CHAPTER -4
Search Strategies: Uninformed Search Strategies
Dr.S.Ramalakshmi1 & Mrs.G.Asha2
1&2Assistant Professor, Department of Computer Science and Applications,
Don Bosco College (Arts & Science), Karaikal, Puducherry.
Introduction
In the realm of problem-solving and artificial intelligence, search algorithms play a critical role in navigating through state spaces to find solutions. Uninformed search, also known as blind search, is a category of algorithms that operates without any additional knowledge of the domain other than the problem's definition itself. These algorithms systematically explore all possible states of a problem until a solution is found, without estimating the cost or proximity to the goal. The fundamental uninformed search algorithms are Breadth-First Search (BFS), Depth-First Search (DFS), Depth Limited Search (DLS), Uniform Cost Search (UCS), each offering different methods for traversing a search space. In this chapter explains in detail about these fundamental search algorithms.
1. Breadth First Search Algorithm
Breadth-First Search (BFS) is a graph traversal algorithm that explores all the nodes at the present depth before moving on to the nodes at the next level. It works by systematically expanding and examining all nodes that are equidistant from the starting point, one layer at a time. BFS uses a queue data structure to keep track of nodes to be explored. This ensures that the first node to be added to the queue is the first to be processed, maintaining the breadth-first property of the algorithm.
BFS is guaranteed to find the shortest path in an unweighted graph or the minimal number of steps to reach the goal, making it an ideal choice for problems where the solution is close to the root node. However, BFS can be memory-intensive, especially for large graphs, as it needs to store all the nodes at the current depth in memory before proceeding.
1.1. Working of BFS Algorithm
BFS starts from a given node, often called the root, and systematically explores all of its neighboring nodes. Once it explores all the nodes directly connected to the root, it moves on to explore the neighbors of those nodes, repeating the process until all nodes have been visited or a target node is found.
The key idea is that BFS ensures it explores nodes layer by layer, moving from one level to the next. The algorithm makes use of a queue data structure to manage the nodes that need to be explored next. The queue follows the First-In-First-Out (FIFO) principle, which ensures that the first node inserted into the queue is the first one to be processed.
1.2. Steps for BFS Algorithm
I. Initialize the Queue and Mark the Starting Node
· Queue: Create a queue to store nodes that need to be explored. The queue will follow the First-In-First-Out (FIFO) principle, ensuring that the earliest added nodes are processed first.
· Visited List/Set: Create a list or set to keep track of nodes that have been visited. This prevents revisiting nodes and looping in cycles.
· Start Node: Enqueue the starting node into the queue and mark it as visited.
Example:
· Start with node A.
· Queue: [A]
· Visited: {A}
II. Dequeue and Process the First Node
· Remove the first node from the queue (dequeue) and process it. Processing usually involves checking if it is the target node or performing any necessary operations like printing or storing the node.
Example:
· Dequeue A from the queue.
· Process node A.
III. Enqueue All Unvisited Neighbors
· Explore all the unvisited neighbors of the current node. If a neighbor has not been visited yet, enqueue it into the queue and mark it as visited.
· Marking neighbors as visited at this stage ensures that each node is only processed once.
Example:
· Neighbors of A are B and C.
· Enqueue B and C into the queue.
· Queue: [B, C]
· Visited: {A, B, C}

IV.Repeat the Process for All Nodes in the Queue
· Continue defueling the first node in the queue and exploring its neighbors.
· Repeat the process until the queue is empty or the target node is found.
Example:
· Dequeue B, explore its neighbor D, and enqueue D.
· Queue: [C, D]
· Visited: {A, B, C, D}
· Dequeue C, explore its neighbor E, and enqueue E.
· Queue: [D, E]
· Visited: {A, B, C, D, E}
· Dequeue D. No unvisited neighbors.
· Dequeue E, explore its neighbor F, and enqueue F.
· Queue: [F]
· Visited: {A, B, C, D, E, F}
V. Terminate When Queue Is Empty or Goal Is Found
· The algorithm continues until all nodes have been visited (i.e., the queue is empty) or the goal node has been found, depending on the problem.
Example:
· Dequeue F. Since F has no unvisited neighbors, and the queue is empty, the BFS terminates.
1.3. BFS on a Simple Graph – Example

