𝑝(𝑏)𝑈′ (𝑏) − 𝜓 (𝑎)𝑝(𝑎)𝑈′ (𝑎) 

 
Or in matrix notations, 
 

∑ 𝐾 𝑐 = 𝐹                                                                     (9) 

 

Where, 𝐾 = ∫ 𝑝(𝑥) + 𝑞(𝑥)𝜓 (𝑥)𝜓 (𝑥) 𝑑𝑥 

 

𝐹 = 𝑟(𝑥)𝜓 (𝑥) 𝑑𝑥 + 𝜓 (𝑏)𝑝(𝑏)𝑈′ (𝑏) − 𝜓 (𝑎)𝑝(𝑎)𝑈′ (𝑎) 

 
𝐾   gives the stiffness matrix, we obtain the values of the parameters 𝑐 ′𝑠 by solving the system(9) and then 

substitute into (7) to get the approximate solution 𝑈 (𝑥) of the desired BVP (4 − 6). 
Equation (9) above needs to know the values of 𝑈′ (𝑎) and 𝑈′ (𝑏) which are approximately equal to 𝑢′(𝑎) and 
𝑢′(𝑏) respectively, where 𝑢 is the exact solution of the BVP. 
Consider BVP with 
Mixed boundary condition: 
 

𝑢(𝑎) = 𝑐 , 𝑢 (𝑏) = 𝑐                                                                      (10) 
And 
Dirichlet boundary condition: 
 

𝑢(𝑎) = 𝑐 , 𝑢(𝑏) = 𝑐                                                                    (11) 
 

In this case, it is impossible to use the above method directly; since 𝑢′(𝑎) is not given in mixed type boundary 
condition and in Dirichlet boundary condition 𝑢′(𝑎) and 𝑢′(𝑏) both are not given. It needs to convert the BVP 
into a Neumann-type boundary value problem. The conversion is made by using different numerical methods. 
 
Consider solving the BVP 
 

𝑝(𝑥) + 𝑞(𝑥)𝑢 − 𝑟(𝑥) = 0, 𝑎 ≤ 𝑥 ≤ 𝑏                                                  (12) 

 
With Dirichlet boundary condition 
 

𝑢(𝑎) = 𝑐 , 𝑢(𝑏) = 𝑐  
 

Equation is to solve for 𝑢′(𝑎) and 𝑢′(𝑏) hoping that 𝑢(𝑏) = 𝑐 . In order to find 𝑢′(𝑎) such that 𝑢(𝑏) = 𝑐 , 
guess 𝑢′(𝑎) = 𝑢  and solve for 𝑢(𝑏) using R-K method for second order ODE, after having a value using the 
guess, denote the approximate solution 𝑢  and hope 𝑢 (𝑏) = 𝑐 . If not, use another guess for 𝑢′(𝑎) and try to 
solve using R-K method. This process is repeated and can be done systematically until choice satisfies 𝑢(𝑏). 
To do this, the following algorithm 



Step 1:- Select 𝑢  so that 𝑢 (𝑏) = 𝑐 . Let 𝜓(𝑢 ) = 𝑢 (𝑏) − 𝑐 . 
The guess for 𝑢  
Step 2:- Now the objective is simply to solve for 𝜓(𝑢 ) = 0, hence secant method can be used. 
Step 3:- Computation of 𝑢  
Suppose the solutions 𝑢 (𝑏) and 𝑢 (𝑏) are obtained from guess 𝑢  and 𝑢  respectively. 
Step 4:- Now using the secant method to find 𝑧  given by  
 

𝑢 =
𝑢 𝜓(𝑢 ) − 𝑢 𝜓(𝑢 )

𝜓(𝑢 ) − 𝜓(𝑢 )
, 𝑘 = 1,2,3, … 

 
Following this sequence of iteration ∃ 𝑢  such that 
 
𝑢 (𝑏) = 𝑢(𝑏) and 𝑢′ (𝑏) = 𝑢 ( ) = 𝜒 (𝑠𝑎𝑦) 
 
