
Data Processing Framework
Dr. AKHIL PANDEY1, Dr. VISHAL SHRIVASTAVA2, ER. SANGEETA SHARMA3,

 1,2 Professor, 3Assistant Professor

Department of Computer Science, Arya College of Engineering & I.T. Jaipur, India

akhil@aryacollege.in,2vishalshrivastava.cs@aryacollege.in,3sangeetayuwansh1@gmil.comB

ABSTRACT

The rapid growth of digital data from various sources
has outpaced the capabilities of traditional methods for

storage, processing, and analysis. As a result, advanced

technologies have been developed to manage and

process enormous datasets effectively. Data processing
plays a critical role in extracting valuable insights and

converting raw data into actionable knowledge. This

process involves transforming disorganized, large-

scale data into structured and usable formats.

Handling data requires robust frameworks capable of

managing massive amounts of information efficiently.

However, choosing the right framework for a specific

application is often a complex decision. To address
this, this paper examines the challenges associated with

big data and explores five primary methods of

processing it: batch processing, stream processing,
real-time processing, interactive processing, and hybrid

processing. Each of these approaches is analyzed

alongside widely used frameworks such as Apache
Hadoop, Dryad, Samza, IBM Infosphere, Storm,

Amazon Kinesis, Drill, Impala, Flink, and Spark.

The study also provides a comprehensive comparison

of these frameworks, highlighting their advantages and

limitations.

Keywords: Data challenges, Data processing

frameworks, Apache, Hybrid

I.INTRODUCTION

Data Processing (DP) is a critical field that involves

transforming raw data into meaningful and structured
information through techniques such as organizing,

indexing, and manipulating datasets. The term

"information" in this context refers to valuable

insights, relationships, and patterns that can help solve
specific problems or support decision-making

processes. Over the years, DP has become a

cornerstone of technological advancements, enabling
industries and organizations to unlock the potential of

their data resources.

Historically, the evolution of data processing has been

closely tied to technological progress. In earlier times,

data processing tasks relied heavily on human labor,

requiring manual effort to analyze, categorize, and
interpret information. However, as machines and

computers were developed, these labor-intensive tasks

began to be automated, significantly improving the
efficiency, accuracy, and scalability of data handling

processes. Today, data processing relies on

sophisticated algorithms and technologies that allow
for faster and more reliable analysis of even the largest

datasets.

The methods used in DP are as diverse as the types of

data it handles. Each data type requires tailored

techniques and algorithms to extract meaningful

information.

Facial recognition data processing often involves

classification methods to identify unique features,

while climate data relies on time series analysis to
understand trends and patterns over time. These

specialized methods highlight the adaptability of DP to

address different kinds of data challenges effectively.

However, the results of data processing are not solely

dependent on the techniques and algorithms used—
they are also heavily influenced by the quality of the

data itself. High-quality data serves as the foundation

for accurate and reliable insights. Common data quality
issues, such as missing values, inconsistencies, and

duplications, can often be resolved through

preprocessing techniques like imputation and

deduplication. Nevertheless, some systemic issues,
such as errors introduced by flawed equipment design

or biases in data collection processes, pose more

significant challenges and may require innovative

approaches to mitigate.

In the sections that follow, we will delve deeper into

the various factors that influence data processing,

including the challenges posed by data quality issues
and the advancements in techniques and tools. To

understand the current landscape of data processing, it

is essential to first explore its historical development

and how it has shaped the modern methodologies we

rely on today.

II. KEY OPERATIONS IN DATA PROCESSING

mailto:akhil@aryacollege.in,2vishalshrivastava.cs@aryacollege.in,3sangeetayuwansh1@gmil.com

Data processing is the systematic handling of raw data
to transform it into meaningful and actionable insights.

Each stage in this process is essential to ensure the

accuracy, relevance, and usability of the final output.

Below are the key operations involved in data
processing, explained in detail:

1. Data Collection

The foundation of data processing begins with

gathering raw data from various sources. This step

is critical, as the quality and completeness of the

collected data significantly impact the entire

process.