Figure 1- BFS – A Simple Graph Example
· Step 1: Start from node A. Enqueue A into the queue. Queue: [A]
· Step 2: Dequeue A and explore its neighbors B and C. Enqueue them. Queue: [B, C]
· Step 3: Dequeue B and explore its neighbor D. Enqueue D. Queue: [C, D]
· Step 4: Dequeue C and explore its neighbor E. Enqueue E. Queue: [D, E]
· Step 5: Dequeue D. It has no unvisited neighbors. Queue: [E]
· Step 6: Dequeue E and explore its neighbor F. Enqueue F. Queue: [F]
· Step 7: Dequeue F. Since F has no unvisited neighbors, the BFS completes. Queue: []
The traversal order in this example would be: A -> B -> C -> D -> E -> F.
1.4. Characteristics of BFS
· Completeness: BFS is complete, meaning it will always find a solution if one exists, given that the search space is finite.
· Optimality: BFS is optimal for unweighted graphs. It always finds the shortest path (in terms of the number of edges) from the root to the target node.
· Time Complexity: The time complexity of BFS is O(V + E), where V is the number of vertices (nodes) and E is the number of edges in the graph. This is because BFS must explore each vertex and edge at least once.
· Space Complexity: The space complexity of BFS can be high, as it stores all the nodes at the current depth level in the queue. In the worst case, BFS requires O (V) space, where V is the number of vertices.
1.5. Applications of BFS
· Shortest Path in Unweighted Graphs: BFS is commonly used to find the shortest path between two nodes in an unweighted graph. Since BFS explores nodes level by level, the first time it reaches the target node, it will have found the shortest path.
· Solving Puzzles: BFS is suitable for solving puzzles like mazes, sliding puzzles, or word ladder problems, where the solution is close to the start, and the state space needs to be explored systematically.
· Web Crawling: BFS is used in web crawling to explore hyperlinks from a starting web page. The algorithm will visit all pages one level away before moving to pages further away from the starting point.
· Peer-to-Peer Networks: BFS can be used to discover all nodes or resources in peer-to-peer (P2P) networks like Bit Torrent.

1.6. Advantages & Limitations of BFS
1.6.1. Advantages
Breadth-First Search (BFS) offers several advantages, particularly its ability to find the shortest path in unweighted graphs. This is because BFS explores all nodes at the current depth level before moving to the next, ensuring that the first time it encounters the goal node, it has taken the fewest steps possible. BFS is also complete, meaning it will always find a solution if one exists, as it systematically explores every node. This makes it particularly useful for problems where the shortest solution is required, such as routing in networks or solving mazes. Another advantage of BFS is that it works well for finding all nodes within a given distance from the start node, making it ideal for search applications in social networks or peer-to-peer networks.
1.6.2. Limitations
BFS primarily its high memory usage. Since BFS stores all nodes at the current depth level before proceeding to the next, it can quickly consume large amounts of memory, especially in graphs with many nodes or deep search spaces. This can make it impractical for very large or infinite graphs. Additionally, while BFS is optimal for unweighted graphs, it becomes inefficient in weighted graphs, where algorithms like Dijkstra’s are more suitable. The need to explore all nodes at a given level also means that BFS can be slower for problems where the solution is deep in the search tree, as it may explore many unnecessary nodes at shallower depths before reaching the goal.
2. Depth First Search
Depth First Search (DFS) is a graph traversal algorithm used to explore nodes and edges of a graph. It starts at a source node and explores as far as possible along each branch before backtracking. This approach is particularly useful for exploring the depth of a graph, making it an essential tool in many applications like pathfinding, topological sorting, and detecting cycles.
2.1. Working of Depth First Search Algorithm
The Depth First Search (DFS) algorithm explores a graph by starting at an initial node (source) and proceeding as far as possible down one branch before backtracking to explore other branches. DFS operates using a stack (either explicit or via recursion) to keep track of the nodes.
Here is a step-by-step breakdown of how DFS works:

I. Initial Setup
DFS can be implemented using either recursion or an explicit stack data structure. In either case:
· We need a way to track visited nodes to avoid revisiting nodes and falling into infinite loops (especially in cyclic graphs). This is often done using a visited set or an array.
· The algorithm starts from a given node (source node), and then it explores all of its unvisited neighbors one by one.
II. Recursive DFS Explanation
Let’s begin with the recursive version of DFS. In this method, DFS makes use of the function call stack to keep track of the nodes, so there's no need for an explicit stack. Here's the step-by-step working:
Steps:
· Start at the Source Node:
· Begin DFS at the starting node (source node). Mark the node as visited and record it as the current node.
· Explore Adjacent Nodes:
· For the current node, examine all of its neighbors (adjacent nodes).
· For each neighbor, if it hasn’t been visited, move to that neighbor (this step recursively calls DFS on the neighbor).
· Recur (Go Deeper):
· DFS is called recursively on each unvisited neighbor. This process continues, diving deeper into the graph until there are no more unvisited neighbors in the current branch.
· Backtrack:
· Once a node has no more unvisited neighbors, the algorithm backtracks to the previous node (the function call returns to the previous function in the call stack).
· At the previous node, if there are any remaining unvisited neighbors, they are explored.
· Repeat:
· This process continues until all nodes reachable from the starting node are visited.
· Complete Traversal:
· If the graph is not connected (i.e., has isolated components), DFS can be restarted from an unvisited node to ensure all nodes are explored.

2.2. A Simple Graph Example – DFS

Figure 2 – DFS – A Simple Graph Example
Adjacency List: graph = {‘A’: ['B', 'C'], 'B': ['D', 'E'], 'C': ['F'], 'D': [], 'E': ['F'], 'F': []}
DFS Steps:
· Start at Node A: Mark A as visited and add it to the stack. Explore its neighbors: B and C.
· Visit Node B: Move to B (unvisited neighbor of A). Mark B as visited. Explore its neighbors: D and E.
· Visit Node D: Move to D (unvisited neighbor of B). Mark D as visited. D has no neighbors, so backtrack to B.
· Visit Node E: From B, visit the next unvisited neighbor, E. Mark E as visited. Explore E's neighbor: F.
· Visit Node F: Move to F. Mark F as visited. F has no unvisited neighbors, so backtrack to E, then to B, and then to A.
· Visit Node C: Now backtrack to A and visit the remaining unvisited neighbor C. Mark C as visited. Explore C's neighbor: F.
· F is Already Visited: Since F is already visited, there are no unvisited neighbors left to explore. The traversal is now complete.
The order in which nodes are visited in this example DFS traversal starting from A is: A -> B -> D -> E -> F -> C
2.3. Characteristics of DFS
· Depth-First Exploration: DFS explores as far down a branch as possible before backtracking, prioritizing depth over breadth.
· Backtracking: When reaching a dead-end, DFS backtracks to explore other unvisited branches, ensuring complete traversal.
· Uses Stack (Recursion or Explicit): DFS can be implemented using recursion (function call stack) or an explicit stack in an iterative approach.
· Linear Time Complexity: DFS has a time complexity of O (V+E) O (V + E) O (V+E), where VVV is vertices and EEE is edges, visiting each node and edge once.
· Cycle Handling: DFS handles cycles by marking nodes as visited, preventing infinite loops in cyclic graphs.