Thus the Neumann condition 
 

𝑢 (𝑎) = 𝑢  
𝑢 (𝑏) = 𝜒  

 
Conversion of the Domain of  the BVP 
The given BVP defined on the arbitrary interval [𝑎, 𝑏] must be converted into an equivalent BVP is defined on 
[0,1]. So the approximating polynomial is defined on [0,1]. Since the Hermite polynomial is defined on [0,1], it 
is possible to use the Hermite polynomial after converting the BVP defined on the arbitrary interval [𝑎, 𝑏] into 
an equivalent BVP is defined on [0,1]. 
The BVP can be converted to an equivalent problem on [0,1], by letting 𝑥 = (𝑏 − 𝑎)𝑥 + 𝑎. Then equation (4) is 
equivalent to the BVP 
 

( )
𝑝 (𝑥) + 𝑞 (𝑥)𝑢 − 𝑟 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1                                 (13) 

 
Subject to the boundary conditions 
 

𝛼 𝑢(0) + 𝛼 𝑢 (0) = 𝑐                                                            (14) 

 

𝛽 𝑢(1) + 𝛽 𝑢 (1) = 𝑐                                                          (15) 

 
Where, 𝑝 (𝑥) = 𝑝 (𝑏 − 𝑎)𝑥 + 𝑎 , 𝑞 (𝑥) = 𝑞 (𝑏 − 𝑎)𝑥 + 𝑎  and 𝑟 (𝑥) = 𝑟 (𝑏 − 𝑎)𝑥 + 𝑎 . 
 
 

IV. NUMERICAL RESULTS AND DISCUSSION 
 
To show the versatility of the numerical algorithm, we presented three numerical experiments. The accuracy and 
efficiency of the method are tested by the normed error of the above Galerkin approach, 𝐿  and 𝐿  error (15) 
measured based on the following formulae: 
 

𝐿 = 𝑢 𝑥 − 𝑢 . 𝑥  

 
𝐿 = max 𝑢 𝑥 − 𝑢 . 𝑥                                                (16) 

 
The numerical outcomes are compared with the exact or approximate solutions. The results are reported in 
tables and figure where computations are carried out on MATLAB R2018a. 
 
Problem 1: Consider a one-dimensional heat conduction/convection equation (4) 
 



−𝑑

𝑑𝑥
𝑎

𝑑𝑢

𝑑𝑥
+ 𝑐𝑢 = 𝑞; 0 < 𝑥 < 1 

 

𝑢(0) = 𝑢 , 𝑎 + 𝛽(𝑢 − 𝑢 ) = 𝑄  at 𝑥 = 1 

 
Where 𝑎 and 𝑞 are functions of 𝑥, and 𝛽, 𝑐, 𝑢  and 𝑄  are constants.  
 
Case 1 By taking, 𝑎 = 1, 𝑐 = 1, 𝑢 = 1, 𝑄 = 𝛽 = 0 
 

−𝑑 𝑢

𝑑𝑥
+ 𝑢 = 𝑥 ; 0 < 𝑥 < 1 

 
Subject to the boundary condition 
 

𝑢(0) = 1, 𝑢 ( ) = 0 
 

The exact solution is  
 

𝑢(𝑥) = 𝑥 −
𝑒 (2𝑒 + 1)

(𝑒 + 1)
+

𝑒 (2𝑒 − 𝑒 )

(𝑒 + 1)
+ 2 

 
The above problem is with a mixed boundary condition to apply the above method. Now assume a guess 
depending on the value of 𝑢 (1) = 0, let 𝑢 = 𝑢 ( ) = 0 be the first guess and hoping that 𝑢 (1) = 0. The next 
step is using Runge-Kutta method for the second-order differential equation (4), where 𝑢 (𝑥) = 𝑓(𝑥, 𝑢, 𝑢′). But 
for this 𝑢 (𝑥) = 𝑓(𝑥, 𝑢). Since 𝑓 is independent of 𝑢 . 
Given that 𝑥 = 0, 𝑥 = 1 and 𝑢(0) = 1 and take step size ℎ = 0.05, 𝑢 ( ) = 0. 
 
R-K Method for the linear second-order ordinary differential equation: 
 

𝑢 = 𝑢 + ℎ𝑦′ +
1

2
(𝐾 + 𝐾 ) 

 

𝑢′ = 𝑢′ +
1

2ℎ
(𝐾 + 3𝐾 ) 

 
Where 

 𝐾 = 𝑓(𝑥 , 𝑢  ), 𝐾 = 𝑓 𝑥 + ℎ, 𝑢 + ℎ𝑢′ + 𝐾 ,  for 𝑗 = 0, 1, 2, 3, … . , 20 

 
This gives the result in Table 2 for the first iteration. Where in the 𝑖𝑡ℎ  step 𝑥 = 𝑥 , 𝑢 = 𝑢(𝑥 ) and 𝑢 = 𝑢′(𝑥 ). 
Referring to table 2, take 𝑢′ (1) = 0.82480. But 𝑢′ (1) ≠ 𝑢′(1) 
 
𝜓(𝑢 ) = 𝑢′ (0) − 0 = 0.82480. 
 
