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Abstract. In this paper, we present a comprehensive study on the numerical

analysis of the fractional Laplace transform and Extorial transform, leveraging

the difference operator with shift values. Fractional calculus has gained

significant attention due to its extensive applications in various fields, including

physics, engineering, and finance. The fractional Laplace transform, a

generalization of the classical Laplace transform, is instrumental in solving

fractional differential equations. The Extorial transform, a lesser-known but

equally powerful tool, provides an alternative method for analyzing complex

systems. By incorporating difference operators with shift values, we propose

novel numerical methods to approximate these transforms, enhancing the

accuracy and efficiency of solutions. We demonstrate the effectiveness of our

approach through several illustrative examples and compare the results with

existing numerical methods. This study offers new insights and techniques that

could be beneficial for researchers and practitioners working with fractional

differential equations and transform methods.

Keywords: α(h)-difference operator, fractional difference, extorial function,

gamma function and polynomial factorial.

AMS classification: 47B39, 39A70, 11J54, 33B15

1



2

1. Introduction

Fractional calculus, which extends the concepts of integrals and derivatives to

non-integer orders, has emerged as a potent tool in mathematical modeling. Its

ability to describe memory and hereditary properties of various materials and

processes makes it invaluable in diverse domains such as viscoelasticity, anomalous

diffusion, and control theory. Central to fractional calculus is the need for effective

numerical methods to solve fractional differential equations, which are often

challenging due to their non-local nature.

The fractional Laplace transform is a pivotal instrument in this context,

extending the classical Laplace transform to fractional orders and providing a

robust framework for analyzing linear time-invariant systems. However, the

analytical solutions of fractional differential equations are not always feasible,

necessitating the development of numerical methods. The Extorial transform,

although not as widely known, offers complementary capabilities for transforming

and solving differential equations.

The study of integrals and derivatives of arbitrary order is done through

fractional calculus theory, a mathematical analysis tool that unifies and generalizes

the notations of n fold integration and integer-order differentiation (El-Ajou,

Arqub, Al-Zhour, & Momani (2013), Millar & Ross (1993), Oldham & Spanier

(1974), Podlubny (1999)). In 1695, Leibniz is credited with developing the concept

of fractional calculus; however, L’Hopital’s letter asked them, ”What does
∂mf(x)

∂xm

mean if m =
1

2
?” (Diethelm, 2010, Hilfer, 2000, Lazarevic, et al., 2014, Millar &

Ross, 1993, Kumar & Saxena, 2016).

Since then, numerous studies on this and similar topics have been brought up

by well-known mathematicians from the mid-1900s, including Laplace, Fourier,

Abel, Liouville, Riemann, Grunwald, Letnkov, Levy, Marchaud, Erdelyi, and

Reiszand. Fractional calculus is a new field of mathematical analysis that emerged

from these discussions and inquiries (Oldham & Spanier, 1974). Although

fractional calculus is almost as old as regular calculus, its ideas and applications

have just recently begun to flourish. The researchers recommend that readers

study the works [1, 4, 11, 12, 14, 21, 22, 23] to track the recent advancements of

this theory.
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Without a doubt, one of the most useful and often utilized instruments in

signal processing and analysis is the Laplace transform (LT). A significant

breakthrough in the solution of fractional order equations for chaos and stability

was made possible in 2009 by the Laplace transform approach, as demonstrated by

[15, 16]. The significance of this breakthrough may be found in

[9, 10, 17, 18, 19, 24].

This essay is structured as follows: The literature review was presented in the

first section of the report. Section 2 delves into the preliminary discussions, which

include relevant definitions, characteristics, and theorems pertaining to the

fractional alpha difference operator. Results and a discussion of the fractional

α(h)-difference operator and its features are covered in section 3. Sections 4 and 5

showed the findings using MATLAB coding and graphics, along with the core

concepts of fractional alpha Laplace and extorial transform that emerged from

study. Additionally, the Laplace transform for the fractional difference equation

was obtained. The results will be presented in Section 6.

2. Preliminaries

In this section, we present some basic definitions, notations and results.