2.4. Applications of DFS

· Pathfinding and Maze Solving: DFS is often used to explore all possible paths in problems like maze solving.
· Cycle Detection: DFS is commonly used to detect cycles in both directed and undirected graphs.
· Topological Sorting: In a Directed Acyclic Graph (DAG), DFS can be used to generate a topological sort of the nodes.
· Finding Connected Components: In an undirected graph, DFS can be used to find all nodes in a connected component.
· Solving Puzzles: Many puzzles, like the "n-queens" problem, can be solved using DFS by exploring all possible configurations.
2.5. Advantages and Limitations of DFS
2.5.1. Advantages
The advantages of DFS lie in its simplicity and efficiency for certain types of problems. It requires less memory than Breadth First Search (BFS) because it only stores the current path and the nodes along that path, making it particularly well-suited for deep graphs or trees. DFS is also useful for exploring all possible paths, detecting cycles, and performing tasks like topological sorting in Directed Acyclic Graphs (DAGs). Its recursive nature makes it easy to implement, especially when searching for connected components or solving maze-like problems.
2.5.2. Limitations
However, DFS has limitations. It doesn’t guarantee the shortest path in a graph, making it unsuitable for pathfinding problems where optimality is crucial, such as in navigation systems. Additionally, in very deep or infinite graphs, DFS can get stuck exploring one long path, leading to inefficiency or even infinite loops if cycles are not properly handled. The recursive version of DFS can also lead to stack overflow issues for deep graphs unless carefully managed.

3. Depth-Limited Search
Depth-Limited Search (DLS) is a variation of Depth-First Search (DFS) that adds a constraint on how deep the algorithm can explore the search tree. In DLS, the search is restricted to a predetermined depth limit, which helps to avoid the problem of infinite paths in the case of deep or cyclic graphs. By setting a limit, the search only explores up to a certain number of levels down the tree and then backtracks, ignoring any deeper nodes.
DLS is useful in specific scenarios, particularly when the maximum depth of the solution is known or when infinite loops need to be avoided. In practice, DLS is often used in combination with other search strategies, such as in Iterative Deepening Depth-First Search (IDDFS). In IDDFS, DLS is run repeatedly with increasing depth limits, gradually deepening the search until the solution is found. This approach retains the memory efficiency of DFS while ensuring completeness and optimality, similar to Breadth-First Search (BFS).
Depth-Limited Search is a valuable technique for controlled exploration of a search space, particularly in scenarios where unbounded search is impractical or impossible. However, it requires careful selection of the depth limit to balance between thoroughness and efficiency, and it may need to be combined with other algorithms to guarantee success in more complex search problems.
3.1 DLS Algorithm
Depth-Limited-Search (node, depth_limit):
 If node is the goal, return "Goal Found".
 If depth_limit == 0, return "Cutoff" (indicating that the depth limit is reached).
 Else:
For each child in Expand (node):
result = Depth-Limited-Search(child, depth_limit - 1)
 If result is "Goal Found", return "Goal Found".
 If result is not "Cutoff", return result.
Return "Cutoff".

3.2 Steps for DLS algorithm
I. Initial Condition (Base Case)
· If the current node is the goal state, the algorithm terminates and returns "Goal Found".
· If the current depth limit is zero, meaning the node has reached the maximum allowed depth, it returns "Cutoff" to indicate that further exploration is restricted by the depth limit.
II. Recursion and Backtracking
· The algorithm iterates over all child nodes generated from the current node. For each child node, it recursively calls the DLS function with a reduced depth limit (i.e., depth_limit - 1).

· If one of the child nodes leads to the goal, the algorithm returns "Goal Found". If none of the nodes lead to the goal but the depth limit is not reached (i.e., no more unexplored nodes), it continues backtracking to explore other branches.
III. Cutoff Return
· If all child nodes return a "Cutoff", it indicates that the search space needs to be expanded beyond the current depth, or that no solution exists within the depth limit.
IV. Expand Function
· The Expand (node) function generates the possible child nodes from the current node. These are the successors that the algorithm explores recursively.
3.3 DLS on a Simple Tree - Example
Consider a simple problem: finding a path in a tree of nodes where each node represents a possible state. The tree structure is as follows:

 (
A
B
C
D
E
F
G
H
I
J
K
L
M
)

	

