
Source Code Analysis: Exploring Solutions
for Software Quality

1st Sakshi Kusmude
Department of Information

Technology
Vishwakarma Institute of

Information Technology, Pune
sakshi.22210253@viit.ac.in

4th Purvesh Bhole
Department of Information

Technology
Vishwakarma Institute of

Information Technology, Pune
purvesh.22211425@viit.ac.in

2nd Utkarsha Baraskar
Department of Information

Technology
Vishwakarma Institute of

Information Technology, Pune
utkarsha.22211455@viit.ac.in

5th Shravani Padwal
Department of Information

Technology
Vishwakarma Institute of

Information Technology, Pune
shravani.22211302@viit.ac.in

3rd Ratnmala N.
Bhimanpallewar

Department of Information
Technology

Vishwakarma Institute of
Information Technology, Pune
ratnmala.bhimanpallewar@viit.a

c.in

Abstract

Although there is a wide range of software applications, it is imperative to implement the correct
quality to enhance the efficiency, security, and stability of the applications. Problems need to be
found in source code and the code analysis becomes primary instruments for this, in the hands of
the developers. It focuses on two main techniques: White box testing, which involves thoroughly
inspecting the internal structure and logic of the code without actually running it, ensuring
everything works as intended; and black box testing, which analyzes the code during execution to
check how it performs in real-time. The paper also looks at the use of auto tools and machine
learning techniques in enhancing code analysis. These solutions assist the developers to turn their
created software into more stable, secure, and performing applications. Furthermore, the paper
focuses on such aspects as code reviews and training of developers to increase their awareness of
what practices should be followed. Thus, through static code analysis, the level of code security, as
well as the overall maintainability and functionality of software, may be boosted. Thus, making
software more reliable and satisfying the requirements of the existing technologies, based on this
approach.

Keywords : Software Quality, Machine Learning, Developer Training, Code Functionality

Introduction

In the modern world where software is being developed constantly, there is increasing
importance of ensuring that the quality of the software is as high as possible and in order to do
that, source code analysis has become crucial. Code analysis involves a range of methods that
is used to effectively locate problems, weaknesses or potential problems in code so as to make
the code more reliable secure and easy to evolve. Since software systems have become more
intricate, it is very hard to conduct manual scrutiny of codes; thus, the creation of automated

mailto:sakshi.22210253@viit.ac.in
mailto:purvesh.22211425@viit.ac.in
mailto:utkarsha.22211455@viit.ac.in
mailto:shravani.22211302@viit.ac.in
mailto:ratnmala.bhimanpallewar@viit.ac.in
mailto:ratnmala.bhimanpallewar@viit.ac.in

tools that make use of static and dynamic analyses. They include a new ProgQuery tool for
Java that is a graph-based technique that improves the speed and scalability of source code
analysis to 245 times compared with other methods. This points out the fact that it is possible
to analyze a large scale complex software systems much more effectively and efficiently.

Another important contribution proposed in the paper is called FineCodeAnalyzer intended for
the method-level bug localization and since the cognitive cost is in the focus of the
improvement, it helps developers to gain more efficiency in order to make proper changes. It
was demonstrated that a manual bug localization using this tool is faster and more accurate in
detecting features in the source code than traditional methods [1]. In addition, studies that
perform a comparison of the above-mentioned analysis tools such as SonarQube, Coverity as
well as CodeSonar have shown that each tool has been found to have certain merits on their
own. For example, SonarQube is best suited for detecting faults in code sourced from different
languages while Coverity is best suited for detecting security issues making them invaluable in
improving on the quality of software in various ways [2].

However, it is for this reason that such problems can still be observed in the contemporary
architectures, for instance, in the distributed systems, information restatement or a possible
inconsistency of security policies. Scholars have observed that there is a need to come up with
better solutions as the complexity that arises from working with distributed systems may prove
hard to manage [3]. Also, most of the open-source static code analysis tools are Semgrep and
Klocwork, and they are also good for defining vulnerabilities and they are multi-language,
cross-platform, and this may force the developer to choose the right tool for the given project
according to the needs [4]. This paper aims at presenting the existing tools and methods
regarding source code analysis as well as the current concerns and future prospects towards
the enhancement of the quality of the developed software.