Definition 2.1. For u(t) be the real , the forward h-difference operator a�h on u(k) is

defined by the relation

�α(h)u(t) =
u(t + h)− αu(t)

h
, (1)

while the α(h)-difference infinite sum for inverse α(h)-difference operator is defined

by

�−1α(h)u(t)|∞a = �−1α(h)u(∞)− �−1α(h)u(a) = −h
∞∑
r=0

α−(r+1)u(a + rh). (2)

When �−1α(h)u(t) at ∞ is 0, it is obvious we get �−1α(h)u(t) =
∞∑
r=0

α−(r+1)u(t + rh).

Example 2.2. Since �α(h)
1

2t
=

1

h

[ 1

2t+h
− α 1

2t

]
=

1

h

1

2t

( 1

2h
− α

)
, it is clear that

�−1α(h)
1

2t
=

h2h

2k (1− α2h)
and �−1α(h)

1

2∞
= 0. Taking u(t) =

1

2t
and a = 0 in (2) gives
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�−1α(h)
1

2t

∣∣∣∞
0

= h
∞∑
r=0

α−(r+1) 1

2rh
⇒ �−1α(h)

1

2∞
− �−1α(h)

1

20
= h

∞∑
r=0

α−(r+1) 1

2rh

⇒ h2h

1− α2h
= h

∞∑
r=0

α−(r+1) 1

2rh
, h > 0. (3)

Which is verified by MATLAB for the particular values α = 0.5 and h = 3 and the

coding as follows

symsum(3. ∗ (0.5). ∧ (−(r + 1))./2. ∧ (r. ∗ 3), r, 0, inf) = 3. ∗ 2. ∧ (3)./((0.5. ∗ 2. ∧ 3− 1)).

Definition 2.3. [5] For h > 0 and ν ∈ R, the rising h-polynomial factorial function

is defined by

t
[ν]
h = hν

�( t
h

+ ν)

�( t
h
)

, (4)

where t
[0]
h = 1, � is the Euler gamma function and t

h
+ ν, t

h
, /∈ {0,−1,−2,−3, ...}.

Similarly, the falling h-polynomial factorial function is defined by

t
(ν)
h = hν

�( t
h

+ 1)

�( t
h

+ 1− ν)
, (5)

where t
(0)
h = 1 and t

h
+ 1, t

h+1
− ν, /∈ {0,−1,−2,−3, ...}, since the division at a pole

yields zero.

Lemma 2.1. Let t ∈ (0,∞) and s, h > 0, then we have

a�
−1
α(h)

1

es1/ν t

∣∣∣∞
a

=
h

es1/ν t

(
α− 1

es1/νh

)−ν
. (6)

Proof. The proof is similar to the Example 2.2 for the function u(t) =
1

es1/ν t
. �

Remark 2.4. [8] The Euler can be expressed as an infinite product Gamma function

is given by �(z) =
1

z

∞∏
n=1

(1 + 1
n
)z

(1 + z
n
)
, z /∈ {0− 1,−2,−3, ...}.

Lemma 2.2. The polynomial factorials satisfy the following identities;

(i) �ht
[ν]
h = ν(t + h)

[ν−1]
h and (ii) �ht

(ν)
t = νt

(ν−1)
h . (7)

Proof. The identities (iv) and (v) are obtained by applying �h on (4) and (5)

respectively. �
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Theorem 2.3. Let u(t) and v(t) be two real valued functions. Then

�−1α(h)[u(t)v(t)] = u(t)�−1α(h)v(t)− �−1α(h)[�
−1
α(h)v(t + h)�hu(t)]. (8)

Proof. From the Definition 2.1, we have

�α(h)[u(t)w(t)] = u(t)�α(h)w(t) + w(t + h)�hu(t). (9)

Taking �α(h)w(t) = v(t) and w(t) = �−1α(h)v(t) in equation (9), we obtain (8). �

Lemma 2.4. Let t ∈ (0,∞) and s, ν > 0, then we have

�−1α(h)(t
(µ)
h e−s

1/ν t) =

µ+1∑
r=1

µ(r−1)(r− 1)(r−1)

(r− 1)!

hrt
(µ+1−r)
h e−s

1/ν(t+(r−1)h)

(α− e−s1/νh)r
. (10)

Proof. Taking u(t) = t
(µ)
h and v(t) = e−s

1/ν t in (8), we obtain

�−1α(h)(t
(µ)
h e−s

1/ν t) = t
(ν)
h

e−s
1/ν t

(α− e−s1/νh)
− �−1α(h)

( e−s
1/ν(t+h)

(α− e−s1/νh)

{
µht

(µ−1)
h

})
.

