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ABSTRACT
In this paper, the authors establish the generalized Ulam — Hyers stability of system of additive
functional equations from a corona model in Banach space using Hyers Method. Also, we compare the results
with mathematical calculations and stability analysis.
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I. INTRODUCTION

In 1940 and in 1968 Ulam [34-35] proposed the general Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one can still assert
that the thesis of the theorem remains true or approximately true?”

In 1941 Hyers [22] answered this problem for linear mappings. In 1951 Aoki [3] and Bourgin [14] were the
authors to treat the Ulam problem for additive mappings. In 1978, according to Gruber [21], this kind of stability
problems is of particular interest in probability theory and in the case of functional equations of different types.
In 1978 Rassias [32] employed Hyers’ ideas to new linear mappings. In 1987 Gajda and Ger [18] showed that
one can get similar stability results for sub additive multi functions.

Other interesting stability results have been completed also by the following authors Aczél [1-2], Borelli
and Forti [13], Cholewa [15], Czerwik [16] and Kannappan [26]. In 1982-1989 Rassias [28-29, 31] solved the
above Ulam problem for different mappings. In 1999 Gavruta [18,20] answered a question of Rassias
concerning the stability of the Cauchy equation. In 1983 Skof [33] was the first author to solve the Ulam
problem for additive mappings on a restricted domain.

The famous Cauchy additive functional equation is

C(v,+V,)=C(v,)+C(v,). (1.1)
Its stability in various settings were inspected in [3,20,22,28.31,32]. Several other types of additive functional

equations in various normed spaces were discussed by Aczel, Dhombres [2], Arunkumar [4-11]. Balamurugan
[12], Hyers [23-24], Jung [25], Kannappan [26]. Lee [27] and Rassias [30].

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In
humans and birds, they cause respiratory tract infections that can range from mild to lethal. Mild illnesses in
humans include some cases of thecommon cold (which is also caused by other viruses,
predominantly rhinoviruses), while more lethal varieties can cause SARS, MERS and COVID-19, which is
causing the ongoing pandemic see [36].


https://en.wikipedia.org/wiki/RNA_viruses
https://en.wikipedia.org/wiki/Mammal
https://en.wikipedia.org/wiki/Respiratory_tract_infection
https://en.wikipedia.org/wiki/Common_cold
https://en.wikipedia.org/wiki/Rhinovirus
https://en.wikipedia.org/wiki/SARS
https://en.wikipedia.org/wiki/MERS
https://en.wikipedia.org/wiki/COVID-19
https://en.wikipedia.org/wiki/COVID-19_pandemic

Figure : 1.1 Corona Virus
In a town or city or village, we have the following assumptions:
* v, denotes total number of persons;

+ v, denotes number of susceptible persons;
+ v, denotes number of infected persons;
* v, denotes number of recovered persons;
* v, denotes number of death persons
respectively.
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Figure : 1.6 v, : Death Persons



With respect to this data, we have the additive functional equations of the forms

C, (Vyg + Vo +Vp +Vig +Vy, ) = Cy (Vi) +C, (Vg )+ Cy (Vi) + Cy (Vi) +Ci(Vag) (1.2)

C, (Vyo +Vay Vi V55 =V ) = C, (Vo ) +C, (Vg ) +C, (Vi) + C, (V) —C, (V) (1.3
Ca (Vso +V31 +V32 _V33 +V34) = Cs (V30)+C3 (V31) +C3 (Vsz) _Cs (V33) +C3(V34) (1-4)
C4 (V40 Vg Vg +Vy _V44) = C4 (V4 )_C4 (V41) +C4 (V42) +C4 (V43) _C4 (V44) (1.5)

Let us assume that + (PLUS) denotes Yes and - (MINUS) denotes No (for this case we take 0 (ZERO)).

In this paper, the authors establish the general solution in vector space and generalized Ulam — Hyers
stability of system of additive functional equations (1.2), (1.3), (1.4), (1.5) in Banach space using Hyers Method.
Also, we compare the results with mathematical calculations and stability analysis.

I GENERAL SOLUTION

In this subdivision, we confer about the general solution of functional equation (1.1) (1.2), (1.3), (1.4),
(1.5), by considering V, and V, as real vector spaces.