Important Aspects:

 Sources: Data can come from surveys,

digital sensors, transactional records,
social media platforms, or web APIs.

 Methods: Automated tools like web

scrapers, real-time IoT feeds, and database
exports are often used.

 Challenges: Ensuring data accuracy,

avoiding redundancy, and collecting

comprehensive datasets without errors.

2. Data Cleaning and Preprocessing

Raw data often contains errors, inconsistencies, or

incomplete records. Data cleaning prepares it for
analysis by addressing these issues. This step ensures

that the data is reliable and meaningful.

Key Activities:

 Error Removal: Eliminate inconsistencies,

such as incorrect formats or out-of-range
values.

 Handling Missing Data: Address missing

entries through methods like interpolation,

imputation, or exclusion.
 Standardization: Uniformly format data

fields, such as date-time entries or numerical

scales.
 Duplication Check: Identify and remove

duplicate records to ensure accuracy.

3. Data Organization and Structuring

Once cleaned, data needs to be structured for easy

access and analysis. This involves sorting, indexing,

and storing data systematically.

Key Aspects:

 Data Structuring: Organizing data into tables,

files, or hierarchical formats suitable for
analysis.

 Database Management: Storing structured
data in relational (SQL) or non-relational

(NoSQL) databases.

 Indexing: Creating efficient search indices to

enable fast retrieval of specific data points.
 Storage Solutions: Choosing appropriate

storage options like cloud storage, local

servers, or hybrid models.

4. Data Transformation

In this stage, data is converted into a format or

structure suitable for analytical models. This step often
includes applying mathematical operations or

reformatting the data.

Core Activities:

 Aggregation: Summarize data through totals,

averages, or counts for a higher-level view.
 Normalization: Adjust values to fit a

consistent scale, such as transforming currency

values into a standard unit.

 Categorical Encoding: Convert non-numeric
fields into a format usable by algorithms, such

as one-hot encoding.

 Feature Engineering: Create new variables or
modify existing ones to enhance the predictive

power of the data.

5. Data Analysis

This step focuses on extracting insights, identifying

patterns, and drawing conclusions from the processed

data. Different analytical techniques are employed

depending on the goal.

Techniques Used:

 Descriptive Analysis: Summarize data
characteristics using metrics like mean,

median, and variance.

 Exploratory Analysis: Investigate
relationships, trends, and anomalies in the

dataset.

 Predictive Analysis: Use statistical models or
machine learning algorithms to forecast future

outcomes.

 Visualization: Represent data visually through

graphs, charts, or dashboards to make insights

more accessible.

6. Data Output and Reporting

The insights derived from data analysis need to be

presented in a way that is understandable and

actionable for stakeholders.

Common Outputs:

 Reports: Written summaries highlighting key
findings and actionable insights.

 Dashboards: Interactive visual interfaces for

real-time monitoring and analysis.

 Charts and Graphs: Visual representation of
trends, comparisons, and distributions.

 Export Formats: Converting processed data

into formats like CSV, JSON, or Excel for

sharing and further use.

7. Feedback and Refinement

Data processing often involves feedback loops where
results are reviewed, and adjustments are made for

improvement. This iterative approach ensures accuracy

and adaptability to changing requirements.

Steps in Refinement:

 Validation: Cross-check outputs to confirm
accuracy and consistency with expectations.

 Iteration: Revisit earlier stages if new data is

added or issues arise during analysis.

 Optimization: Fine-tune algorithms or
techniques to improve efficiency and

outcomes.

III. TYPES OF DATA PROCESSING

FRAMEWORKS

 Data processing involves managing and transforming
enormous volumes of data from its raw form into

actionable insights and more comprehensible formats

(Benjelloun et al., 2020). This section outlines the most

efficient frameworks used to handle large-scale and
fast-paced data generation. These frameworks are

typically divided into five categories based on their

data processing methodologies: batch processing,
streaming processing, real-time processing, interactive

processing, and hybrid processing, as depicted.