Figure 3 – DLS – A Simple Tree Example

Start node: A, Goal node: L and Depth limit: 2
Here, we want to find node L using DLS with a depth limit of 2. That means we can only search up to two levels deep, and we will not explore nodes beyond this depth.
Step-by-Step Explanation:
· Starting at node A:
· We start the search at node A with a depth limit of 2.
· The children of A are B, C, and D. Since A is not the goal and we haven't reached the depth limit yet, we explore its children.
· Exploring node B (depth 1):
· From A, we move to B. The depth limit decreases to 1 (because we have moved one level deeper).
· The children of B are E and F. Since B is not the goal and the depth limit has not been reached, we explore its children.
· Exploring node E (depth 2):
· From B, we move to E. The depth limit is now 0, meaning we can no longer explore deeper from E.
· The children of E are I and J, but since we have reached the depth limit, we cut off exploration here and backtrack to node B.
· Exploring node F (depth 2):
· After backtracking to B, we explore node F. The depth limit is again 0, and since F has no children, we backtrack to node A.
· Exploring node C (depth 1):
· Back at A, we now explore node C. The depth limit is 1.
· The children of C are G. Since C is not the goal, we explore its child.
· Exploring node G (depth 2):
· From C, we move to G. The depth limit is 0, so we cannot explore deeper.
· The children of G are K, L, and M. Although L is the goal, we cannot explore deeper due to the depth limit, so we backtrack.
· Exploring node D (depth 1):
· Back at A, we explore node D. The depth limit is 1.
· The child of D is H. Since we have reached the depth limit, we stop exploring further.
3.4 Characteristics of DLS
· Completeness: DLS is incomplete if the solution is beyond the set depth limit. It may fail to find a solution even if one exists beyond that depth.
· Time Complexity: The time complexity of DLS is O (bL), where b is the branching factor (number of children per node) and L is the depth limit. This is similar to DFS, but the depth is capped.
· Space Complexity: The space complexity of DLS is O (bL), as it only needs to store a single path at any time, making it memory efficient like DFS.
· Optimality: DLS is not optimal, as it may find a suboptimal solution if it exists within the depth limit but a better solution exists beyond it.
· Applicability: DLS is useful when the search space is large and the depth of the solution is roughly known. It's particularly effective in avoiding unnecessary expansion of nodes in deep or cyclic graphs.
3.5 Applications
· Solving Puzzles with Depth Constraints: DLS is often used in solving puzzles where the solution is expected to be found within a certain number of moves. For instance, in games like the N-Queens puzzle or Sudoku, where a solution exists within a specific configuration, DLS can be used to search for possible configurations without going too deep into irrelevant branches.
· Web Crawling with Controlled Exploration: In web crawling, DLS can be applied to limit how deep the crawler goes into a website’s link hierarchy. This is particularly useful when crawling large websites or networks with many interlinked pages, where an unbounded crawl could lead to excessive resource usage. By setting a depth limit, the crawler only explores pages within a reasonable depth, avoiding infinite crawling loops.
· Robot Path finding in Unknown Environments: In robotics, path finding is essential for navigating unknown terrains or environments. DLS can be applied in robot exploration to limit how deep the robot explores its surroundings in search of a target, especially when operating in areas where resources such as battery power or time are limited. The depth limit ensures that the robot doesn’t venture too far into an unexplored region while still systematically searching for the goal.
· Artificial Intelligence Game Trees: In games like Chess, Go, and other strategy games, search trees can become extremely large, making exhaustive searches computationally expensive. DLS can be used to limit the depth of the game tree that is explored. This helps in deciding the next move within a reasonable time limit. Although DLS doesn’t guarantee finding the best move, it can still provide a reasonable move without consuming too much computational power.
3.6 Advantages & Limitations of DLS
3.6.1 Advantages
The primary advantage of DLS is that it prevents the algorithm from getting stuck in infinite loops, which is a risk in standard DFS when it encounters a cyclic graph or an unbounded search space. Since DLS only explores up to a certain depth, it can manage the trade-off between thorough exploration and resource limitations like time and memory. This makes DLS especially useful in problems where the solution is likely to be found within a reasonable depth, or when the entire search space is too large to explore fully.