Using (6), (7) and applying (9) for t
(µ−1)
h e−s

1/ν t, t
(µ−2)
h e−s

1/ν t, · · · , t(1)h e−s
1/ν t, we get

(10). �

3. Fractional α(h)-difference Operator and its Properties

Definition 3.1. Let ν > 0 and u(t) ∈ hν(∞). The negative alpha fractional

h-difference operator, denoted as �−να(h),is defined by

�−να(h)u(t)
∣∣∣∞
a

= hν
∞∑
r=0

α−(r+ν)
�(ν + r)

�(r + 1)�(ν)
u(a + rh). (11)

Definition 3.2. For a fraction 0 < ν < 1, the Caputo α(h)-difference operator a�
ν
α(h)

on u(t) is defined by

a�
ν
α(h)u(t) = �α(h)(a�

−(1−ν)
α(h) u(t)). (12)

Following theorem gives a closed form function for fractional difference of
1

ct
.

Theorem 3.3. Let ν > 0 be a fraction, t ∈ [0,∞) and c 6= 0. Then, we have

a�
−ν
α(h)

1

ct

∣∣∣∞
a

=
hν

ct

(
α− 1

ch

)−ν ∣∣∣∞
a

= −hν
∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)

1

ca+rh
. (13)



6

Proof. The binomial expansion for rational index gives a�
ν
α(h)

1

ct
=

h−ν

ct

(
α− 1

ch

)ν
.

Now (13) follows by taking a�
−ν
h on both sides and equating with (11). �

In the following illustrative example, the identity (13) is verified by MATLAB.

Example 3.4. Taking c = 3, h = 2, a = 4, α = 3 and ν = 0.3 in (13) gives

4�
−0.3
3(2)

1

3t

∣∣∣∞
4

=
20.3

3t

(
3− 1

32

)−0.3 ∣∣∣∞
4

= −20.3
∞∑
r=0

3−(r+0.3) �(0.3 + r)

�(0.3)�(r + 1)

1

34+2r
.

The values of the above relations are verified by MATLAB with the coding as

given below:

2. ∧ (0.3). ∗ symsum(3. ∧ (−(r + 0.3)). ∗ gamma(0.3 + r)./(gamma(0.3). ∗ gamma(r + 1).∗
3. ∧ (4 + r. ∗ 2)), r, 0, inf) = 2. ∧ (0.3)./((3. ∧ 4). ∗ (3− (1./3. ∧ 2)). ∧ (0.3)).

Corollary 3.5. For ν > 0, t ∈ [0,∞), s > 0 and h > 0, we have

a�
−ν
α(h)

1

es1/ν t

∣∣∣∞
a

=
hν

es1/ν t

(
α− 1

es1/νh

)−ν ∣∣∣∞
a

= −hν
∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)

1

es1/νa+rh
.

(14)

Proof. The proof follows by replacing
1

ct
by

1

es1/ν t
in Theorem 3.3. �

4. Fractional Alpha Laplace Transform by α(h)-difference

Operator

In this section, we develop a new type fractional Laplace transform with

examples. Our findings and the outcomes obtained by applying on h-factorial

functions are analyed and verified by MATLAB with diagrams.

Definition 4.1. Let u(t) be the real valued function. Then the Fractional Alpha

Laplace Transform(FALT) is defined as

Lνα(h)[u(t)] = �−να(h)u(t)e−s
1/ν t
∣∣∣∞
0

= −hν
∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)
u(rh)e−s

1/νrh. (15)

Theorem 4.2. For any fraction ν > 0, h > 0, µ ∈ N(1), and k ∈ [0,∞), we have

�−να(h)[t
(µ)
h e−s

1/ν t] =

µ+1∑
r=1

hνµ(r−1)

(r− 1)!

(ν + r− 2)(r−1)hr−1

(α− e−s1/νh)r+ν−1

t
(µ+1−r)
h

es1/ν(t+(r−1)h)
. (16)
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Proof. Since the order is fraction, we shall prove (16) by showing

�α(h)[h(t)] = �α(h)[g(t)], where h(t) = �−να(h)[t
(µ)
h e−s

1/ν t] and

g(t) =
µ+1∑
r=1

hνµ(r−1)

(r− 1)!