Theorem 2.1:
I) IfC:V, —»V,satisfying (1.1) thenC, :V, -V, satisfying (1.2);
I If C,:V, -V, satisfying (1.2) then C, :V, -V, satisfying (1.3);
) IfC, :V, >V, satisfying (1.3) then C, :V, -V, satisfying (1.4);
IV) IfC, :V, >V, satisfying (1.4) then C, :V, -V, satisfying (1.5);
V) If C,:V, -V, satisfying (1.5) then C :V, —V, satisfying (1.1);
forall v,,v,,v,,,V,,,V,,, V5,V €V, Where i=1,2,3 4then all the functional equations are equivalent.
Proof:

Suppose C:V, -V, satisfies the functional equation (1.1). Changing (v,,v,) as (0,0),(v,v), (v,2v),
(-v,v) in(1.1) and for any m> 0, we have

C(0)=0; C(2v)=2C(v); C(3v)=3C(v); C(~v)=—C(v); C(mv)=mC(v) (2.1)

forall veV, . Taking (v,,v,)= (v, +V

s Vi + Vi3 +Vy, ) in (1.1), and using (1.1) in the resulting equation with

C=C,, wearrive (1.2) forall v,5,v,;,V;,, Vi3, Vi, €V, .. S0, 1) holds.

Suppose C,:V, -V, satisfies the functional equation (1.2). Changing (Viy,Vy;,VipiVis V) @S
(0,0,0,0,0),(v,v,0,0,0),(v,v,0,0,v), (-v,v,0,0,0) in (1.2) and for any m>0, we have
C,(0)=0; C,(2v)=2C,(v);C,(3v) =3C,(Vv);C,(-v) =—C,(v);C,(mv) =mC, (V) (2.2)
forall veV,. Also, interchanging V as %%l in (2.2) respectively, we arrive
m
vy 1 vy 1 Vv 1
Cl (EJZEC]_ (V),Cl(éj:§C1(V),C1[EJZEC1(V) (23)
for all veV,. Changing (Vi,Vi;,Vis, Vg, Vig ) = (Vags Var: Vop Vg, =V, ) i (1.2) and using (2.2) in the resulting

equation with C, =C, , we arrive (1.3) for all v,y,V,,,V,,,V,3,V,, €V, . So, II) holds.
Suppose C,:V, -V, satisfies the functional equation (1.3). Changing (V,,V,,V,, VsV, ) aS
(0,0,0,0,0),(v,v,0,0,0),(v,v,v,0,0), (-v,v,0,0,0) in (1.3) and for any m>0, we have

C,(0)=0; C,(2v)=2C,(v);C,(3v)=3C,(v);C,(—v) =—C,(v);C,(mv) =mC,(v) (2.4)
forall veV,. Also, interchanging V as %%l in (2.4) respectively, we arrive
m
vy 1 vy 1 v 1
CZ (E) = ECZ (V),C2 (5) = §C2 (V),C2 [E) = ECZ (V) (25)

for all veV,. Changing (V,o,Vy;,Vas:Vas: Vag ) = (Vagr Vags Vaps —Vas, —Vy, ) in (1.3) and using (2.4) in the resulting

equation with C, = C,, we arrive (1.4) for all vy, V,,,V;,, Va5,V €V, . S0, 1) holds.
Suppose C,:V, -V, satisfies the functional equation (1.4). Changing (v

30’V
(0,0,0,0,0),(v,v,0,0,0),(v,v,v,0,0), (-v,v,0,0,0) in (1.4) and for any m>0, we have

31’V

327 V33 ! V34 ) as



C;(0)=0; C;(2v) =2C,(Vv);C;(3v) =3C,(v);C;(—v) =—C,(v);C;(mv) =mC, (v) (2.6)

forall veV,. Also, interchanging V as %%l in (2.9) respectively, we arrive
m

C, Gj = %03 (v):C, Gj = %cs (v):C, &J = lca (v) @.7)

for all veV,. Changing (Vy,Vy,Vay, Vg, Ve ) = (Vag, Va1, Vap, Va3, =V, ) iN (2.9) and using (2.10) in the resulting
equation with C, =C,, we arrive (1.5) for all v,,,v,;,V,,,V,5,V,, €V, . So, IV) holds.
Suppose C,:V, -V, satisfies the functional equation (1.5). Changing (V,V,,Vy, Vs, Vs, ) aS