3.6.2 Limitations
DLS has some significant limitations. The most obvious is that it may fail to find a solution if the goal state exists beyond the specified depth limit. For example, if the solution is at depth 10 and the depth limit is set to 9, the algorithm will not find the solution. Another drawback is that DLS does not guarantee the optimal solution, even if a solution is found within the depth limit. It does not consider the cost of the path or whether there might be a shallower solution.
4. Uniform Cost Search (UCS)
Uniform Cost Search (UCS) is an uninformed search algorithm that expands the least-cost node first, making it an optimal search strategy for finding the lowest-cost path to a goal in a weighted graph. Unlike other uninformed search techniques like Depth-First Search (DFS) or Breadth-First Search (BFS), which prioritize depth or breadth, UCS focuses on the cumulative cost of reaching a node. It systematically explores the search space by expanding the node with the lowest path cost from the start node, ensuring that no node is overlooked due to its position in the search tree. Uniform Cost Search is a powerful algorithm for finding the least-cost solution in a weighted graph. Its optimality and completeness make it ideal for applications where cost is a critical factor, but its computational expense requires consideration when dealing with large or complex search spaces.
The UCS algorithm operates similarly to Dijkstra’s algorithm for finding the shortest path in a graph. It uses a priority queue to store the frontier of nodes to be explored, with the node having the least total cost being expanded first. As nodes are expanded, the algorithm calculates the total cost to reach them and updates the priority queue accordingly. If a node is revisited with a lower cost than previously recorded, UCS updates its path. This characteristic makes UCS complete and optimal, as it always finds the least-cost solution, provided that all edge costs are non-negative. It follows the equation c(m)=c(n)+c(n,m) where c(m) is the cost of the current node, c(n) is the cost of the previous node and c(n.m) is the weight of the edge.
4.1 UCS Algorithm
Uniform-Cost-Search (Graph, Start, Goal):
 Create a priority queue (min-heap) called frontier and add the Start node with a path cost of 0.
 Create an empty set called explored to keep track of visited nodes.
 While frontier is not empty:
 Remove the node from frontier with the lowest cost. Let this node be "current".
 If current is the Goal, return the path and the total cost.
 Add current to the explored set.
 For each neighbor of current:
 Calculate the total cost to reach the neighbor (cost of current + edge cost).
 If the neighbor is not in explored or frontier, add the neighbor to frontier with the calculated cost.
 If the neighbor is in frontier with a higher cost, update the cost and re-prioritize the frontier.
 If the Goal is not reached and the frontier is empty, return "Failure" (no path found).
4.2 Steps for UCS Algorithm
I. Initialization:
· A priority queue (min-heap) called frontier is initialized, containing the start node with a path cost of 0.
· The explored set keeps track of nodes that have already been visited to avoid reprocessing them.
II. Exploration Loop:
· The algorithm repeatedly extracts the node with the lowest cost from the frontier (minimizing the cumulative cost from the start).
· If the extracted node is the goal node, the search terminates, and the solution path along with the total cost is returned.
III. Processing Neighbors:
· For each neighbor of the current node, UCS calculates the total cost to reach that neighbor.
· If the neighbor has not been explored or is not in the frontier, it is added to the frontier with the updated cost.
· If the neighbor is already in the frontier but with a higher cost, UCS updates its cost to the newly computed lower cost and adjusts the frontier accordingly.
IV. Goal Test and Failure:
· If the goal node is reached, the algorithm returns the solution. If the frontier becomes empty without finding the goal, the algorithm terminates with failure, meaning no path exists to the goal.
4.3 UCS on a Simple Graph - Example
Consider a graph where nodes represent cities, and the edges represent roads between them, with the numbers representing the cost of traveling along each road (e.g., distance, time, or fuel consumption). The goal is to find the least-cost path from City A to City G.
 (
A
B
D
C
C
E
G
F
2
3
1
6
1
5
4
)