1. Batch Processing

Batch processing is employed for handling large
datasets stored in databases or file systems. It

processes accumulated data in chunks over time,

loading it into a storage system before initiating the

analysis. This method is often used for high-volume
data due to its efficiency (Saadoon et al., 2022;

Abuqabita et al., 2019). Among the most prominent

frameworks for batch processing are Apache Hadoop

and Apache Dryad.

1.1. Apache Hadoop

Apache Hadoop, a widely adopted framework for
batch data processing, is open-source and written in

Java. It facilitates processing and querying of massive

datasets across clusters of commodity hardware.
Initially developed by Yahoo! in 2006, Hadoop

evolved into an enterprise-grade cloud computing

platform. Its four primary features include scalability,

cost efficiency, adaptability, and fault tolerance (Al-

Barznji & Atanassov, 2016; Otoo-Arthur & Zyl, 2020).

Hadoop’s architecture includes two main components:

 HDFS (Hadoop Distributed File System) for

storage.

 MapReduce, a programming model designed
for parallel data processing by dividing tasks

into smaller jobs.

Additionally, YARN (Yet Another Resource

Negotiator), introduced in 2012 by Yahoo! and

Hortonworks, enables better resource management
(Benjelloun et al., 2020). The Hadoop ecosystem

further includes tools like Apache Hive, Pig, HBase,

Zookeeper, and Oozie for enhanced functionality.

1.2. Apache Dryad

Microsoft introduced Apache Dryad in 2004 as a

parallel and distributed framework for scalable data
processing. Capable of expanding from small to

extensive clusters, Dryad optimizes parallel execution

by utilizing cluster resources effectively. Its advanced
features include fault tolerance, job management,

resource handling, and visualization (Abuqabita et al.,

2019).

2. Streaming Processing

Streaming processing focuses on analyzing data as it

flows, whether it comes from social media or IoT

devices. This approach ensures low latency and rapid
reaction times to new events, enabling near real-time

decision-making (Benjelloun et al., 2020). Popular

frameworks in this category include IBM InfoSphere

Streams and Apache Samza.

Data Processing

Framework

Batch

Processing

(Hadoop,

Dryad)

Hybrid

Processing

(Spark,Flink)

Streaming

Processing

(Samza, IBM

Infosphere)

Interactive

Processing

(Drill, Impala)

Real Time

Processing (Storm,

Amazon Kinesis)

2.1. IBM InfoSphere Streams

IBM InfoSphere Streams is a powerful tool for

processing continuous data streams with minimal
delay. It supports both structured and unstructured

data, offering high scalability and fast processing

speeds. A specialized stream processing language is
included, enabling developers to design stream

applications efficiently (Abuqabita et al., 2019).

2.2. Apache Samza

Initially developed by LinkedIn in 2013 and later

contributed to the Apache community, Apache Samza

is optimized for handling high-throughput data
streams. Its design ensures rapid fault recovery and

robust reliability, making it a preferred choice for

companies like Netflix, LinkedIn, and Uber (Manjula

& Prema, 2020). Samza integrates with platforms like
Apache Kafka and YARN for seamless processing and

resource management.

3. Real-Time Processing

Real-time processing ensures instant responses to

incoming data, typically measured in milliseconds.

This processing style is essential for time-sensitive
applications and is challenging to achieve with

traditional software (Ariyaluran et al., 2019).

Frameworks like Amazon Kinesis and Apache Storm

dominate this category.

3.1. Amazon Kinesis

Amazon Kinesis specializes in managing massive data
streams and is ideal for machine learning workflows. It

enables real-time data analysis with remarkably low

latency, processing inputs from numerous sources with

ease (Amazon Kinesis, 2022).

3.2. Apache Storm

Apache Storm, created in 2011 and later open-sourced
by Twitter, is a scalable and fault-tolerant system for

distributed data processing. Storm processes real-time

streams into actionable insights by passing data

through a network of processing units (Basha et al.,

2019).

4. Interactive Processing

Interactive processing allows users to query and
interact with Big Data streams dynamically. It is

designed to provide immediate responses to small

tasks, making it suitable for business intelligence and
analytics applications (Abuqabita et al., 2019).