(0,0,0,0,0),(v,0,v,,0,0),(v,0,v,v,0), (—v,0,v,0,0) in (2.6) and for any m >0, we have
C,(0)=0; C,(2v)=2C,(v);C,(3v)=3C,(v);C,(~v)=—C,(v);C,(mv)=mC, (v) (2.8)

forall veV, Also, interchanging V as %%1 in (2.8) respectively, we arrive
m

vy 1 vy 1 Vv 1
C4 (Ej = §C4 (V),C4 [gj = §C4 (V),C4 (Ej = EC“ (V) (29)
for all veV, Changing (V,,V,, Vs, Vas:Vas ) =(v,0,v,,0,0) in (1.5) and using (2.8) in the resulting equation

with C, =C, we reach (1.1) for all v,,v, €V,. So, V) holds.

Hence from the above discussions, we see all the functional equations (1.1), (1.2), (1.3), (1.4), (1.5) are
equivalent to each other.

111 STABILITY RESULTS: HYERS DIRECT APPROACH

In this sub division, we explore the generalized Ulam — Hyers stability of the additive functional
equations (1.2), (1.3), (1.4), (1.5) in Banach space using Hyers Method. In order to prove the stability results,
hereafter, assume that U be a normed space and W be a Banach space.

To provide stability theorem. We have the following assumptions:

v’ v, =av are total persons;

av .
v' v, =— are susceptible persons;
b
av .
Vo, = be are infected persons;
C

av
v’ v, =—— arerecovered persons;
* bed

v

<

av .
, =—— are dead persons; respectively
bcde

For this general case, we are finding the stability results.
Theorem 3.1: If C,:U -»W; C,:U ->W;C,:U »>W; C,:U -»W are functions fulfilling the inequalities

||Cl (VIO + vll + V12 +V13 +V14 ) - {Cl (VlO )+C1 (Vll ) + C1 (VlZ ) + Cl (V13 ) +C1 (V14 )}" < Bl (VIO ’Vll’V12 ’V13 'V14 ) (31)

"Cz (Vzo FVy + Vo +Vp3 — { 20 ""C 21)+C2 (sz ) + Cz (Vz3 ) _Cz (Vz4 )}" B (Vzo 1511 Vo0, Vp3: Vo ) (3.2)
"Cs (Vso V3 +Vg — Vg +V34 {C 30 ""C 31)+C3 (V3z)_C3 ( 33 ) ""C " < B Vso 1Va11 Vi, Vag, Vay ) (3.3)
||C4 (V40 VgtV +Vy3 — { 41)+C ( 42)+C ( ) C4 (V44 )}" < B V40’V411V421V431V ) (3.4)

where B, B,,B,,B,:U° —>[O,oo) are functions with

R¥v,, B"v,,, B"v,, BV, BV, —
(!im B1( 10 1 = 12 13 )=0; 1 :a(b(t))de 1) (3.5)
- ) cde
B, (P, "V, PV, BV, , BV, BV,
lim ( 20 21 22 23 ) =0; P2 _a (3.6)

q—0 qur



B, ( B Vag, BV, B Vg,, BV, BV, -
lim ( 30 a1 i 2 33 ) _0.P :a(b(; l) 3.7)
gq—oo 3 C

B quv , quv , quv , PCII’V , qu
m , =a .
l ( 40 41 - 42 43 ) —0;P, (3.8)
gq—o0

4

for all v,,,v,,v,,V,;,V,, €U where i=12,34. Then there exists a unique additive mappings A :U ->W,
AU->W, A:U->W, A :U—->W are defined by

C,(P*y,
A () = lim =5 1(R"v) (3.9)
R
. Cz(qurvz)
Ay (V) = AmT (3.10)
2
- C,(Rv.
A, (%) = lim % (3.11)
3
. CA(PAquA)
A(v,) = !EQT (3.12)

4

which satisfying the functional equations (1.2), (1.3), (1.4), (1.5), respectively and

o) qu o)
JAW-C)sz 3 = ( 4) S xs[pw av, ~Ry S pr B pr e B ] (3.13)
14 1y

ot T R" 2bc 2bcd
2 2
1 & B(R'Y) 1 ¢ a(c-1)v
-C <— = B qu _qu V, pqr v, qu—Z’O 14
ne-coml= 3 HEE DS e pran e S e M%) g
2 2
1 & BI(R'Y) 1 &1 av
C) = > =12 2/~ B,| Pray,,—pr &% por 8%Y% o par 8% 3.15
e-ewlsy 2 "oy e (oS Sroer (] e
2 2
» B (P v B
IIAA(v4>—c:4(v4)||%Z%yi > PﬂxB{P“av 0,-pyr e pr 2 OJ (316)
4[1:1-7r 4 4q:1-7r 4

forall v, eU where i=1,234 with r={+1}.