Figure 4 – UCS – A Simple Graph Example
Start node: A, Goal node: G
Each edge has a cost, and the algorithm needs to find the least-cost path from A to G.
UCS Steps:
· Initialization:
· Create a priority queue and add the start node A with a path cost of 0. So, the frontier initially contains [(0, A)].
· The explored set is initially empty.
· Expanding node A:
· The node with the least cost is A with cost 0, so UCS expands A.
· The neighbors of A are B (cost 2) and C (cost 1). Add B and C to the priority queue with their cumulative costs.
· Frontier: [(1, C), (2, B)].
· Mark A as explored.

· Expanding node C:
· The node with the least cost is C with cost 1, so UCS expands C.
· The neighbors of C are A (already explored) and F (cost 5). Add F to the frontier.
· Frontier: [(2, B), (6, F)].
· Mark C as explored.
· Expanding node B:
· The node with the least cost is B with cost 2, so UCS expands B.
· The neighbors of B are A (already explored) and D (cost 3). Add D to the frontier with a cumulative cost of 2 + 3 = 5.
· Frontier: [(5, D), (6, F)].
· Mark B as explored.
· Expanding node D:
· The node with the least cost is D with cost 5, so UCS expands D.
· The neighbors of D are B (already explored) and G (cost 1). Add G to the frontier with a cumulative cost of 5 + 1 = 6.
· Frontier: [(6, G), (6, F)].
· Mark D as explored.
· Expanding node G:
· The node with the least cost is G with cost 6, so UCS expands G.
· Since G is the goal, UCS terminates and returns the path.
 (
A
B
D
G
)

Figure 5 – Processing Steps- UCS
UCS successfully finds the least-cost path A B D G with a total cost of 6. Despite having other possible paths (like A C F G), UCS guarantees that the path with the lowest total cost is selected.
4.4 Characteristics of UCS
· Expands the Lowest-Cost Node First: UCS prioritizes nodes based on path cost (also called cumulative cost), always expanding the node with the least total cost from the start node. This makes UCS a type of best-first search algorithm.
· Completeness: UCS is complete, meaning it will always find a solution if one exists, as long as the cost of each action is greater than or equal to some small positive value (no infinite cost cycles).
· Optimality: UCS is optimal, meaning it will always find the least-cost solution (shortest path) as long as all edge costs are positive. This ensures that it returns the lowest-cost solution among multiple paths to a goal.
· Time Complexity: The time complexity depends on the branching factor b, the depth d of the solution, and the cost C of the optimal solution:
· Worst-case time complexity is O(b⌈C/ϵ⌉), where ϵ is the minimum cost between any two nodes (to avoid infinite exploration).
· This makes UCS potentially slow for very large graphs or problems with many nodes, as it explores all nodes until it finds the least-cost solution.
· Space Complexity: UCS requires storing all the nodes in memory, making its space complexity equal to the time complexity O(b⌈C/ϵ⌉)O(b^{\lceil C/\epsilon \rceil})O(b⌈C/ϵ⌉). This can lead to high memory consumption for large search spaces, especially in dense graphs.
4.5 Applications
· GPS Navigation Systems: UCS is commonly used in route planning for GPS navigation. In this context, nodes represent locations (cities, towns, or intersections), and edges represent the roads between them, with costs corresponding to distances or travel times. UCS helps determine the shortest or fastest route between a source and destination, taking into account varying road lengths, traffic conditions, or speed limits. By minimizing travel cost, UCS ensures that users are guided along the most efficient route.
· Network Routing: In computer networks, UCS is used to determine the most efficient way to transmit data between two points. Nodes represent routers or servers, and edges represent communication links, with costs corresponding to factors such as bandwidth usage, transmission delay, or congestion levels. UCS ensures that data packets are routed through the least-cost path, optimizing network performance and reducing transmission time. It is particularly useful in dynamic routing protocols like OSPF (Open Shortest Path First) that compute the optimal path in real-time.
· AI Path finding: UCS is used in games for AI agents to find the least-cost paths in environments with different terrain or obstacles, ensuring that agents take the optimal route.
· Optimizing Medical Procedures: In healthcare logistics, UCS can optimize paths through different medical treatments or processes to minimize overall costs while ensuring efficient patient care.
4.6 Advantages & Limitations
4.6.1 Advantages
The primary strength of UCS is its ability to handle weighted graphs effectively, where the cost of traversing edges may vary. For example, in real-world scenarios like route planning in GPS navigation systems, the distances between cities or travel times might differ, and UCS can efficiently determine the optimal path based on the given costs. This is particularly useful in domains like robotics, transportation networks, and resource allocation, where the goal is not just to find a solution but to minimize the cost of achieving it.
4.6.2 Limitations
UCS can be computationally expensive, especially in large graphs with many nodes and edges. Since it explores nodes based on cumulative cost rather than depth, UCS can potentially explore many unnecessary nodes before reaching the goal. Additionally, if there are multiple paths to a node, UCS may repeatedly revisit nodes, which can increase both time and memory usage unless proper bookkeeping is maintained.