Literature Survey

As it can be seen, the process of using various approaches and methods of code reviewing as
a process of analysis of a definite source code has significantly enhanced the quality and
effectiveness of the programs. Looking from the viewpoint of computer science, one would like
large scale applications to have efficiency and expressiveness; these are exactly the
characteristics that ProgQuery, a graph-based system written into Java, has the ability to do
well in, the possibly large scale of the applications I was referring to. This has been backed by
the versatility of this tool in handling huge codes as well as scaling and the reduce in the time
required for analyze codes. In the same way, FineCodeAnalyzer integrates high accuracy of
bug localization on the method level that minimizes the load on the developers and accelerates
the identification process.

The comparative analysis of tools, used for the source code analysis, states about the essence
of such tools as SonarQube, Coverity, CodeSonar and underlines the peculiarities of their
activities. Both SonarQube and Coverity are equally good tools in their own right; while
SonarQube has the ability to find flaws in multiple languages, Coverity is particularly helpful in
finding security flaws. They have their specific uses, and this is why the developers must
choose the appropriate one depending on the project they are working on. However, as
mentioned before, the analysis of distributed systems still remains a problem and a number of
issues such as information restatement and security inconsistencies need more profound
solutions.

The analysis also reveals that static open source tools are also useful in the identification of
security weaknesses across different programming languages. Specific tools such as Semgrep
do stand out in JavaScript and use of SonarQube can be more general with an organized
method of defective code identification. However, these tools also show that there is
continuous improvement is still required in dealing with scalability, precision, and adaptability
issues CACM in distributed architecture and projects.

Methodology

The process of making our machine learning model that would classify code snippets into certain
categories was well structured. In this section, a detailed methodological approach – data preprocessing,
model architecture, training and validation – is described.

Data Collection and Preprocessing
The initial part of the task included the generation of a labelled dataset which includes code snippets and
that data was collected and placed into a CSV file format. Every snippet was labelled and put into one of
the categories that were used to build the model on.
Tokenization was applied on the textual data to which it was turned so that it can be manipulated by the
model. Each code snippet was essentially converted into a sequence of integers, with each number
representing a specific token in the given programming language: it could be a word or a character.
Mathematically, if 𝑆 means the available of code snippets and T is the tokenizer, each of the
code snippets si ∈ S is converted into an integer sequence

T(si)=[t1,t2,…,tn] , where ti are token indices

Due to the possibility of sequences in the input data having different lengths the used
sequences were padded. All sequences were aligned to 500 tokens, these exercises were to
make sure that the input dimensions in the neural network are consistent. This was important
because unlike traditional Machine learning algorithms, neural networks require the inputs to
be of the same size.

Model Architecture

The architecture of the model consisted of three key layers: the embedding layer that is
followed by LSTM layer and finally the last step in dense layer with softmax activation at the
end. The embedding layer converted tokens into meaningful vectors, the LSTM captured the
sequence patterns, and the dense layer made final predictions. Together, these layers worked
in harmony to analyze the code snippets and make accurate classification decisions.

The embedding layer was the initial layer of the model and it required transforming the
tokenized integer sequences to dense vectors. Let the input sequence be z = [z1 , z2, …, zn],
where zi is token index. The first encoder layer called the embedding layer maps each token zi
to a corresponding vector vi ∈ Rd, where d is the embedding dimension, which in this work was
set to 128. These vector representations that the layer learns during training are capable of
capturing semantic relationship of the tokens present in it.

Then, we added an LSTM layer to extract sequential information of tokens in the code
snippets. There is also the LSTMs which are efficient in handling sequence data since it has a

memory which holds information from previous tokens. The LSTM computes for the hidden
state nt and cell state
mt at each time step t, that has been entered as an input, the previous state nt-1 and previous
cell state mt-1.

pt = σ(Wp⋅[nt−1,zt]+bp)

qt = σ(Wq⋅[nt−1 ,zt]+bq)

rt = σ(Wr⋅[nt−1,zt]+br)

mt = qt∗mt−1+qt∗tanh(Wm⋅[nt−1,zt]+bm)

nt = rt∗tanh(mt)

In the above equations, pt , qt , rt these are the forget, input, and output gates manage the flow of
information in the model. In this context, σ (sigma), which is sigmoid activation function applied
element-wise and tanh denotes the element-wise hyperbolic tangent function, each playing a
key role in processing and transforming the data. These long-term dependencies that LSTM
can capture make it a perfect candidate for processing code snippets, where understanding the
context over multiple tokens becomes essential.

