
Plane Wave Propagation in functionally
graded nonlocal couple stress elastic solid

medium

In this chapter, a study of plane waves in functionally graded non local micropolar couple

stress elastic medium has been undertaken. We observe that there exist four waves, namely,

a longitudinal displacement wave, a longitudinal microrotational wave and a set of two cou-

pled waves with different phase velocities. The penetration depth, specific loss, attenuation

coefficient and phase velocity are evaluated numerically and shown graphically.

1 Basic equation and constitutive relation

The constitutive relations for non local micropolar couple stress elastic medium are given by

(1− ϵ2∇2)tmn = λ̄δmnϵrr + (µ̄+ K̄)ϵmn + µ̄ϵnm

(1− ϵ2∇2)mmn = ᾱδmnγrr + β̄γmn + γ̄γnm

where γmn(= ϕm,n) is the curvature tensor and ϵmn(= un,m − ϵmnlϕl) is the relative distortion

tensor where u denotes displacement vector and ϕ denotes microrotation vector. λ̄ and µ̄

are Lame’s constant; K̄, ᾱ, β̄ and γ̄, are constitutive coefficients; ∇2 is the laplacian operator.

ϵ(= e0a) denotes non local parameter where e0 is material constant and a is characteristic

length.

Following S. K. Tomar and A. Khurana (), the basic equations for non local micropolar couple

stress elastic medium given by

(λ̄+ µ̄)∇∇u+ (µ̄+ K̄)∇2u+ K̄ × ϕ = ρ̄(1− ϵ2∇2)ü (1)

(ᾱ + β̄)∇∇ϕ+ γ̄∇2ϕ+ K̄∇× u− 2K̄ϕ = ρ̄j̄(1− ϵ2∇2)ϕ̈ (2)
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where ρ̄ is the density of the medium and j̄ denotes the coefficients of equilibrated inertia.

2 Dynamics of exponentially graded non local couple

stress medium

The exponentially gradedness present in the media are supposed to be in the form of expo-

nential function with respect to x2-direction as

λ̄ = λ(1)el1x2 , µ̄ = µ(1)el1x2 , K̄ = K(1)el1x2 , ρ̄ = ρ(1)el1x2 ,

γ̄ = γ(1)el1x2 , ᾱ = α(1)el1x2 , β̄ = β(1)el1x2 , j̄ = j(1)el1x2 , (3)

where λ(1), µ(1), K(1), α(1), β(1), γ(1), ρ(1) and j(1) are the value of the corresponding elastic con-

stants λ̄, µ̄, K̄, ᾱ, β̄, γ̄, ρ̄ and j̄ respectively associated with the media at x2 = 0. l1 represents

the exponential gradient parameter of the medium.

For a 2-D problem, we have displacement components as

u = (u1, 0, u3)

Using Helmholtz decomposition theorem on vectors, the displacement component u related to

the potential σ(x1, x3, t) and Σ(x1, x3, t) are as

u = ∇σ +∇×Q, ∇ ·Q = 0

ϕ = ∇ϑ+∇×V, ∇ ·V = 0 (4)

Using equations (3)-(4) in equations (1)-(2), we obtain

(λ(1) + 2µ(1) +K(1))∇2σ − ρ(1)(1− ϵ2∇2)σ̈ = 0 (5)

(µ(1) +K(1))∇2Q+K(1)∇×V − ρ(1)(1− ϵ2∇2)V̈ = 0 (6)

(α(1) + β(1) + γ(1))∇2ϑ− 2K(1)ϑ− ρ(1)j(1)(1− ϵ2∇2)ϑ̈ = 0 (7)

γ(1)∇2V +K(1)∇×Q− 2K(1)V − ρ(1)j(1)(1− ϵ2∇2)V̈ = 0 (8)
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Equations (6) and (8) show that Q and V are coupled and equations (5) and (7) show that

σ and ϑ are independent. We consider a plane wave propagation in a homogeneous isotropic

non local couple stress micropolar elastic medium. For this we assume the solution of the form

{σ, ϑ,Q,V}(a, b,A,B) exp{il(n · r− ct)} (9)

where ω = lc is the frequency, l is the wave number and c is the phase velocity, a, b, A and B

are undetermined amplitudes that are dependent on time and coordinate r = xm(m = 1, 3),

n is the unit vector.