(ν + r− 2)(r−1)hr−1

(α− e−s1/νh)r+ν−1

t
(µ+1−r)
h

es1/ν(t+(r−1)h)
.

From Lemma 2.4, we arrive

�α(h)g(t) =
µ+1∑
r=1

hνµ(r−1)

(r− 1)!

(ν + r− 2)(r−1)hr−1

(α− e−s1/νh)r+ν−1
�α(h)

t
(µ+1−r)
h

es1/ν(t+(r−1)h)

=

µ+1∑
r=1

hν−1µ(r−1)

(r− 1)!

(ν + r− 3)(r−1)hr−1

(α− e−s1/νh)r+ν−2

t
(µ+1−r)
h

es1/ν(t+(r−1)h)
. (17)

Again from Lemma 2.4, we obtain

�α(h)[h(t)] = �α(h)(a�
−ν
α(h))[t

(µ)
h e−s

1/ν t] = a�
−(ν−1)
α(h) [t

(µ)
h e−s

1/ν t]

=

µ+1∑
r=1

hν−1µ(r−1)

(r− 1)!

(ν + r− 3)(r−1)hr−1

(α− e−s1/νh)r+ν−2

t
(µ+1−r)
h

es1/ν(t+(r−1)h)
. (18)

The proof follows by comparing (17) and (18). �

Corollary 4.3. Let µ ∈ N(1), then we have

�−να(h)[t
(µ)
h e−s

1/ν t]
∣∣∣∞
0

=
hνµ(µ)

µ!

(ν + µ− 1)(µ)hµ

(α− e−s1/νh)µ+ν
1

es1/νµh
. (19)

Proof. The proof follows by applying the limits 0 to ∞ in (16). �

Corollary 4.4. The following identity hold for µ ∈ N(1),

Lνα(h)[t
(µ)
h ] =

hµ+νµ(µ)

µ!

(ν + µ− 1)(µ)

(α− e−s1/νh)µ+ν
1

es1/νµh
= hν

∞∑
r=0

α−(r+ν)
�(ν + r)(rh)

(µ)
h e−s

1/νrh

�(ν)�(r + 1)
.

(20)

Proof. Since, we have

Lνα(h)[t
(µ)
h ] = �−να(h)[t

(µ)
h e−s

1/ν t]
∣∣∣∞
0

=
hνµ(µ)

µ!

(ν + µ− 1)(µ)hµ

(α− e−s1/νh)µ+ν
1

es1/νµh
. (21)

Now (20) follows from (15). �

Example 4.5. By taking µ = 3 in (20), we get fractional alpha Laplace transform of

t
(3)
h as

Lνα(h)[t
(3)
h ] =

hν+3(ν)(ν + 1)(ν + 2)

(α− e−s1/νh)3+νe3s1/νh
= hν

∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)
(rh)

(3)
h e−s

1/νrh. (22)
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Now for ν = 0.4, s = 5, α = 0.2 and h = 2 (22) is verified by MATLAB.

The following diagrams shows that the FALT for the function(signal) u(t) = t
(3)
2

in time domain and the in the frequency(s) domain the nature of outcomes are

generated by varying the factors α and ν simultaneously using MATLAB are shown

below.

Figure 1. Time(t) Domain Figure 2. Frequency(s) Domain

4.1. Laplace Transform of Fractional Difference Equations. Since the

Leibniz rule for the product of two functions like u(t) and v(t) for the Z domain as

given by �ν [u(t)v(t)] =
∞∑
r=0

(
ν
r

)
�ν−ru(t)�rv(t + ν − r). Now in this section, we

present the product formula on fractional difference operator �να(h) on hZ domain

such as �να(h)[u(t)v(t)] =
∞∑
r=0

(
ν
r

)
�ν−rα(h)u(t)�rα(h)v(t + (ν − r)h).

The following theorem gives the important role on solving fractional difference

equation by Laplace transform.

Theorem 4.1. Let u(t) be the real valued function and α, s, h, ν > 0. Then we have

Lα(h)[�
ν
α(h)u(t)] =

(α− e−s
1/νh)ν

hν
Lα(h)[u(t + νh)]−

∞∑
r=1

(α− e−s
1/νh)ν−r

hν−r
�r−1α(h)u((ν − r)h).