Frameworks like Apache Impala and Apache Drill

excel in this area.

4.1. Apache Impala

Apache Impala is a high-performance SQL engine with

a distributed architecture. It leverages Massively
Parallel Processing (MPP) to deliver efficient queries

with minimal latency, making it superior to Hive and

Spark SQL (Abuqabita et al., 2019).

4.2. Apache Drill

Inspired by Google’s Dremel, Apache Drill is a low-

latency query engine for analyzing large-scale
structured and semi-structured data. It supports a

variety of data sources, including NoSQL databases

and file systems like Amazon S3 and Google Cloud

Storage (Apache Drill, 2022).

5. Hybrid Processing

Hybrid processing frameworks combine the
capabilities of batch and streaming processing, offering

flexibility for diverse data processing needs. Leading

frameworks in this category are Apache Spark and

Apache Flink.

5.1. Apache Flink

Apache Flink, initially developed as Stratosphere, is

renowned for its low-latency and high-throughput
capabilities. It supports both bounded (batch) and

unbounded (streaming) data processing through its

APIs, making it highly versatile (Apache Flink, 2022).

5.2. Apache Spark

Apache Spark is a powerful platform for high-speed

data processing and advanced analytics. It supports
multiple languages, including Java, Python, and Scala.

With in-memory processing, Spark outperforms

Hadoop MapReduce, making it ideal for machine

learning and pattern mining tasks (Ahmed et al., 2020).

IV. CORRELATION BETWEEN FRAMEWORKS

In this section, we will explore and compare several

prominent stream processing engines (SPEs). The

frameworks under review include six modern SPEs:
Apache Spark, Apache Flink, Apache Storm, Apache

Heron, Apache Samza, and Amazon Kinesis.

Additionally, we will discuss Apache Hadoop, a
historically significant framework in big data

processing.

Hadoop was one of the first frameworks designed to

handle extensive datasets using the MapReduce

programming paradigm. It is highly scalable, capable
of running on a single cluster, a single machine, or

across multiple clusters on several machines. One of

Hadoop’s strengths lies in its ability to leverage

distributed storage, optimizing performance by
transferring the processing code to where the data

resides rather than moving the data itself. This design

improves efficiency and ensures high availability and

throughput. However, Hadoop struggles with handling
numerous small files efficiently, which can hinder

performance in certain scenarios.

Despite its strengths, Hadoop has limitations when it

comes to real-time data processing, as it does not
natively support streaming workflows. To address this

gap, Apache Spark was introduced as a versatile

framework capable of handling both batch and
streaming data through distributed processing.

According to Matei Zaharia, the creator of Spark, the

framework was developed to overcome three primary

challenges associated with Hadoop:

1. Avoiding repetitive passes over the data when
using iterative algorithms.

2. Enabling real-time streaming capabilities.

3. Supporting interactive querying for faster

insights.

Rather than relying on Hadoop's MapReduce model,

Spark employs Resilient Distributed Datasets (RDDs),

which are both fault-tolerant and optimized for parallel

processing. Spark is highly scalable and has
consistently demonstrated superior performance

compared to Hadoop. It is particularly beneficial for

data science projects, offering a comprehensive
ecosystem with libraries for exploratory data analysis

(EDA), machine learning (ML), graph processing,

stream analytics, and SQL-based operations.

In subsequent years, Apache Flink and Apache Storm

were introduced to address specific gaps in stream
processing. While Spark utilizes a micro-batch

approach to streaming, Flink and Storm are designed

for native stream processing. Apache Flink supports
both batch and streaming workloads and offers features

tailored to temporal data processing. For instance,

Flink can handle event time, accommodating delayed
events and ensuring accurate results. Its watermarking

functionality strikes a balance between data latency

and completeness, making it suitable for time-sensitive

applications.

Apache Storm, on the other hand, is focused
exclusively on real-time stream processing. Both Flink

and Storm are low-latency frameworks, but they differ

in functionality and implementation. Flink provides a
more advanced and user-friendly API, allowing

developers to perform complex operations more

efficiently. Additionally, their fault tolerance

mechanisms differ: Storm employs record-level
acknowledgments to ensure reliable processing, while

Flink uses a checkpoint-based algorithm for greater

robustness.