Using equation (9) in equation (5), we obtain

C2
1 =

[
(λ(1) + µ(1) +K(1))

ρ(1)
− ϵ2ω2

]
(10)

Using equation (9) in equation (7), we obtain

C2
2 =

[
(α(1) + β(1) + γ(1))

ρ(1)j(1)

] [
1− 2K(1)

ρ(1)j(1)ω2

]
(11)

Using equation (9) in equations (6) and (8), we obtain

[(
µ(1) +K(1)

)
l2 − ρ(1)ω2 − ρ(1)ω2 − ρ(1)ω2ϵ2l2

]
A− i l K(1) B = 0 (12)

i l K(1) A−
[
γ(1)l2 + 2K(1) − ρ(1)j(1)ω2 − ρ(1)j(1)ω2ϵ2l2

]
B = 0 (13)

which yield the following polynomial equation

A1C
4 + A2C

2 + A3 = 0 (14)

where

A1 = 1−Ω; A2 = ω2ϵ2 − b24 −
1

2
b23Ω+ (1−Ω)(ω2ϵ2 − b22b

2
3); A3 = (ω2ϵ2 − b22b

2
3)(ω

2ϵ2 − b24);

Ω =
2ω2

0

ω2
; ω2

0 =
K(1)

ρ(1)j(1)
; b22 =

µ(1)

ρ(1)
; b24 =

γ(1)

ρ(1)j(1)
; b23 =

K(1)

ρ(1)

The roots of the equation (14) are given by

C2
3 =

−A2 +
√

A2
2 − 4A1A3

2A1

; C2
4 =

−A2 −
√
A2

2 − 4A1A3

2A1
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Equations (14) is cubic in C2 with complex coefficients, whose roots will provide us the speed

of the propagation waves on solving equation (14), we obtain equation (15) with four complex

roots i.e. Ci; (i = 3, 4). Corresponding to each of these roots, we found a set of two couples

waves namely P3 wave propagating with speed C3 and P4 wave propagating with speed C4.

The phase speeds (Si), Specific loss (Ri) and Attenuation coefficients (Qi) for waves travelling

with speeds Ci can be obtained from the formulae given by Kumar et al. ()

Si =

[
ω

|ℜ(Ci)|

]
; Ri =

(
W ′

i

Wi

)
= 4π

∣∣∣ℜ(Ci)

ℑ(Ci)

∣∣∣; Qi = ℑ(Ci); i = (1, 3, 4) (15)

where ℜ(Ci) denotes the real part of Ci and ℑ(Ci) denotes the imaginary part of Ci.

In order to investigate the nature of these waves, inserting equation (9) in equation (4),

we observed that the particle motion associated with potential Q is normal to the direction of

wave propagation n and the wave associated with Q is transverse in nature. Also, the wave

associated with V is transverse in nature (by using equations (6) and (8)). Since, both the

waves are coupled and hence, known as coupled transverse waves. Thus, there exists two sets

of coupled transverse waves, namely, transverse displacement wave and transverse microrota-

tional wave.

3 Numerical Analysis

Following Eringen (1984), the numerical values of parameters are taken as

K̄ = 1.0× 1010Nm−2; µ̄ = 4.0× 1010Nm−2; λ̄ = 9.4× 104Nm−2; ρ̄ = 1.73× 103Kgm−3;

γ̄ = 0.779× 10−9N ; j = 0.2× 10−19m2; ᾱ = 2.33× 10−5N ; β̄ = 2.48× 10−5N ; e0 = 0.39
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Figure 1: Distinction of magnitude of phase velocity S1 with angular frequency

Figure 2: Distinction of magnitude of phase velocity S2 with angular frequency
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Figure 3: Distinction of magnitude of phase velocity S3 with angular frequency

Figure 4: Distinction of magnitude of attenuation coefficients Q1 with angular frequency
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Figure 5: Distinction of magnitude of attenuation coefficients Q2 with angular frequency

Figure 6: Distinction of magnitude of attenuation coefficients Q3 with angular frequency
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Figure 7: Distinction of magnitude of specific loss R1 with angular frequency

Figure 8: Distinction of magnitude of specific loss R2 with angular frequency
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Figure 9: Distinction of magnitude of specific loss R3 with angular frequency

Figure 1-3 depict the impact of gradient parameter on the phase velocities Si(i = 1, 2, 3) with

the angular frequency ω.