Now we guess another value 𝑢 = 1. Referring to table 3, 𝑢′ (1) = 2.36787. 
 
𝜓(𝑢 ) = 𝑢′ (0) − 0 = 2.36787. 
 
Then find 𝑢  (𝐵𝑦 𝑡ℎ𝑒 𝑠𝑒𝑐𝑎𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑) 
 

𝑢 =
𝑢 𝜓(𝑢 ) − 𝑢 𝜓(𝑢 )

𝜓(𝑢 ) − 𝜓(𝑢 )
= −0.534518 

 
Referring to table 4, 𝑢′ (1) = 0.00000, 𝑢 (0) ≈ −0.534518. 
 
Thus, the Neumann boundary value problem is given by  
 



−𝑑 𝑢

𝑑𝑥
+ 𝑢 = 𝑥 ; 0 ≤ 𝑥 ≤ 1 

 
𝑢 (0) = −0.534518, 𝑢 (1) = 0.                                                            (17) 

 
Now suppose that 𝑈  is the approximate solution of (17) given by the linear combination of unknown 
parameters and basis functions. 
Results have been shown for different values of 𝑥  in Figure 6 showing the approximate solution with Hermite 
and Laguerre polynomials. 
 
Problem 2: Consider the second-order linear ODE 
 

𝑑 𝑢

𝑑𝑥
= 𝑢 + 𝑥 

With Dirichlet boundary condition 
 

𝑢(0) = 1, 𝑢(1) = 2 
 

The exact solution is given by: 
 

𝑢(𝑥) =
3𝑒 − 1

𝑒 − 1
𝑒 +

𝑒(𝑒 − 3)

𝑒 − 1
𝑒 − 𝑥 

 
To apply the above method, one needs to convert the given boundary condition into a Neumann boundary 
condition by using shooting method. 
Now assume a guess depending on the value of  𝑢(1) = 2, let 𝑢 = 𝑢′(0) = 0 be the first guess and hoping that 
𝑢(1) = 𝑢 (1) = 2. The next step is using the Runge-Kutta method for the second-order differential equation. 
Given that 𝑥 = 0, 𝑥 = 1 and 𝑢(0) = 1 and take step size  ℎ = 0.05. 
This gives the result in Table 5 for the first iteration Refkerring to Table 5, take 𝑢 (1) = 1.7183. But 
 𝑢 (1) ≠ 𝑢(1) 
 
𝜓(𝑢 ) = 𝑢 (1) − 2 = 1.7183 − 2 = −0.2817 
 
Now we guess another value 𝑢 = 1. Referring to Table 6, 𝑢 (1) = 2.8935. But 𝑢 (1) ≠ 𝑢(1) 
 
𝜓(𝑢 ) = 𝑢 (1) − 2 = 2.8935 − 2 = 0.8935. 
 
Then find 𝑢 (𝑏𝑦 𝑠𝑒𝑐𝑎𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑) 
 

𝑢 =
𝑢 𝜓(𝑢 ) − 𝑢 𝜓(𝑢 )

𝜓(𝑢 ) − 𝜓(𝑢 )
= 0.2397 

 
Referring to Table 7, 𝑢 (1) = 2.0000 
 
𝜓(𝑢 ) = 𝑢 (1) − 2 = 0.0000 
⇒ 𝑢′(0) ≈ 0.2397 and 𝑢′(1) ≈ 2.08812 
 
Thus the Neumann boundary value problem 
 

𝑑 𝑢

𝑑𝑥
= 𝑢 + 𝑥; 0 ≤ 𝑥 ≤ 1 

 
𝑢 (0) = 0.23972, 𝑢 (1) = 2.08812                                                  (20) 

 
Now, suppose that 𝑈  is the approximate solution of (20) given by the linear combination of unknown 
parameters and basis functions. 
Results have been shown for different values of 𝑥 in Table 10 for 𝑛 = 4 and 𝑛 = 6. Also, Figure 7 and Figure 8 
show the exact and approximate solution with Hermite and Laguerre polynomials. 