Lastly, the last layer of the model which is the output layer was of dense type with softmax
activation function. The activation of softmax makes the LSTM output be a probability
distribution over a certain set of predetermined classes. Its mathematical definition is as
follows:

softmax() =

where is the output for class i, while the denominator sums up to the exponential of all class
outputs. The result is a probability distribution, that is where the class with the highest
probability is chosen as the model’s prediction is made.

Model Training
For optimization the model was trained using the Adam optimizer, one of the preferred
optimization algorithms because it adapts the learning rate for every parameter based on their
pace. This helps Adam combine the benefits of both momentum and RMSprop, allowing faster
convergence and better performance.

Categorical cross entropy is used as the loss function for multi class classification since it is
most common for this type of problem and is expressed as:

Loss =

where is the predicted probability for class i. Training was done on 32 for total of 10 epochs,
including 20% of the data to monitor overfitting.

Evaluation and Visualization
After the training was over, the model was tested on full data and we got a test accuracy of 53.
9%. These scores represent accuracy of the model in identifying the code snippets to the right
categories.

To have more insight about the performance of this model, we equally illustrated the training
and the validation accuracy as well as the loss after each epoch of 10. This showed that the
accuracy was increasing on training as the epochs passed by and suggested that the model is
learning. However, the validation accuracy showed signs of convergence, which suggests that
perhaps the model needs a little bit more tuning to increase the generalization of data of
unseen datasets. The loss curves shown below described the model's progression and
validation while achieving higher validation accuracy, which was somewhat tricky.

Results

The model which was trained over 10 epochs had the following results:

Training Performance: The training process indeed showed a fair improvement, starting from 46.68%
in the first epoch to a gradual increase of 57.98% by the tenth epoch.

The loss during training decreased from 0.6957 in the first epoch to 0.6746 by the final epoch, showing
that at least the model was learning and minimizing errors as time progressed.

However, the accuracy fluctuated a bit in the middle epochs, which may indicate that this model had
some difficulties in smoothly enhancing its performance during this time.

Validation Performance: The validation accuracy started at 52.50%, and interestingly hit its peak at
53.00% in the third epoch, but eventually fell to 44.50% at the last epoch.

By contrast, the validation loss was on an upward trend from 0.6918 in the first epoch to 0.7059 by the
tenth. This pattern essentially may indicate that it might have started overfitting on the training data,
given its poorer performance on unseen validation data.

Test Performance: By applying it to the whole dataset, the model was eventually able to reach a test
accuracy of 53.90%; it is doing better than random guessing, but it certainly leaves a lot of room for
improvement.

From the initial sets of training, the model showed some potential; in further training, however, the
model continued to struggle to yield consistent high validation accuracy levels.

The increasing validation loss is indicative that overfitting may have occurred, and the model has learned
specific patterns in the training data which do not generalize well on unseen data. The test accuracy of
53.90% reflects that this model is slightly above random guesses but may need some fine-tuning, with
the probability of resorting to more sophisticated methods for improving its predictive capability.

Performance Metrics

Epoch Accuracy
During Training

Loss During
Training

Accuracy
During

Validation

Loss During
Validation

1 46.68% 0.6957 52.50% 0.6918

2 52.20% 0.6914 50.00% 0.6948

3 54.33% 0.6914 53.00% 0.6929

4 54.69% 0.6907 51.00% 0.6949

5 54.98% 0.6868 52.50% 0.6972

6 55.13% 0.6862 49.00% 0.7013

7 54.20% 0.6862 46.00% 0.7013

8 55.56% 0.6805 47.50% 0.7035

9 58.42% 0.6788 47.50% 0.7066

10 57.98% 0.6746 44.50% 0.7059

Below is the output generated by the model:

Below, you’ll find visual representations of the model's accuracy and loss, created using Matplotlib.
These plots illustrate how the model's performance evolved over time, showing both its accuracy
improvements and loss reductions. This helps us better understand how well the model is learning and
where it might need adjustments :

Comparison with Other Approaches

For the purpose of classifying code snippets in this research, we used a simple LSTM model which can
be compared to other methods that have been used in earlier studies done in this area of research.
Algorithm-based approaches like rule-based engine which scans through the code snippets using pre-
defined patterns and rules about the code; although these systems are highly accurate in particular cases
they are not efficient when it comes to the case of recognizing code not previously seen by the engine.
As seen earlier, our LSTM model our LSTM model provided us with a moderate accuracy of 53. New
coders, here ranked 90% better in terms of ability to cope with new code. However, it also has some
phenomena of over-learning, that is, it works well on training sets and does not work so well on the new
data set. As for the scalability, the size of a rule based system is becoming unmanageable as the rule base
increases whereas the LSTM model, although would require some fine tuning, can be scaled more easily
by introducing more data since the model does not rely on rules.

Compared with other traditional machine learning models, our LSTM model has its advantages and
disadvantages while used in classifying codes, the strengths of which far outweighs that of Random
Forests or Support Vector Machines (SVMs), which are typically applied to this area. Although these
traditional models can result in high accurate result, a lot of effort needs to be spent on feature
engineering to find out which features of the code they should use. In contrast, the LSTM proposed in
our research learnt these features automatically, which makes the development process easier. But all the
same, what it poorly offers in terms of accuracy is 53. 90% however, the effectiveness of our proposed
model is still lower and needs to be tweaked to offer the efficiency of these conventional approaches.
Further, traditional models could be rigid when used in various codes whereas the LSTM model does not
require much feature engineering and can easily be generalized to different coding styles. State-of-the-art
methods given concerns more challenging code patterns involve the utilization of deep learning
techniques such as the transformers by applying BERT or GPT. Such models usually are more accurate
and perform better than LSTMs, however, demands much more computational power. Despite the fact
that our LSTM model was a bit less accurate, it is much simpler to implement and use less resources.
Transformers, for instance, have been fine-tuned where they receive a huge number of computations and
big quantities of data. However, our LSTM model is less powerful but more realistic to the projects
which is having limited funding for implementation.

All in all, it is the simplicity and being free from manual feature engineering, and it is significantly less
resource-demanding compared to the models like transformers. This is because our proposed LSTM
model does not require any form of custom rule to be imposed on them due to flexibility of the model.
However, there are a few short-coming that need to be hit; for example, overfitting in the model and
further optimization of the model for the better performance. Even though our LSTM model has several
benefits, there is a potential for further studies with the development of other methods that can increase
the model’s accuracy and efficiency.

Conclusion

We present in this research paper the study done for classification of code snippets, which is an essential
task in software quality enhancement and keeping coding standards. From our results, we show that our
LSTM model produced an accuracy of 53.90% over the test data. This accuracy is not particularly high
but does illustrate the inherent difficulty of trying to use a relatively simple deep learning model for the
task of code classification. Actually, the model showed some sign of overfitting as it did way better with
the training data in comparison to the out-of-sample data; therefore, it required improvement in
refinement. So, use of an LSTM model has an added advantage as it can automatically learn the features
inherent in the input data; hence, the task of feature engineering is greatly minimized, making the job
simple for dealing with different code types compared to traditional machine learning methods.

In comparative analysis, our LSTM approach struck a good balance between complexity and
performance in relation to rule-based systems and classical machine learning models. Whereas more
advanced models, for example, Transformers, reach higher accuracy and deeper insight into complex
structures, they also bring with them a massive computational cost and, therefore, usually need much
more data, which makes these models less feasible for smaller projects. Although the challenges faced,
our results suggest that LSTM models can be a decent choice for code classification, mostly when
resources are scarce. There is certainly room for further improvement with model architecture
optimization and dataset expansion or exploration of advanced model designs to transformer models. We
will experiment more and update our iterative approach in this paper for the generalization of the model
to handle the expanded range of coding scenarios with a higher level of precision.