Proof: Let us change

av, acv, acdv, av,

(Vi1 Vg s Vig s Vig s Vi ):(avl,— b 7bc’ 2bed’ be dej in (3.1) and by (2.2), (2.3) of Theorem 2.1,

av, av, 3=y,

(Va1 Vi, Vi, Vg, Vg ) = (avz,— e ,OJ in (3.2) and by (2.4), (2.5) of Theorem 2.1;
c c

(Vag: Vgg s Vap s Vags Vg ) = (avs,—%,%,o,—%j in (3.3) and by (2.6), (2.7) of Theorem 2.1;
c c

(Vags Var: Vap s Vg i Vg ) = [av4,0,—%,%, ] in (3.4) and by (2.8), (2.9) of Theorem 2.1;

we land
C, avl_%+acv1 +acdv ! -1C (av)+C, _& C, 8V, (o} acdy, +C1
b 2bc 2bcd bcde b 2bc 2bcd bcde (3.17)

<B, av, acy, acdv,  av
ST 2be " 2bed ' bede




av, av, a(c-1)v av av a(c-1)v
CZ[aVZ_Tz+b_é+(T)2_o]_{C2(aV2)+Cz (—TZJ+C2 (b—;} C, [%}—cz(o)}

(3.18)
-1
gB{a@,—%,%,W,O
av, acv, av, av acv, av
Cg(avg—f+b—c3—0 bcj {C3(av3)+C3(—T3J+C3( bc3j—C3(0)+C3(—b—c3j}H o1
c4(av4— —%+%—oj—{g(av4)—c4(o)+c4(—%j+c4(%j—q(o)}
(3.20)
SBA(av4,0, a"“,%,oj
respectively, which implies
bcde-1 bcde-1 av, acv, acdv av,
C - C B|av,——,—*,—=*,——L |=B] 3.21
1(6‘{ bode }Vlj a{ bode } (W) =< (avl b ' 2bc ' 2bcd bcde) : (%) (3.21)
av, av, a(c-1)v,
_ <B 2 2 A /2 =B? .
Ic, (av,)-aC, (v, )| 2{avz, e ,Oj 2(v,) (3.22)
bc-1 bc-1 av, acv, av,
cs(a{?}vsj—a{?}cg(vs) B(av 5 o 2.0, bcj B; (v,) (3.23)
|c. (av,)—acC, ( ||<B(av 0,— a;/ a;)/ 0) s (Vvy) (3.24)
respectively, which yields
Ic.(Rv)-R C.(v)|<Bi(v) (3.25)
IC, (P, v,)-PR, C, (v,) | < B3 (v,) (3.26)
ICs (B vs) =Py Cy (V)| < B3 (v5) (3.27)
IC.(Pvi)—P, Cy(v) | < Bf (v,) (3.28)
forall v, eU ; i=12,34, respectively. It follows from (3.25), (3.26), (3.27), (3.28) that
1
_Xcl(Plvl)_Cl(vl) SP_XB;(Vl) (3.29)
1 1
1 1
P—XCZ(PZVZ)—CZ(VZ) gp—szz(vz) (3.30)
2 2
1 1
P—Xcs(PaVa)—Cs(Vs) SP—xBf(va) (3.31)
3 3
1
—xC,(P,v,)-C,(V,) SP—xBf(v4) (3.32)
4 4

forall v, eU ; i=12,3,4, respectively. Changing
v, =By, and divide by B, in (3.29) and adding resultant inequality with (3.29) and by triangle inequality;
v, = P, and divide by P, in (3.30) and adding resultant inequality with (3.30) and by triangle inequality;
v, = Ry, and divide by P, in (3.31) and adding resultant inequality with (3.31) and by triangle inequality;
v, =P, and divide by P, in (3.32) and adding resultant inequality with (3.32) and by triangle inequality;
we obtain