 In Problem 1 and Problem 2, we have given mixed and Dirichlet boundary conditions. According to our 
Galerkin approach, mixed and Dirichlet boundary condition needs to convert into Neumann boundary condition. 
A comparison table and graph have been shown for error analysis. After comparison, we see that Galerkin 
approach with Hermite basis function gives a better result than Laguerre basis functions. There is a drawback of 
this method with Laguerre basis function that, sometimes stiffness matrix close to singular as increases the 
degree of basis function, then does not work well. 
 
 In Table 1 the maximum error occurred in Problem 1 and Problem 2 with Laguerre basis function that Hermite 
basis functions. 
 

Table 1: Computed 𝑳 -error and 𝑳𝟐-error 
 
Problems 𝐿  𝐿  𝐿  𝐿  
 (Laguerre poly.) (Laguerre poly.) (Hermite poly.) (Hermite poly.) 
Problem 1 (Case 1) 5 × 10  2.5 × 10  3 × 10  1.2 × 10  
Problem 1 (Case 2) 8 × 10  3.55 × 10  1 × 10  2.24 × 10  
Problem 2 9 × 10  2.10 × 10  4.6 × 10  1.12 × 10  
 
 
Table 2                                                                    Table 3                                                             Table 4                                                                        
 

𝑥 𝑢 𝑢′ 
0.00000 1.00000 0.00000 
0.05000 1.00125 0.04998 
0.10000 1.00500 0.09983 
0.15000 1.01123 0.14944 
0.20000 1.01993 0.19866 
0.25000 1.03109 0.24739 
0.30000 1.04466 0.29548 
0.35000 1.06062 0.34281 
0.40000 1.07893 0.38925 
0.45000 1.09953 0.43466 
0.50000 1.12237 0.47891 
0.55000 1.14740 0.52185 
0.60000 1.17453 0.56335 
0.65000 1.20371 0.60325 
0.70000 1.23483 0.64142 
0.75000 1.26782 0.67768 
0.80000 1.30256 0.71190 
0.85000 1.33897 0.74389 
0.90000 1.37691 0.77348 
0.95000 1.41627 0.80052 
1.00000 1.45692 0.82480 
 

 
 
 
 
 
 
 
 
 

𝑥 𝑢 𝑢′ 
0.00000 1.00000 1.00000 
0.05000 1.05127 1.05123 
0.10000 1.10516 1.10484 
0.15000 1.16179 1.16071 
0.20000 1.22127 1.21873 
0.25000 1.28370 1.27880 
0.30000 1.34918 1.34082 
0.35000 1.41781 1.40469 
0.40000 1.48968 1.47032 
0.45000 1.56487 1.53763 
0.50000 1.64347 1.60653 
0.55000 1.72555 1.67695 
0.60000 1.81119 1.74881 
0.65000 1.90045 1.82204 
0.70000 1.99341 1.89658 
0.75000 2.09013 1.97236 
0.80000 2.19067 2.04933 
0.85000 2.29508 2.12741 
0.90000 2.40343 2.20657 
0.95000 2.51576 2.28674 
1.00000 2.63212 2.36787 

𝑥 𝑢 𝑢′ 
0.00000 1.00000 -0.53452 
0.05000 0.97451 -0.48521 
0.10000 0.95145 -0.43736 
0.15000 0.93075 -0.39111 
0.20000 0.91232 -0.34658 
0.25000 0.89606 -0.30392 
0.30000 0.88189 -0.26327 
0.35000 0.86970 -0.22478 
0.40000 0.85937 -0.18860 
0.45000 0.85080 -0.15490 
0.50000 0.84384 -0.12383 
0.55000 0.83837 -0.09557 
0.60000 0.83423 -0.07030 
0.65000 0.83128 -0.04821 
0.70000 0.82935 -0.02949 
0.75000 0.82827 -0.01434 
0.80000 0.82786 -0.00299 
0.85000 0.82791 0.00437 
0.90000 0.82822 0.00748 
0.95000 0.82858 0.00611 
1.00000 0.82875 0.00000 



                                                      

               Table 5 
 
 