[bookmark: _GoBack]

A

B

D

E

C

F

A

B

D

C

E

F

1

1

C

H

A

P

T

E

R

-

4

Search

Strategies

: Uninformed

Search

Strategies

D

r

.

S

.

R

a

m

a

l

a

k

s

h

m

i

1

&

M

r

s

.

G

.

A

s

h

a

2

1

&

2

A

s

s

i

s

t

a

n

t

P

r

o

f

e

s

s

o

r

,

D

e

p

a

r

t

m

e

n

t

o

f

C

o

m

p

u

t

e

r

S

c

i

e

n

c

e

a

n

d

A

p

p

l

i

c

a

t

i

o

n

s

,

D

o

n

B

o

s

c

o

C

o

l

l

e

g

e

(

A

r

t

s

&

S

c

i

e

n

c

e

)

,

K

a

r

a

i

k

a

l

, Puducherry

.

Introduction

In the realm of problem

-

solving and artificial intelligence, search algorithms play a critical role

in navigating through state spaces to find solutions. Uninformed search, also known as blind

search, is a category of algorithms that operates without any a

dditional knowledge of the domain

other than the problem's definition itself. These algorithms systematically explore all possible

states of a problem until a solution is found, without estimating the cost or proximity to the goal.

The

fundamental uninform

ed search algorithms ar

e Breadth

-

First Search (BFS),

Depth

-

First

Search (DFS),

Depth Limited Search (DLS), Uniform Cost Search (UCS),

each offering different

methods for traversing a search space.

In this chapter explains in detail about these fundamental

search algorithms.

1. Breadth

First Search Algorithm

Breadth

-

First Search (BFS) is a graph traversal algorithm that explores all the nodes at the

present depth before moving on to the nodes at the next level. It works by systematically

expanding and examin

ing all nodes that are equidistant from the starting point, one layer at a

time. BFS uses a queue data structure to keep track of nodes to be explored. This ensures that the

first node to be added to the queue is the first to be processed, maintaining the

breadth

-

first

property of the algorithm.

BFS is guaranteed to find the shortest path in an unweighted graph or the minimal number of

steps to reach the goal, making it an ideal choice for problems where the solution is close to the

root node. However, BFS

can be memory

-

intensive, especially for large graphs, as it needs to

store all the nodes at the current depth in memory before proceeding.

1.1

. Working

of BFS Algorithm

BFS starts from a given node, often called the

root

, and systematically explores all of

its

neighboring nodes. Once it explores all the nodes directly connected to the root, it moves on to

explore the neighbors of those nodes, repeating the process until all nodes have been visited or a

target node is found.

The key idea is that BFS ensures

it explores nodes layer by layer, moving from one level to the

next. The algorithm makes use of a

queue

data structure to manage the nodes that need to be

explored next. The queue follows the First

-

In

-

First

-

Out (FIFO) principle, which ensures that the

firs

t node inserted into the queue is the first one to be processed.