While these frameworks share similarities, their unique
capabilities make them suitable for different types of

applications. This diversity in tools ensures that
developers and businesses can choose the framework

that best aligns with their specific needs and challenges

in big data processing.

While Apache Storm is a reliable framework for real-

time data streaming, its scalability falls short for
applications with high computational demands.

Moreover, tasks such as debugging and managing

Storm systems can become cumbersome. To address
these limitations, Apache Heron was introduced as its

successor. Announced in a 2015 paper from Twitter,

Heron brought significant improvements in
performance and usability, positioning itself as a

modern alternative to Storm.

Another noteworthy framework is Apache Samza,

which supports real-time processing and is well-suited

for event-driven applications and Extract, Transform,
and Load (ETL) workflows. Samza offers a range of

APIs and has an architecture inspired by Hadoop.

However, unlike Hadoop's reliance on the MapReduce
model, Samza features its own API tailored for stream

processing and uses Apache Kafka as its underlying

storage system instead of the Hadoop Distributed File

System (HDFS).

Amazon Kinesis, in contrast, is unique among these
frameworks as it is not part of the Apache ecosystem.

Rather than being a singular framework, Kinesis is a

suite of four tools designed for various data streaming
needs. In this discussion, "Amazon Kinesis" refers

specifically to the Kinesis Data Streams service for

simplicity. Kinesis Data Streams is highly versatile and

seamlessly integrates with other frameworks like
Apache Flink, making it a powerful choice for

organizations that use a combination of tools for real-

time data processing.

V. REQUIREMENTS OF DATA PROCESSING

FRAMEWORK

The effectiveness of a Big Data processing framework
is determined by its ability to manage, analyze, and

process large-scale datasets efficiently. This section

highlights the four critical requirements that form the

backbone of any robust Big Data processing
framework. These include architecture design, data

processing models, scheduling strategies, and fault

tolerance mechanisms. Each aspect plays a pivotal role
in ensuring the scalability, reliability, and efficiency of

the system.

1. Architecture

The architecture of Data processing framework is

foundational to its functionality. It serves as a blueprint

that outlines how data flows through the system, how
tasks are distributed, and how processing is managed

across distributed environments. In most frameworks,

workloads are partitioned and distributed across

multiple processors to achieve parallelism. This
requires meticulous handling of several components,

including data partitioning, storage, and monitoring.

Key Features of Architecture:

1. Data Partitioning and Distribution:
o To leverage distributed computing,

large datasets are divided into smaller,
manageable chunks that can be

processed concurrently by different

nodes in the system.

2. Distributed File System Management:
o Storage is managed through

distributed file systems like HDFS

(Hadoop Distributed File System),
which ensure scalability and high

availability of data across nodes.

3. Parallel Processing:
o The architecture enables simultaneous

task execution across multiple nodes,

optimizing resource utilization and

reducing processing time.

4. Core Modules:
o Most architectures incorporate four

essential modules: resource
management, task scheduling,

execution, and storage. These modules

work together to support efficient

operations across the data lifecycle.

5. Scalability and Fault Tolerance:
o A well-designed architecture should

easily scale with increasing data
volumes while ensuring fault

tolerance. Fault tolerance is achieved

by replicating data across nodes and
incorporating recovery mechanisms.

6. Logical Design:
o Logical roles and interconnections

between system components are
defined to ensure seamless data flow

from ingestion to the generation of

results. For example, a logical directed
acyclic graph (DAG) is often

employed to represent data processing

workflows.

The architecture must support the entire data lifecycle,

from ingestion to processing and the storage of results
for future reference. High availability, fault tolerance,

and scalability are non-negotiable attributes of a

reliable framework.

2. Data Processing Model

The data processing model specifies the methodology

used to process and compute data. It defines how the
system organizes computations and interacts with the

data, playing a crucial role in determining processing

efficiency and responsiveness.