B (P,
izxcl(azvl)—cl(vl) six{Mm;(vl)} (3.33)
R R R
1 1 |BZ(Pv
w0 < o ) | 830
B3 (P,
—xCy (P, )-Cy (V) <L, M+Es§(v3) (3.35)
3 P P
1 1 [B;(Pv
P—fXCA(a2V4)—C4(V4) SEX{ATAA)_‘_B:(VA)} (3.36)
forall v, eU ; i=12,34, respectively. Generalizing for any positive integer g, we reach
a1 B/ (P,
iqxcl(aqvl)—cl(vl) sisz (3.37)
R R R
1 1 8 Bzz(Pztvz)
—xC,(P'v,)-C <— _ 3.38
qu X 2( 2 Vz) 2(V2) szt:O Pzt ( )
1B (Plv
Ly (i) -Cy ()| < 2 M (3.39)
3 Ps t=0 Ps
1B, (P v
iqu4(P4“v4)—C4(v4) sixz“(—f“) (3.40)
I:)4 P4 t=0 I:)4

forall v, eU ; i=1234, respectively. Thus, the sequences

1 1 1 1
(et f{geimaigee)
are Cauchy sequences in forall v, eV,; i=12,3,4, respectively. Since W is complete, there exists a mappings
A:U->SW, A U->W, A :U->W,A :U—>W are defined by

- Ci(R,)
AV = ‘!mT ; (3.41)
. Cz(quvz)_
Az(Vz):AmT ; (3.42)
2
- Ca(Pw)
As(V3)=(!mT ; (3.43)
3
. C4<P4qv4)
A(V,) = me—f (3.44)

for all v, eU; i=1234, respectively. Letting q— oo in (3.37), (3.38), (3.39), (3.40) and using (3.41),
(3.42), (3.43), (3.44), respectively, we arrive (3.13), (3.14), (3.15), (3.16) for all v,y,v;,V;,,V;5, Vi, €U where
i=12,34. If, we take

(Vg iy s Vip Vig, Vi ) =(F1q Vyo, BV, BV, BV, quvl4) and divide by in (3.1) and using (3.41);

(Vg1 Vay s Vi, Vg, Vg ) :(quvzo, PV,,, PV, , PV, quv24) and divide by in (3.2) and using (3.42);

(Vo Va1 Vi Vi Vi ) = (P Vg, Py Vi, P V3, PV, Py v, ) and diivide by in (3.3) and using (3.43);

(Vag+ Vg Viz 1 Vg s Vg ) =(P4qv40, PV,,, PV,,, PV, P4qv44) and divide by in (3.4) and using (3.44);
we see that A:U ->W,A :U->W,A :U->W,A :U—->Ware additive mappings satisfying functional
equations (1.2), (1.3), (1.4), (1.5) forall v,y,v,,V.,,V.s,V;, €U where i=1,23,4.



To prove A:U->W,A:U->W,A:U->W,A :U—->W are unique, let us consider another
mappings A :U ->W;A>:U ->W;AY:U ->W;A; :U —-W fulfilling the functional equations (1.2), (1.3),
(1.4), (1.5) and inequalities (3.13), (3.14), (3.15), (3.16), respectively. Now,

- q+sv
||A<vl>—A\f<vl>||< > (R

P —0 as s—w;
q:O

~ BZ(Pi*s

|A W) - A w,)|< éZ%"O as s—>m;
q=0 2
© B3 Pq+s

A () - A3(V)||S§Z%—>o as s>
q=0 3

|A ) - A4<v)||<— @—w as s>
4 9=0 4

wearriveat A = Al; A =A% A =AY A=A, forall v, eU;i=1234, respectively. Thus A's are unique
forall v, eU where i=12,34.