On comparing the curves of phase velocities, we conclude that

1. The phase velocity S1 decrease smoothly with the increase in value of ω. While the phase

velocities S2 and S3 first decrease sharply; thereafter move constantly and after that increase

is reported for the range 85◦ ≤ θ0 ≤ 90◦.

2. The phase velocities Si(i = 1, 2, 3) without gradient parameter i.e. l1 = 0 dominates over

the phase velocities Si(i = 1, 2, 3) with gradient parameter i.e. l1 ̸= 0.

3. The phase velocity S1 obtained its maximal value at ω = 0◦ while S2 and S3 obtain their

maximal value nearly at ω = 52◦.

4. The pattern of all the curves of the phase velocities Si(i = 1, 2, 3) without gradient param-

eter and with gradient parameter is similar.

Figure 4-6 show the impact of gradient parameter on the attenuation coefficients Qi(i = 1, 2, 3)

with the angular frequency ω.

On comparing the curves of attenuation coefficients, we conclude that

1. The attenuation coefficient Q1 moves constantly for the range 0◦ ≤ θ0 ≤ 10◦ and after

that increase continuously with the increase in value of angular frequency. The attenuation

coefficient Q2 first increase sharply at 0◦ ≤ θ0 ≤ 2◦ then increase continuously with the in-

9



crease in value of angular frequency. The attenuation coefficient Q3 increases smoothly with

the increase in value of ω.

2. The attenuation coefficients Qi(i = 1, 2, 3) without gradient parameter i.e. l1 = 0 domi-

nates over the attenuation coefficients Qi(i = 1, 2, 3) with gradient parameter i.e. l1 ̸= 0.

3. The attenuation coefficients Qi(i = 1, 2, 3) obtained their maximal value at normal inci-

dence.

4. The pattern of all the curves of the attenuation coefficients Qi(i = 1, 2, 3) without gradient

parameter and with gradient parameter is similar.

Figure 7-9 show the impact of gradient parameter on the specific loss Ri(i = 1, 2, 3) with

the angular frequency ω.

On comparing the curves of specific loss, we conclude that

1. The specific loss R1 increases smoothly with the increase in value of ω. While the specific

loss R2 and R3 first decrease sharply and after that move smoothly with the increase in value

of ω.

2. The specific loss Ri(i = 1, 2, 3) without gradient parameter i.e. l1 = 0 dominates over the

specific loss Ri(i = 1, 2, 3) with gradient parameter i.e. l1 ̸= 0.

3. The specific loss R1 obtained its maximal value at normal incidence while R2 and R3 obtain

their maximal value nearly at ω = 52◦.

4. The pattern of all the curves of the specific loss Ri(i = 1, 2, 3) without gradient parameter

and with gradient parameter is similar.

4 Conclusion

In this chapter, the study of wave propagation due to incidence of longitudinal displacement

wave in functionally graded non local micropolar couple stress elastic medium has been un-

dertaken. The impact of gradient parameter has been examined. Further, we found there are

four waves, viz. a longitudinal displacement wave, a longitudinal microrotational wave and a

set of two coupled waves propagating with different speeds.

The major consequences are as follows:

1. The phase speeds, attenuation coefficients and specific loss with respect to angle of inci-

dence are calculated numerically and graphically.

2. The impact of gradient parameter are not seen significantly at grazing incidence but seen

significantly at normal incidence.

3. The impact of gradient parameter on the phase speeds, attenuation coefficients and specific

loss are maximum at normal incidence.
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4. The curves of all phase speeds, attenuation coefficients and specific loss without gradient

parameter i.e. l1 = 0 dominates the curves of all phase speeds, attenuation coefficients and

specific loss with gradient parameter i.e. l1 ̸= 0 respectively.

11