Types of Data Processing Models:

1. Batch Processing:
o Batch processing handles data in bulk,

where large datasets are collected,

stored, and processed together over a

specified period. This model is ideal
for operations that are not time-

sensitive, such as generating monthly

reports or analyzing historical data.

o Example Frameworks: Apache
Hadoop and Apache Hive are

prominent examples of systems that

excel in batch processing, using
MapReduce as the core computational

paradigm.

2. Stream Processing:
o In contrast to batch processing, stream

processing involves the continuous

and incremental processing of data as

it arrives. This model is suitable for
real-time applications like monitoring

social media feeds, analyzing sensor

data, or detecting financial fraud.
o Example Frameworks: Apache

Storm and Apache Kafka are widely

used for stream processing.

Representation of Computations:

Data computations can be represented in various

forms:

 Map-Reduce Functions:
o Used in batch processing systems,

MapReduce breaks down tasks into

smaller, independent jobs (map) and

aggregates results (reduce).

 Directed Acyclic Graphs (DAGs):
o DAGs represent complex workflows

where nodes indicate computations,
and edges signify data flow

dependencies. Frameworks like

Apache Spark rely on DAGs for

executing tasks efficiently.

By selecting an appropriate processing model, a
framework can optimize for throughput, latency, or

both, depending on the application requirements.

3. Scheduling

Efficient scheduling is a cornerstone of high-

performance Big Data systems. Scheduling determines

the order in which tasks are executed and resources are
allocated. It directly impacts execution time, resource

utilization, and overall system throughput.

Objectives of Scheduling:

1. Efficient Resource Utilization:

o Maximizing the use of CPU, memory,
disk I/O, and network bandwidth to

prevent resource wastage.

2. Task Optimization:
o Scheduling tasks in an order that

minimizes dependencies, reduces idle

time, and ensures a smooth workflow.

3. Minimizing Task Migrations:
o Avoiding unnecessary task movement

between nodes, which can increase

computation time and resource

overhead.

Types of Scheduling:

1. Static Scheduling:
o Tasks are pre-assigned to resources

based on predefined criteria, which

works well in predictable

environments.

2. Dynamic Scheduling:
o Decisions are made in real-time based

on current system states, making it
suitable for heterogeneous and

changing workloads.

Advanced Scheduling Techniques:

 Priority-Based Scheduling:
o Assigns priority levels to tasks to

ensure critical jobs are processed first.

 Deadline-Aware Scheduling:
o Focuses on meeting time-sensitive

requirements by prioritizing jobs with

imminent deadlines.

An optimal scheduling strategy ensures a balance
between computation speed and resource availability,

enhancing the overall system efficiency.

4. Fault Tolerance

In distributed systems, faults are inevitable due to the

complexity and scale of operations. Fault tolerance

ensures the system’s reliability by maintaining

functionality despite hardware or software failures.

Sources of Failures:

1. Node Failures:
o Individual nodes in the distributed

system may fail due to hardware

malfunctions or software errors.

2. Network Failures:
o Connectivity issues can disrupt

communication between nodes.

3. Resource Constraints:
o Insufficient memory, CPU, or disk

space can lead to operational failures.

Fault Tolerance Mechanisms:

1. Data Replication:
o Data is replicated across multiple

nodes to ensure availability even if one

node fails.

2. Checkpointing:
o Periodically saving the state of the

system allows it to restart from a

known good state in case of failure.

3. Job Re-Execution:
o Failed tasks are detected and re-

executed on healthy nodes to maintain

continuity.

4. Heartbeat Monitoring:
o Regular signals between nodes ensure

connectivity and help detect failures

promptly.

Importance in Large-Scale Systems:

The probability of failure increases with the number of
components in a distributed system. Fault tolerance is

therefore not a luxury but a necessity. Frameworks like

Apache Spark and Hadoop are designed with robust

fault tolerance capabilities, ensuring minimal

disruption to ongoing operations.

VI. ADVANTAGES

1. Scalability:
o Data processing frameworks can scale

horizontally, allowing for efficient

handling of large datasets across
multiple machines or nodes. This

makes them suitable for big data

operations.