𝑥 𝑢 𝑢′ 
0.0000 1.0000 0.0000 
0.0500 1.0013 0.0513 
0.1000 1.0052 0.1052 
0.1500 1.0118 0.1618 
0.2000 1.0214 0.2214 
0.2500 1.0340 0.2840 
0.3000 1.0499 0.3499 
0.3500 1.0691 0.4191 
0.4000 1.0918 0.4918 
0.4500 1.1183 0.5683 
0.5000 1.1487 0.6487 
0.5500 1.1833 0.7332 
0.6000 1.2221 0.8221 
0.6500 1.2655 0.9155 
0.7000 1.3138 1.0137 
0.7500 1.3670 1.1170 
0.8000 1.4255 1.2255 
0.8500 1.4896 1.3396 
0.9000 1.5596 1.4596 
0.9500 1.6357 1.5857 
1.0000 1.7183 1.7183 

               Table 6 
 
 

𝑥 𝑢 𝑢′ 
0.0000 1.0000 1.0000 
0.0500 1.0513 1.0525 
0.1000 1.1053 1.1102 
0.1500 1.1624 1.1731 
0.2000 1.2227 1.2415 
0.2500 1.2866 1.3154 
0.3000 1.3544 1.3952 
0.3500 1.4263 1.4809 
0.4000 1.5026 1.5729 
0.4500 1.5837 1.6713 
0.5000 1.6698 1.7763 
0.5500 1.7614 1.8883 
0.6000 1.8588 2.0076 
0.6500 1.9623 2.1343 
0.7000 2.0723 2.2689 
0.7500 2.1893 2.4117 
0.8000 2.3136 2.5630 
0.8500 2.4458 2.7232 
0.9000 2.5861 2.8927 
0.9500 2.7352 3.0719 
1.0000 2.8935 3.2613 

               Table 7 
 
 

𝑥 𝑢 𝑢′ 
0.0000 1.0000 0.2397 
0.0500 1.0133 0.2913 
0.1000 1.0292 0.3461 
0.1500 1.0479 0.4043 
0.2000 1.0697 0.4659 
0.2500 1.0946 0.5313 
0.3000 1.1229 0.6004 
0.3500 1.1547 0.6736 
0.4000 1.1903 0.7510 
0.4500 1.2299 0.8327 
0.5000 1.2736 0.9190 
0.5500 1.3218 1.0101 
0.6000 1.3747 1.1063 
0.6500 1.4326 1.2077 
0.7000 1.4956 1.3146 
0.7500 1.5641 1.4274 
0.8000 1.6384 1.5461 
0.8500 1.7188 1.6713 
0.9000 1.8057 1.8031 
0.9500 1.8993 1.9420 
1.0000 2.0000 2.0882 

 
Table 8: Compute absolute error in the scientific notation of Case 1 

 

𝑥 Exact 
solution 

Absolute error(n=4) 
(Laguerre poly.) 

Absolute error(n=6) 
(Laguerre poly.) 

Absolute error(n=4) 
(Hermite poly.) 

Absolute error(n=6) 
(Hermite poly.) 

0.0 1.0000 0 × 10  0 × 10  6 × 10  0 × 10  
0.1 0.9555 3 × 10  4 × 10  4.9 × 10  0 × 10  
0.2 0.9151 1 × 10  3 × 10  4.2 × 10  1 × 10  
0.3 0.8838 0 × 10  1 × 10  2.7 × 10  2 × 10  
0.4 0.8605 3 × 10  1 × 10  9.7 × 10  0 × 10  
0.5 0.8445 3 × 10  1 × 10  1.35 × 10  1 × 10  
0.6 0.8345 3 × 10  1 × 10  1.23 × 10  0 × 10  
0.7 0.8294 1 × 10  2 × 10  7 × 10  2 × 10  
0.8 0.8279 2 × 10  3 × 10  3 × 10  3 × 10  
0.9 0.8282 7 × 10  5 × 10  3.2 × 10  1 × 10  
1.0 0.8288 0 × 10  4 × 10  2 × 10  2 × 10  

 
 
 
 
 
 
 
 
 
 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Compute absolute error in the scientific notation of Case 2 
  

𝑥 Exact 
solution 

Absolute 
error(n=4) 

(Laguerre poly.) 

Absolute 
error(n=6) 

(Laguerre poly.) 

Absolute 
error(n=4) 

(Hermite poly.) 