Future work should be directed at regularization strategies that will take care of overfitting or on
increasing the size of the training data and making it more diverse. Hybrid models, combining LSTM
with transformer techniques, might provide a more comprehensive solution for code classification.
Transfer learning may aid both accuracy and reduction in training time by pre-training on large
quantities of code before fine-tuning for any specific task. In general, this research highlights that the
high potential of using LSTM in source code analysis points to further development on how software
quality can be maintained with respect to the coding standards within the domain of software
engineering.

References
[1] Qayum, S. U. R. Khan, I. U. Rehman, and A. Akhunzada, "FineCodeAnalyzer: Multi-Perspective

Source Code Analysis Support for Software Developer Through Fine-Granular Level Interactive
Code Visualization," IEEE Access, vol. 10, pp. 20498-20513, 2022. DOI:
10.1109/ACCESS.2022.3151395.

[2] V. Bhutani, F. G. Toosi, and J. Buckley, "Analysing the Analysers: An Investigation of Source
Code Analysis Tools," Applied Computer Systems, vol. 29, no. 1, pp. 98–111, June 2024. DOI:
10.2478/acss-2024-0013.

[3] T. Cerny, J. Huang, and others, "Code Analysis Opportunities and Challenges for Enterprise
Systems and Microservices," IEEE Access, vol. 8, pp. 159464-159470, 2020. DOI:
10.1109/ACCESS.2020.3019985.

[4] K. Kuszczyński and M. Walkowski, "Comparative Analysis of Open-Source Tools for
Conducting Static Code Analysis," Sensors, vol. 23, no. 7978, 2023.

[5] M. Hoq, P. Brusilovsky, and B. Akram, "SANN: A Subtree-based Attention Neural Network
Model for Student Success Prediction Through Source Code Analysis," in Proc. 6th Educational

Data Mining in Computer Science Education (CSEDM) Workshop, Durham, United Kingdom,
2022. DOI: 10.5281/zenodo.6983496.

[6] Sotirov, "Automatic Vulnerability Detection Using Static Source Code Analysis," M.S. thesis,
Dept. of Computer Science, Univ. of Alabama, Tuscaloosa, AL, 2005.

[7] F. Logozzo and M. Fähndrich, "On the Relative Completeness of Bytecode Analysis versus
Source Code Analysis," Microsoft Research.

[8] N. Stulova, A. Blasi, A. Gorla, and O. Nierstrasz, "Towards Detecting Inconsistent Comments in
Java Source Code Automatically," in SCAM’20: 20th IEEE International Working Conference
on Source Code Analysis and Manipulation, 27 Sept. 2020.

[9] F. Schuckert, B. Katt, and H. Langweg, "Difficult SQLi Code Patterns for Static Code Analysis
Tools," in Proc. 1st Model-Driven Simulation and Training Environment for
Cybersecurity, 2020.

[10] R. L. de Souza, F. Z. Ferreira, and S. S. Botelho, "A Proposal for Source Code
Assessment Through Static Analysis," PPG Modelagem Computational, Universidade Federal do
Rio Grande, Rio Grande - RS, Brazil 2023.

[11] R. Sadik, A. Ceravola, F. Joublin, and J. Patra, "Analysis of ChatGPT on Source Code,"
Honda Research Institute Europe, 2023.

[12] M. Iammarino, L. Aversano, M. L. Bernardi, and M. Cimitile, "A Topic Modeling
Approach to Evaluate the Comments Consistency to Source Code," 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020. DOI:
10.1109/ICSME.2020.0010.

[13] Md. Mostafizer Rahman, Yutaka Watanobe, Atsushi Shirafuji, and Mohamed Hamada,
“Exploring Automated Code Evaluation Systems and Resources for Code Analysis: A
Comprehensive Survey,” J. ACM, vol. 37, no. 4, Art. 111, Aug. 2018.

[14] J. H. Suk, Y. B. Lee, and D. H. Lee, “SCORE: Source Code Optimization &
REconstruction,” IEEE Access, vol. 8, pp. 129478-129495, 2020, DOI:
10.1109/ACCESS.2020.30089051.

[15] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A Transformer-based
Approach for Source Code Summarization”, May 2020.