2. Parallel Processing:
o These frameworks allow parallel

processing of data, reducing the time

required for computations by breaking
tasks into smaller units that can be

executed concurrently.

3. Fault Tolerance:
o Many data processing frameworks

have built-in fault tolerance

mechanisms (e.g., data replication,
task re-execution), ensuring that the

system can recover from hardware or

software failures.

4. Flexibility:
o Frameworks like Apache Spark and

Databricks support a variety of

processing workloads, including batch
processing, real-time processing, and

machine learning, making them

versatile tools for different types of
data tasks.

5. Efficiency in Handling Unstructured Data:
o Data processing frameworks can

efficiently process unstructured or
semi-structured data (like logs, text, or

JSON), making them adaptable to a
variety of data sources.

6. Integration with Other Tools:
o These frameworks can often integrate

with other data tools and platforms
(e.g., databases, cloud storage,

business intelligence tools), enhancing

the overall data pipeline and analytics
capabilities.

7. Cost-Effectiveness:
o By using distributed systems,

frameworks can utilize commodity

hardware, potentially reducing costs

compared to traditional centralized

processing solutions.

VII. LIMITATIONS

1. Complexity:
o Setting up and maintaining a data

processing framework can be complex,

especially when scaling, optimizing, or

configuring the system to meet
specific needs.

2. Latency Issues (for real-time processing):
o Some frameworks, although capable of

real-time processing, may have

inherent latency or performance issues

when handling high-throughput data

streams in real-time.

3. Resource Intensive:
o Large-scale data processing

frameworks require significant
computational resources, including

memory and storage, which may lead

to high operational costs for managing
clusters or cloud-based infrastructures.

4. Data Shuffling Overhead:
o Frameworks like Hadoop and Spark

involve data shuffling during certain
operations (e.g., joins, aggregations),

which can be resource-intensive and

lead to performance degradation if not
optimized.

5. Learning Curve:
o Mastering frameworks like Apache

Spark or Hadoop requires expertise,
particularly for data engineers and

developers. Understanding its APIs,

optimization techniques, and
distributed processing concepts can be

challenging.

6. Error Handling and Debugging:
o Debugging distributed systems can be

complex. Errors in data processing

might be difficult to trace because of

the parallel nature of tasks and the
distributed architecture.

7. Dependency on Network Stability:
o In distributed systems, network

reliability and bandwidth are crucial

for performance. Poor network

conditions can significantly affect data
processing efficiency and delay task

execution.

VIII. SUMMARY

Data Processing (DP) is a vital field focused on

transforming raw data into structured, meaningful

information through various techniques such as
organizing, indexing, and manipulating datasets.

Historically, DP has evolved from manual labor to

automated processes due to technological
advancements, significantly enhancing efficiency and

scalability. The document outlines key operations in

DP, including data collection, cleaning, organization,

transformation, analysis, output, and feedback
refinement. Each stage is crucial for ensuring the

accuracy and usability of insights derived from data.

Furthermore, the text categorizes data processing
frameworks into five main types: batch processing

(e.g., Apache Hadoop), streaming processing (e.g.,

IBM InfoSphere Streams), real-time processing (e.g.,

Amazon Kinesis), interactive processing (e.g., Apache
Impala), and hybrid processing (e.g., Apache Spark).

These frameworks are designed to handle large

volumes of data efficiently, each with unique
capabilities tailored to specific processing needs. The

document emphasizes the importance of data quality

and the adaptability of DP methods to address diverse

data challenges effectively.

IX. REFERENCES

1. Abuqabita., Al-Omoush, R. and Alwidian, J.
(2019). A Comparative Study on Big Data

Analytics Frameworks, Data Resources and

Challenges. Mod. Appl. Sci., 13(7), 1–14.
2. Acharjya, D.P. (2016). A Survey on Big Data

Analytics : Challenges, Open Research Issues

and Tools. Int. J. Adv. Comput. Sci. Appl., 7(
2), 511–518.