Absolute 
error(n=6) 

(Hermite poly.) 
0.0 1.0000 6 × 10  1.1 × 10  1 × 10  0 × 10  
0.1 1.5547 1.2 × 10  8 × 10  6.6 × 10  1 × 10  
0.2 2.1451 1 × 10  5 × 10  6.2 × 10  0 × 10  
0.3 2.7013 3 × 10  3 × 10  2.6 × 10  0 × 10  
0.4 3.2163 4 × 10  1 × 10  1.3 × 10  0 × 10  
0.5 3.6834 8 × 10  0 × 10  3.4 × 10  1 × 10  
0.6 4.0961 6 × 10  3 × 10  2.9 × 10  1 × 10  
0.7 4.4486 0 × 10  4 × 10  1 × 10  0 × 10  
0.8 4.7353 7 × 10  5 × 10  3.6 × 10  0 × 10  
0.9 4.9510 1.1 × 10  6 × 10  5.5 × 10  1 × 10  
1.0 5.0912 0 × 10  7 × 10  1.8 × 10  1 × 10  

 
  
 
 

Table 10: Compute absolute error in the scientific notation of Problem 2 
 

𝑥 Exact 
solution 

Absolute 
error(n=4) 

(Laguerre poly.) 

Absolute 
error(n=6) 

(Laguerre poly.) 

Absolute 
error(n=4) 

(Hermite poly.) 

Absolute 
error(n=6) 

(Hermite poly.) 
0.0 1.0000 4 × 10  8 × 10  0 × 10  0 × 10  
0.1 1.0258 3.1 × 10  5.6 × 10  3 × 10  3 × 10  
0.2 1.0697 1.9 × 10  9 × 10  2 × 10  4 × 10  
0.3 1.1229 1.114 × 10  3.5 × 10  4.3 × 10  4.5 × 10  
0.4 1.1903 8.1 × 10  5.5 × 10  4.5 × 10  4.6 × 10  
0.5 1.2736 9.1 × 10  6.9 × 10  4.6 × 10  4.4 × 10  
0.6 1.3747 7.7 × 10  7.8 × 10  4.4 × 10  4.3 × 10  
0.7 1.4956 4.5 × 10  8.1 × 10  4 × 10  4.1 × 10  
0.8 1.6384 5 × 10  7.7 × 10  3.1 × 10  3.2 × 10  
0.9 1.8057 1.9 × 10  6.7 × 10  1.8 × 10  1.8 × 10  
1.0 2.0000 3 × 10  5 × 10  0 × 10  0 × 10  

 



 
Figure1. Graph of exact and approximate solution of case 1 with Hermite and Laguerre polynomials 
(n=4) 

 
Figure2. Graph of exact and approximate solution of case 1 with Hermite and Laguerre polynomials 
(n=6) 

 

 

Figure3. Graph of exact and approximate solution of case 2 with Hermite and Laguerre polynomials 
(n=4) 

 

 



 

Figure4. Graph of exact and approximate solution of case 2 with Hermite and Laguerre polynomials 
(n=6) 

 

 

 

Figure5. Graph of exact and approximate solution of case 3 with Hermite and Laguerre polynomials 
(n=4) 

 

 

 

Figure6. Graph of exact and approximate solution of case 3 with Hermite and Laguerre polynomials 
(n=6) 

 



 

 

Figure7. Graph of exact and approximate solution of problem2 with Hermite and Laguerre polynomials 
(n=4) 

 

 

Figure8. Graph of exact and approximate solution of problem2 with Hermite and Laguerre polynomials 
(n=6) 

IV.     CONCLUSION 

 

In this work, we have developed the Galerkin approach to approximate the solution of second-order mixed and 
Dirichlet BVPs. It is observed that increases the accuracy of the approximate solution after converting the mixed 
and Dirichlet BVPs into Neumann BVPs. We also notice that the approximate solutions coincide with the exact 
solutions even though a few of the polynomials are used in the approximation which is shown in Table 7, 
Table8, and Table 9. So that using this method better results will be obtained as the number of Hermite 
polynomials increases and using a small step size while using Runge-Kutta method. Accuracy will be better as 
increase the value of 𝑛  with the Hermite polynomial but in the case of the Laguerre polynomial, the stiffness 
matrix is close to singular as 𝑛 increases in maximum problems. 
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