Changing
v, :VFi in (3.25);
v, :VFz in (3.26);
v, ZVFZ in (3.27);
v, :‘F’)—‘; in (3.28);
we arrive

C,(v)-PC, (ﬁJ < Bj(v—lj (3.45)
C,(v,)-P, C, ;—2 < B? (V—ZJ (3.46)
C,(v,)-P, C, ("—3] < B! [Vij (3.47)

J <B? [V—“J (3.48)

Vv
C4(V4)_P4 C4{_4

P4
forall v, eU ; i=1234, respectively. Again, changing

v, = % and multiply by P, in (3.45) and adding resultant inequality with (3.45) and by triangle inequality;

R
v, = \F/)—Z and multiply by P, in (3.46) and adding resultant inequality with (3.46) and by triangle inequality;
2
v, = ;;-3 and multiply by P, in (3.47) and adding resultant inequality with (3.47) and by triangle inequality;
3
v, = \I/D_4 and multiply by P, in (3.48) and adding resultant inequality with (3.48) and by triangle inequality;
4
we obtain

SUEANSES oo

C,(v)-P*C [;Zj



Y v v
C,(v,)-P C, (? <B] éj+ P, B (é] (3.50)
C,(v,)—P? C, (V—j <B? V—3j+ P, B? ("—gj (3.51)
P % R
v v Y
C,(Vvy)- P? C, [P_:Z <B; E‘;} P, B, (P—;‘ZJ (3.52)
forall v, eU ; i=12,3,4, respectively. Generalizing for any positive integer g, we reach

C,(v)-P° cl[%) i (;’] ; ZP“ 51[ j (3.53)

(i) PG| 2 || <> pripz Yo |= L spapz| Yo (3.54)

2\V2 2 2 Py < P = P & 2 B Py .

C,(v,)— P C, <Sprg |- L speps| % (3.55)
o) @2 ) R R

SZQ:PA‘HB [—}—xzpq B; ( J (3.56)

4

C,(v,)-Pf C (F‘)’q j

i =1,2,3,4, respectively. The rest of the proof is analogous to that of earlier one. Thus, the

forall v, eU;
proof is complete.

The following corollary is an immediate result of Theorem 3.1.
Corollary 3.2: If C,:U -»W; C,:U -»W; C,:U -»W; C, :U -»W are functions fulfilling the

||C1 (V10 + Vll + V12 + V13 + V14 ) - {Cl (V10 ) + Cl (Vll ) + Cl (V12 ) + Cl (V13 ) +C1 (V14 )}"

74
4
x 2l I
j=0
3 g (3.57)
eI Tl I
j=0
4 4
V/X{Hllvlj I+ 2l IIW}
j=0 j=0
174
"Cz (Vzo Vo1 Vo +Vps =V ) - {Cz (Vzo )+C2 (V21)+C2 (sz ) + G, (st ) -G, (V24 )}” < N ? (3.58)
DIV, I
v
"Cs (Vso F Vg + V5 = Vg +Vy ) - {Cs (Vao )+C3 (V31)+C3 (V32 ) -G, (V33 ) +Cy (V34 )}"S N ? (3.59)
wx D lIvs |
j=0
174
(3.60)

||C4 (V40 Vg Vg TV _V44)_ {C4 (V40 )_CA (V41)+C4 (V42 ) +C, (V43)_C4 (V44 )}"S W x i” v 14

where y be a positive constant and ¢ =1; 5S¢ =1 for all v,,v;,,V;,,Vi;,V;, €U where i=1,2,3,4. Then there
exists a unique additive mappings A :U ->W,A U >W, A :U—->W,6 A :U—->W which satisfying the
functional equations (1.2), (1.3), (1.4), (1.5) and



"Ai(vl) _Cl(vl)" <

"Az(vz) _Cz(vz)" <
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forall v, eU where i=12,34.

IV MATHEMATICAL CALCULATIONS

In this sub division, we examine the mathematical calculation of our functional equations (1.2), (1.3),

(1.4), (1.5) .



Example: 4.1 Suppose, if 16 persons are in a village in that 10 persons are susceptible in that 4 persons are
infected, in that if 2 persons recovered and 2 of them dead. By our data, we have

av, acv, acdy, avlj

V.oyVigy Vs, Via, V, =|av,,——, ’ y
(Vi Vi Vi Vis V) [ Y b '2bc’ 2bcd ' bede

so it follows that

a=16;

& _10=b-3;

b 5

8 4180

be a2 (+.1)
ﬂ:z;:)d :E:Z;

bed 2bc

av 16
——=2=e=——=1.
bcde 2bcd
It follows from (1.2) that
C, (16v, —10v, +5v, +5v, —2v; )=16C, (v, )-10C, (v, ) +5C, (v, )+5 C, (v, ) —2C, (v,)
C,(14v,)=14C,(v,).
Since 2 persons are dead, the remaining persons in that village is 14. So, there is a minimum loss.