3. Ahmed, N., Andre L.C. Barczak, Teo Susnjak.

and Mohammed A. Rashid. (2020). A

Comprehensive Performance Analysis Of
Apache Hadoop And Apache Spark For Large

Scale Data Sets Using HiBench. Journal of Big

Data7(110), 1–18, Springer.
4. Al-Barznji, K. and Atanassov, A. (2016). A

Survey of Big Data Mining: Challenges and

Techniques. in Proceedings of 24th
International Symposium “Control of Energy,

Industrial and Ecological Systems”, 113–117,

Bankia, Bulgaria.

5. Al-Barznji, K. and Atanassov, A. (2016). A
MapReduce Solution for Handling Large Data

Efficiently. Int. Sci. J. “MACHINES. Technol.

Mater., 23 (12), 20–23.

6. Al-Barznji, K. and Atanassov, A. (2018). Big
Data Sentiment Analysis Using Machine

Learning Algorithms in Proceedings of 26th

International Symposium “Control of Energy,

Industrial and Ecological Systems”, Bankia,
Bulgaria, 53–58.

7. Amazon Kinesis (Received on April 2022).

https://aws.amazon.com/kinesis/
8. Apache Drill (Received on April 2022).

https://drill.apache.org/architecture/

9. Apache Flink (Received on April 2022).
https://flink.apache.org/

10. Apache Spark (Received on April 2022).

https://spark.apache.org/docs/latest/cluster-

overview.html
11. Apache Samza (Received on April 2022).

https://engineering.linkedin.com/samza/apache

-samza-linkedins stream-processingengine/
12. Ellingwood J. (2016), Hadoop, Storm, Samza,

Spark, and Flink: Big Data Frameworks

Compared. Retrieved 25 Feb 2019, from
https://www.digitalocean.com/community/tuto

rials/hadoop-storm-samza-spark-and flink-big-

data-frameworks-compared

13. Zaharia, M.; Das, T.; Li, H.; Hunter, T.;
Shenker, S.; Stoica, I. Discretized streams:

Fault-tolerant streaming computation at scale.

In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP ’13),

Farminton, PA, USA, 3–6 November 2013; pp.

423–438.

https://aws.amazon.com/kinesis/
https://drill.apache.org/architecture/
https://flink.apache.org/
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://engineering.linkedin.com/samza/apache-samza-linkedins%20stream-processingengine/
https://engineering.linkedin.com/samza/apache-samza-linkedins%20stream-processingengine/
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and%20flink-big-data-frameworks-compared
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and%20flink-big-data-frameworks-compared
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and%20flink-big-data-frameworks-compared

	I.INTRODUCTION
	1. Data Collection
	The foundation of data processing begins with gathering raw data from various sources. This step is critical, as the quality and completeness of the collected data significantly impact the entire process.
	2. Data Cleaning and Preprocessing
	3. Data Organization and Structuring
	4. Data Transformation
	5. Data Analysis
	6. Data Output and Reporting
	7. Feedback and Refinement
	1.1. Apache Hadoop
	1.2. Apache Dryad

	2. Streaming Processing
	2.1. IBM InfoSphere Streams
	2.2. Apache Samza

	3. Real-Time Processing
	3.1. Amazon Kinesis
	3.2. Apache Storm

	4. Interactive Processing
	4.1. Apache Impala
	4.2. Apache Drill

	5. Hybrid Processing
	5.1. Apache Flink
	5.2. Apache Spark

	IV. CORRELATION BETWEEN FRAMEWORKS
	V. REQUIREMENTS OF DATA PROCESSING FRAMEWORK
	1. Architecture
	Key Features of Architecture:

	2. Data Processing Model
	Types of Data Processing Models:
	Representation of Computations:

	3. Scheduling
	Objectives of Scheduling:
	Types of Scheduling:
	Advanced Scheduling Techniques:

	4. Fault Tolerance
	Sources of Failures:
	Fault Tolerance Mechanisms:
	Importance in Large-Scale Systems:

	VI. ADVANTAGES
	VII. LIMITATIONS