(23)
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Proof. Taking u(t) = �α(h)u(t) in Definition 15, we get

Lνα(h)[�
ν
α(h)u(t)] = �−να(h)[�

ν
α(h)u(t)e−s

1/ν t]
∣∣∣∞
0

. Now applying (8) and solving we get

Lνα(h)[�α(h)u(t)] =
(α− e−s

1/νh)

h
Lα(h)[u(t + h)]− u(0) (24)

Again taking u(t) = �2α(h)u(t) and using (8),(15), applying (24), gives

Lνα(h)[�
2
α(h)u(t)] =

(α− e−s
1/νh)2

h2
Lα(h)[u(t + 2h)]− (α− e−s

1/νh)

h
u(h)− �α(h)u(0)

(25)

Continuing this process for integer n, arrives

Lα(h)[�
n
α(h)u(t)] =

(α− e−s
1/νh)n

hn
Lα(h)[u(t + nh)]−

n∑
r=1

(α− e−s
1/νh)n−r

hn−r
�r−1α(h)u((n− r)h).

(26)

Since the order is fraction, so we consider the equation (26) for the fraction ν as

mentioned in (23). �

5. Fractional Alpha Extorial Transform by α(h)-difference

Operator

The newly created extorial function obtained from exponential expression by

replacing polynomials into polynomial factorial is used to develop fractional alpha

extorial transform for factorial functions.

Definition 5.1. For h > 0 and ν > 0, an h-extorial function is defined by

et
[ν]
h = 1 +

t
[ν]
h

1!
+

t
[2ν]
h

2!
+

t
[3ν]
h

3!
+ · · · (27)

and the h-extorial function for negative index is defined by

et
[−ν]
h = 1 +

1

1!

1

t
[ν]
h

+
1

2!

1

t
[2ν]
h

+
1

3!

1

t
[3ν]
h

+ · · · (28)

Remark 5.2. (i) In particular, when ν = 1, (27) becomes

et
[1]
h = 1 +

t
[1]
h

1!
+

t
[2]
h

2!
+

t
[3]
h

3!
+ · · · (29)

(ii) Since et 6= et
[1]
h , do not take t

[1]
h = t in the LHS of (29).

(iii) For h > 0, e(t1+t2)
[1]
h = e

t
[1]
1h e

t
[1]
2h .
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We create fractional extorial transform method for real valued function u(t).

Definition 5.3. Fractional alpha extorial transform of u(t), t > 0, is defined as

E ν
α(h)[u(t)] = �−να(h)u(t)e−s

1/ν t
[ν]
h

∣∣∣∞
0

= −hν
∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)
u(rh)e−s

1/νrh
[ν]
h . (30)

Following theorems show the fractional extorial transform of factorial and

logarithmic functions.

Theorem 5.4. For fraction ν > 0, α, h > 0, and t ∈ [0,∞), we have

E ν
α(h)[t

(µ)
h ] = −hν

∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)
(rh)

(µ)
h e−s

1/ν(rh)
[ν]
h . (31)

Proof. The proof follows directly from (30) by taking u(t) = t
(µ)
h . �

Theorem 5.5. For fraction ν > 0, α, h > 0, and t ∈ [0,∞), we have

E ν
α(h)[log at] = −hν

∞∑
r=0

α−(r+ν)
�(ν + r)

�(ν)�(r + 1)
log a(rh)e−s

1/ν(rh)
[ν]
h , (32)

Proof. Taking u(t) = log at in (30) gives (32). �

Remark 5.6. When h→ 0 and α = ν = 1, fractional alpha Laplace transform

becomes classical Laplace transform existing in the literature.

6. Conclusion

This paper defines the fundamental concept of the alpha difference operator and

highlights the qualities and outcomes that are obtained. With the aid of the alpha

fractional difference operator, the researcher has also established a new kind of alpha

extorial transform. The Laplace transform has been successfully transformed into

the fractional alpha Laplace transform (FALT). The equations and characteristics

of the fractional alpha Laplace transform, as well as the outcomes of its transform

for specific functions, have been effectively deduced by the researchers. As a result,

the FALT outcomes evaluation is a novel method based on an established one from

the literature. Consequently, the researchers deduce that when ν = α = h = 1, the

FALT transforms into a standard Laplace transform.
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