Example: 4.2 Suppose, if 16 persons are in a village in that 10 persons are susceptible in that 4 persons are
infected, in that if all 4 persons recovered and no dead occurs. By our data, we have
av, av, a(c-1)v,
Voo s Vor s Vo s Voay Vo ) =| AV, —=,—=, ——=0
(zo 210 V221 Y23 24) ( 2 b b bc

so it follows that

a=16;
a 16 8
—=10=>b=—=—; .
b 10 5 (42)
a 16 16 5
—=4=c="—= =—.
bc 4h 4*§ 2
5

It follows from (1.3) that
C, (16v, —10v, +4v, +6v, —0)=16C, (v,)—10C, (v, )+4C, (v,)+6C, (v, ) —-C,(0)
C,(16v,)=16C,(v,).

Since no persons are dead, the remaining persons in that village is 16. So, there is a no loss.

Example: 4.3 Suppose, if 16 persons are in a village in that 10 persons are susceptible in that 4 persons are
infected, in that if no persons are recovered and all the 4 persons are dead. By our data, we have

av, acv. av.
(V307V311V32’V33’V34) :(avgl—f.b—cs,(),—b—gj
so it follows that
a=16;
a 8
B=lOZ>b=g, (43)
a._ d=c= E = E
bc 4 2

It follows from (1.4) that
C, (16v, —10v, +10v, +0—4v,)=16C, (v,)—10C, (v, )+10C, (v;)—4C; (v,)
C;(12v;)=12C;(v,).

Since 4 persons are dead, the remaining persons in that village is 12. So, there is a big loss.



Example: 4.4 Suppose, if 16 persons are in a village in that 0 persons are susceptible and if 4 persons are
infected, in that if 4 persons recovered and no dead occurs. By our data, we have

(V4°’V41’V42'V43'V44) - (aVA’O,_%’%,Oj
so it follows that
e %Zlozb:g (4.4)

It follows from (1.2) that
C, (16v, —10v, +10v,)=16C, (v, )-10C, (v,)+10C,(v,)
C,(16v,)=16C,(v,).

Since no persons are dead, the remaining persons in that village is 16. So, there is a no loss.

V STABILITY ANALYSIS
In this sub division, we inspect the stability analysis of our functional equations (1.2), (1.3), (1.4), (1.5).

Analysis 5.1 For the functional equation (1.2):
By the definition of B, in (3.5) and with the help of (4.1), we have

Pl:a(dee_ljzm. (5.1)
bcde
Now, it follows from (3.61) that
v v
V,)-C (V)| £—7——="—. 5.2

Analysis 5.2 For the functional equation (1.3):
By the definition of P, in (3.6) and with the help of (4.2), we have

P,=a=16. (5.3)
Now, it follows from (3.62) that
v v
v,)—-C, (V)| ——="—. 5.4

Analysis 5.3 For the functional equation (1.4):
By the definition of P, in (3.7) and with the help of (4.3), we have

bc-1
P=a =12. 5.5
: ( bc j 5)
Now, it follows from (3.63) that
v v
v,)-C, (V)| ——="—. 5.6

Analysis 5.4 For the functional equation (1.5):
By the definition of P, in (3.8) and with the help of (4.4), we have

P,=a=16. (5.7)
Now, it follows from (3.64) that
v v
v,)-C, (V)| ——=—. 5.8
VI CONCLUSIONS

According to Mathematical Calculations in Section 1V the following are conclusions:
= In Example 4.2 and Example 4.4, there is NO LOSS in the village;
= In Example 4.1 there is MINIMUM LOSS in the village;
= In Example 4.3 there is BIG LOSS in the village.

Also, according to Stability Analysis in Section V the following are conclusions:
e In Analysis 5.2 and Analysis 5.4, we get better possible upper bound;
e In Analysis 5.1 we get minimum upper bound;
e In Analysis 5.3, we get very low bound.



So, if all the affected persons are recovered with no death, then only the village or town or city or home is
stable.
This Mathematical Calculations and Stability Analysis can be done for any higher datas.
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